
COMS W4115: RJEC Language Reference

Manual
Really Just Elementary Concurrency

Riya Chakraborty (rc3242), Justin Chen (jbc2186),
Yuanyuting (Elaine) Wang (yw3241), Caroline Hoang (cjh2222)

24 February 2021

Contents

1 Introduction 4

2 Lexical Conventions 4
2.1 Comments . 4
2.2 Reserved Keywords . 4
2.3 Literals . 4
2.4 Separators . 5

3 Variables 5
3.1 Variable Naming . 5
3.2 Declaring a variable . 6
3.3 Multiple variable declaration . 6

4 Data Types 7
4.1 Typing Methodology . 7
4.2 Basic Data Types . 7

4.2.1 int . 7
4.2.2 bool . 7
4.2.3 char . 8

4.3 Arrays . 8
4.3.1 Declaring Arrays . 8
4.3.2 Defining Arrays . 8
4.3.3 Accessing Array Elements 9
4.3.4 Nested Arrays . 9

4.4 Structs . 9
4.4.1 Defining Structs . 9
4.4.2 Declaring and Initializing Variables of Type Struct 10
4.4.3 Accessing Fields of a Struct 11

4.5 Channels . 11

1

COMS W4115 RJEC Language Reference Manual

4.5.1 Declaring and Initializing Channels 11
4.5.2 Sending and Receiving Items 12
4.5.3 Passing Channels as Function Parameters 12
4.5.4 Closing Channels . 12

5 Functions 13
5.1 Defining Functions . 13
5.2 Calling Functions . 13
5.3 Passing Functions as Function Parameters 14
5.4 The main Function . 14
5.5 The return Statement . 14
5.6 yeeting Functions . 14

6 Statements & Expressions 15

7 Operators 16
7.1 Associativity and Order of Precedence 16
7.2 Arithmetic Operators . 16

7.2.1 Addition operator . 16
7.2.2 Subtraction operator . 17
7.2.3 Multiplication Operator 17
7.2.4 Division Operator . 17
7.2.5 Modulo Operator . 17
7.2.6 Unary Negation Operator 17

7.3 Boolean Operators . 17
7.3.1 Equality Operator . 17
7.3.2 Less Than Operator . 18
7.3.3 Less Than or Equal To Operator 18

7.4 Logical Operators . 18
7.4.1 AND operator . 18
7.4.2 OR operator . 18
7.4.3 NOT operator . 18

7.5 Arrow Operator . 19
7.6 Access Operators . 19
7.7 Assignment Operators . 19

8 Control Flow 20
8.1 for Loops . 20
8.2 if and else Statements . 21
8.3 break . 21
8.4 continue . 21
8.5 select . 22
8.6 defer . 22

9 Standard Library 23

Riya Chakraborty, Justin Chen, Yuanyuting Wang, Caroline Hoang 2

COMS W4115 RJEC Language Reference Manual

10 Example Code 23
10.1 Euclid’s Algorithm . 23
10.2 Single Producer-Consumer . 23

Riya Chakraborty, Justin Chen, Yuanyuting Wang, Caroline Hoang 3

COMS W4115 RJEC Language Reference Manual

1 Introduction

RJEC (Really Just Elementary Concurrency) is an imperative language with a
primary focus on concurrent programming. It is based on Go, and its syntax and
features are largely a strict subset of Go’s. Like Go, RJEC is imperative, but
contains some features that enable some more functional style. Concurrency
abstractions are incorporated as language primitives. These features enable
somewhat higher-level, CSP-style concurrency, which are useful in distributed
systems applications.

2 Lexical Conventions

2.1 Comments

RJEC has support for both single-line and multi-line comments. Any tokens
following /∗ are considered part of a comment (whether single or multi-line)
and are essentially discarded (they are not included in further lexical analysis
or parsing). A comment is over when the ∗/ token is encountered.

2.2 Reserved Keywords

The reserved keywords are as follows, grouped together by their particular uses:

The keywords representing data types are: int, bool (for which we have true,
and false), char, chan, struct, array, func. Note that the first three indicate
the basic data types, and the following four indicate the composite data types.

The keywords useful for dictating control flow are: if, else, for, break,
continue, defer, select, case, return, yeet

The keywords necessary for declarations are: var

The keywords related to resource acquisition and management are: make, close.
These are associated with the initialization and destruction of channels (dis-
cussed in greater detail below).

2.3 Literals

Literals can be used to represent either the basic data types (int, char, bool)
or strings.

String literals are a sequence of characters wrapped in double quotation marks,
i.e. "rjec is the best". String literals do not need to be bound to a variable.

The lexer is able to identify string literals by going into a different mode of
lexing when encountering a double quote (") and reads contents to a buffer

Riya Chakraborty, Justin Chen, Yuanyuting Wang, Caroline Hoang 4

COMS W4115 RJEC Language Reference Manual

(which constitute the contents of a string literal) until another double quote (")
is encountered.

A char literal is a single character wrapped in single quotation marks, i.e. var

mychar char = 'r'. Character literals do not necessarily have to be bound to
a variable either.

An integer literal can be any sequence of integers, each of which are between 0
and 9. The corresponding regex that is matched to by the lexer is [′0′ −′ 9′]+.

A boolean literal can either be the true or false keyword, i.e. var mybool

bool = false.

2.4 Separators

RJEC uses parentheses (()) to override any default expression precedence. Sim-
ilarly, square brackets ([]), curly braces () are processed as separators. White
spaces are indeed separators, but are not recognized as tokens. The other po-
tential separators include commas (,), semicolons (;), dots (.), and colons (:).

The following provide examples of usage of separators:

a, b := 1, 2;

/* ’,’ as a separator in multiple variable declaration */

var newArr [2]char = [2]char{’a’, ’b’};

/* [] and {} for array declaration and initialization */

newArr[1] = ’c’;

/* [] in array access and ’;’ indicate the end of a statement */

x_coord = point.x;

/* ’.’ to access field of a struct */

case data <- x:

/* ’:’ in case statement */

3 Variables

3.1 Variable Naming

Variable, function, and type identifiers must begin with a letter, and must
contain only letters, numbers, and underscores. As an example var name 1 is
a valid identifier, as is VarName2. 2strong is not a valid variable, and neither is
var name 3.

Riya Chakraborty, Justin Chen, Yuanyuting Wang, Caroline Hoang 5

COMS W4115 RJEC Language Reference Manual

3.2 Declaring a variable

Variables may be declared by using their names followed by their type, except
in the case of arrays, for which there is a special syntax for noting their type
and size:

vdecl:

var id-list vdecl-typ

id-list:

identifier
identifier, id-list

vdecl-typ:

int

bool

char

chan basic-typ
[expr] typ
struct identifier

Variables may be declared both globally and in functions. Variables declared
without being explicitly initialized are initialized to their zero value (see “Data
Types” section 4). Variables may be declared and initialized in the same line
within functions. The operator identifier := expr may act as shorthand for
variable initialization by assigning the type of the expression to the new variable
(see section 7.7).

As examples, the following are both valid variable initialization:

var i int = 5

j := 5

3.3 Multiple variable declaration

As can be seen in the grammar above, multiple variables of the same type may
be declared in one line by being separated by commas. Furthermore, using the
:= operator (as seen the grammar in 7.7), multiple variables of different types
may be declared in one line by being assigned. As examples:

var i, j int

k, s := 5, "hi"

Riya Chakraborty, Justin Chen, Yuanyuting Wang, Caroline Hoang 6

COMS W4115 RJEC Language Reference Manual

4 Data Types

4.1 Typing Methodology

RJEC is statically typed and strongly typed. The language supports three basic
data types: int, bool, and char. In addition, it also supports four composite
types: array, struct, chan and func. Note that to this end, string literals
will be represented as char arrays rather than as its own type. The types are
represented in RJEC’s grammar as:

typ:

int

bool

char

chan basic-typ
[] typ
struct identifier
func (type-listopt) return-typesopt

RJEC enforces a strong typing system, which means the language does not con-
duct implicit type conversions or casting. Operands on the two sides of binary
operators have to be of the same type, and failure to abide by the typing system
will lead to compiler errors. RJEC does not support type casting.

Note that unlike some other language conventions, RJEC treats int and bool as
distinct types, which means statements such as 1 == true will lead to compiler
errors as well.

4.2 Basic Data Types

The basic data types in RJEC consist of the following:

basic-typ:

int

bool

char

4.2.1 int

The int type represents signed, 4-byte integer numbers. The integer values are
implicitly non-negative, and negative integers are represented by prefixing the
unary minus operator - to the numerical value. The zero value for int is 0.

4.2.2 bool

The bool type represents 1-byte boolean values. A bool type variable can have
the value of either true or false. The zero value for bool is false.

Riya Chakraborty, Justin Chen, Yuanyuting Wang, Caroline Hoang 7

COMS W4115 RJEC Language Reference Manual

4.2.3 char

The char type represents 1-byte ASCII characters. A char literal is represented
by enclosing ASCII symbols in single quotes, i.e.

’<ASCII_symbol>’

Note that in RJEC, string literals are represented as a char array, and are
represented by enclosing 0 or more ASCII symbols in double quotes, i.e.

"[<ASCII_symbol>]*"

The zero value for char is '\0'.

4.3 Arrays

In RJEC, array is a composite data type that allows for the storage of an
ordered set of elements in a consecutive memory. Note that the length of an
array is fixed upon declaration, and that all the elements in an array must be
of the same data type as specified in the declaration. The data type contained
in an array can be any other primitive data type supported by RJEC, including
composite data types such as array, struct and chan.

4.3.1 Declaring Arrays

One declares an array by specifying the data type of the elements, the length,
and the identifier of the array. The declaration takes the following form:

var id-list [expr]typ

For example, to declare an integer array of length 10 and identifier ”myArr”:

var myArr [10]int;

Once declared, an array object has the type of []<data type>.

Note that the expr that specifies the length of the array must evaluate to a
non-negative integer value, i.e. 0-length arrays are allowed in RJEC.

4.3.2 Defining Arrays

In the grammar, an array literal is defined as:

[expr]typ { args-list }

Where expr should evaluate to a non-negative integer value that represents the
length of the array. With this, one can initialize the contents of an array upon
declaration through enumeration. That is:

var identifier [length]<data-type>=

[length]<data-type>{elem1, elem2, ...};

Riya Chakraborty, Justin Chen, Yuanyuting Wang, Caroline Hoang 8

COMS W4115 RJEC Language Reference Manual

If the variable to be declared is also to be initialized immediately in the same
statement, one can also choose to use a short-form assignment statement instead:

identifier := [length]<data-type>{elem1, elem2, ...};

For example, the two ways to declare and initialize an integer array of length 3:

var myArr [3]int = [3]int{1, 2, 3}

/* or equivalently */

myArr := [3]int{1, 2, 3}

Note that if an array is not immediately initialized upon declaration, its fields
will be filled by the zero values of the data type specified for its elements.

One can also define an array post-declaration, either by assigning a new value to
the entire array, or by accessing and modifying individual array elements with
the following format:

identifier[index] = <new_value>;

4.3.3 Accessing Array Elements

One can access specific elements in an array by their index, with the following
expression:

identifier[expr]

Note that in RJEC, the array index starts with 0, so for any array, except for
the 0-length arrays, any index value between 0 and length - 1 (inclusive) is
within range.

4.3.4 Nested Arrays

RJEC supports nested arrays, and treats them as arrays containing elements
also of the array data type. For example, to declare a 2D integer array with 10
”rows”:

var myArr [10][]int;

4.4 Structs

A struct in RJEC is a user-defined data type that consists of fields taken up
by elements of the basic data types (int, char, bool).

4.4.1 Defining Structs

In RJEC program files, all structs are defined globally, with all fields public. A
struct can be defined with the following grammar:

sdecl:

Riya Chakraborty, Justin Chen, Yuanyuting Wang, Caroline Hoang 9

COMS W4115 RJEC Language Reference Manual

struct identifier { member-list }

member-list:

identifier basic-typ;
member-list identifier basic-typ;

For example, to define a coordinate type that represents a point in a cartesian
coordinate system:

struct coordinate {

x int;

y int;

}

Note that the RJEC compiler grammar enforces that the identifiers for both the
struct and the struct fields need to be globally unique. Also, note again that
currently RJEC does not support composite data types for struct fields.

4.4.2 Declaring and Initializing Variables of Type Struct

Once a struct type has been globally defined, one can declare variables of the
struct type globally or locally, similar to how one declares objects of the primi-
tive types. A struct literal is defined in the grammar as:

expr:

...
struct identifier { element-listopt }
...

element-list:

identifier : expr
identifier : expr, element-list

A struct object can be declared and initialized with the following syntax:

var identifier struct struct-id = struct struct-id {

field-id1 : <value1>,

field-id2 : <value2>

}

/* or equivalently */

identifier := struct struct-id {

field-id1 : <value1>,

field-id2 : <value2>

}

For example, to declare and initialize a coordinate struct object:

Riya Chakraborty, Justin Chen, Yuanyuting Wang, Caroline Hoang 10

COMS W4115 RJEC Language Reference Manual

coord := struct coordinate {

x : 1,

y : 2

}

Note that similar to arrays, if a struct is declared without being immediately
initialized, then all of its fields will be taken up by the zero values specified for
their respective data types. Later, one can assign values to the individual struct
fields with the struct access operator:

struct-id.field-id = <value>;

4.4.3 Accessing Fields of a Struct

All fields in a struct are public, and can be accessed through the struct access
operator . with the following expression:

struct-id.field-id

4.5 Channels

A chan object, or channel, provides a way for concurrently executing subroutines
to communicate by sending and receiving values of a specified data type.

4.5.1 Declaring and Initializing Channels

A chan object can be declared with the following grammar:

var id-list chan basic-typ

The declared object will then have a type specification of chan <basic-typ>.

In addition, a chan object can be initialized by the built-in function make,
which allocates resources for either an unbuffered channel, or a buffered channel
with a user-defined size. The expression for initializing an unbuffered channel:

make(chan basic-typ)

For initializing a buffered channel:

make(chan basic-typ,expr)

Here, the expression used to specify the buffer size should evaluate to a non-
negative integer value.

When a channel is unbuffered, or when it has a buffer size of 0, the communi-
cation succeeds only when both the sender and the receiver are ready for the
transaction. When a channel has a positive buffer size, then the elements can
”queue up” in the channel, and communication will succeed as long as the buffer
is not full (for sending) and not empty (for receiving).

Riya Chakraborty, Justin Chen, Yuanyuting Wang, Caroline Hoang 11

COMS W4115 RJEC Language Reference Manual

4.5.2 Sending and Receiving Items

Once a channel has been created and is shared between two subroutines, the
two functions can act as sender and receiver of elements through the channel,
by the use of the arrow operator <-.

To send an element through a channel uses the expression:

chan-identifier <- expr

To receive an element uses the expression:

<- chan-identifier

The receive operation returns two values, first being the element received (if
successful), and second being a bool value about whether the channel was open
(true means the channel was open and the transaction actually took place, and
false indicates otherwise). The program can also assign the received element
directly to a variable by:

identifier, ok := <- chan_id

Note that the send and receive operations might block under the circumstances
where either a buffered channel is full (for sending) or empty (for receiving), or
the sender and receiver for an unbuffered channel are not both ready for the
transaction.

4.5.3 Passing Channels as Function Parameters

A chan object can be shared between two concurrently executing subroutines
/ functions for them to communicate with each other. To do this, the channel
could be locally created in one of the functions, and then passed into the other
function as a parameter. An example of this can be seen in the example code
in section 10.2.

4.5.4 Closing Channels

The built-in function close can be used to close an existing channel and deal-
locate the associated resources. The associated expression is

close(chan-identifier)

Note that a channel only needs to be closed once for a thorough cleanup. An
attempt to close a channel for more than once would result in an error.

After a channel is closed, an attempt to receive from the channel will result
in the two values returned being the zero value for the specified data type, and
the boolean value false indicating the channel was not open. However, attempt
to send an item through a closed channel would result in an error. Therefore,
although not enforced in the grammar, it’s recommended practice to always
close the channel from the sender’s side.

Riya Chakraborty, Justin Chen, Yuanyuting Wang, Caroline Hoang 12

COMS W4115 RJEC Language Reference Manual

5 Functions

A RJEC program consists of a sequence of global variable, function, and struct
declarations, which can be defined in any order in relation to one another.

5.1 Defining Functions

Function definitions have the form

function-declaration:

func identifier (parameter-listopt) return-typesopt { statement-
listopt }

parameter-list:

identifier type
identifier type, parameter-list

return-types:

type
(type-list)

type-list:

type
type-list, type

statement-list:

statement-list statement

A function definition notes its identifying name, its parameters, its return types,
and a list of statements (which are executed in order unless otherwise specified
by control flow).

The following is a valid complete function definition:

func add(x int, y int) int {

return x+y;

}

5.2 Calling Functions

Functions may be called via the following expression:

identifier (args-listopt)

We list the function parameters as expressions separated by commas:

args-list:

Riya Chakraborty, Justin Chen, Yuanyuting Wang, Caroline Hoang 13

COMS W4115 RJEC Language Reference Manual

expr
expr, args-list

Functions in RJEC are pass-by-value only. Calling a function passes the pa-
rameters to the function by value, and then executes the statements within that
function.

5.3 Passing Functions as Function Parameters

It is possible to pass functions as function parameters. Functions may be passed
using their identifier and then referred to in the function body via the name
defined in the paramters list. The syntax for defining the function type is
defined in the typ grammar under the “Data Types” section (4).

func compute(fn func(int, int) int) int {

return fn(3, 4)

}

5.4 The main Function

The main function is the entry point for code execution. It runs immediately
after all global definitions are taken. It has no parameters and no return types.

func main() {

/* execute code */

}

5.5 The return Statement

The return statement is defined as follows:

return args-listopt;

The return statement ends execution of the current function and returns to
the calling function (or in the case of the main function, ends execution of the
program). It must be followed by a list of expressions representing the return
arguments. These expressions must be of the respective return types specified
in the function declaration.

5.6 yeeting Functions

The yeet statement is defined as follows:

yeet expr;

Where the expression must be a function call.

yeeting a function runs that function concurrently in a separate thread. That
thread terminates when the function returns.
Here is an example of a valid yeet:

Riya Chakraborty, Justin Chen, Yuanyuting Wang, Caroline Hoang 14

COMS W4115 RJEC Language Reference Manual

yeet foo(2, 4)

6 Statements & Expressions

As noted in the previous section, a function body consists of a list of statements.
A statement is defined as follows:

statement:

expr;
vdecl;
assign-stmt;
return args-listopt;
{ statement-list }
if expr { statement-list } else-statementopt
for assign-stmtopt; expr; assign-stmtopt { statement-list
}
for expr { statement-list }
for { statement-list }
select { case-list }
defer expr;
yeet expr;
break;

continue;

Most statements are expression statements; i.e. consisting of an expression
(expr;). Other statements are described in their relevant sections in this docu-
ment.

Expressions are defined as follows:

expr:

int-literal
string-literal
char-literal
bool-literal
identifier
expr binop expr
- expr
! expr
identifier (args-listopt)
(expr)

identifier . identifier
identifier [expr]

identifier <- expr

Riya Chakraborty, Justin Chen, Yuanyuting Wang, Caroline Hoang 15

COMS W4115 RJEC Language Reference Manual

<- identifier
make(chan basic-typ)

make(chan basic-typ , expr)

close(identifier)

Where binop is defined as the arithmetic, boolean, and logical binary operators
+, -, *, /, %, ==, <, <=, &&, and ||.

These expressions are all explained in their various relevant sections.

7 Operators

7.1 Associativity and Order of Precedence

The associativity and order of precendence for operators in RJEC can be seen
in table 7.1, with the various operators listed in order of precedence from top
to bottom.

Operators Symbols Associativity
Struct access operator . left-to-right
Array access and instantiation operator [] left-to-right
Logical NOT operator and unary negation operator !, - right-to-left
Arrow operator <- right-to-left
Multiplication, Division and Modulo operators *, /, % left-to-right
Addition and Subtraction operators +, - left-to-right
Less than or equal to operators <=, < left-to-right
Equality operator == left-to-right
Logical AND operator && left-to-right
Logical OR operator || left-to-right
Assignment operators =, := right-to-left

7.2 Arithmetic Operators

RJEC provides operators that perform basic arithmetic operations, as seen in
the following subsections. Note that the binary operators only allow for ob-
jects of the same data type as operands, and by default only support integer
arithmetic operations.

7.2.1 Addition operator

The addition binary operator + returns the sum of the operands. Its associated
expression is:

expr + expr

Riya Chakraborty, Justin Chen, Yuanyuting Wang, Caroline Hoang 16

COMS W4115 RJEC Language Reference Manual

7.2.2 Subtraction operator

The subtraction operator - subtracts the right operand from the left operand
and returns the result. Its associated expression is:

expr - expr

7.2.3 Multiplication Operator

The multiplication operator * returns the product of the operands. Its associ-
ated expression is:

expr * expr

7.2.4 Division Operator

The division operator / divides the left operand with the right operand and
returns the result. Its associated expression is:

expr / expr

7.2.5 Modulo Operator

The modulo operator is used to obtain the remainder produced by dividing the
left operand with the right operand. Its associated expression is:

expr % expr

7.2.6 Unary Negation Operator

The unary negation operator flips the sign of the original integer value of its
operand. Its associated expression is:

-expr

7.3 Boolean Operators

7.3.1 Equality Operator

The equality operator == conducts a deep / value-wise comparison of its two
operands, and return true if and only if the two operands are structurally
identical, or false otherwise. This means two struct objects are determined to
be equal if they are of the same type, and all of their fields also have the same
types and values. Similarly, two arrays are identical if they contain the same
number of elements with the same types and values. Its associated expression
is:

expr == expr

Riya Chakraborty, Justin Chen, Yuanyuting Wang, Caroline Hoang 17

COMS W4115 RJEC Language Reference Manual

7.3.2 Less Than Operator

The less than operator < returns true if the left operand evaluates to a smaller
value than its right operand, or false otherwise. By default, this operator only
supports types of int and char. Its associated expression is:

expr < expr

7.3.3 Less Than or Equal To Operator

The less than or equal to operator <= returns true if the left operand evaluates
to a smaller value than, or is equal to its right operand, or false otherwise.
By default, this operator only supports types of int and char. Its associated
expression is:

expr <= expr

7.4 Logical Operators

The logical operators are used to test the truth value of various combinations
of one or two expressions. Note that these logical operators by default only
support bool operands.

7.4.1 AND operator

The logical AND operator, or logical conjunction operator, && returns true

if and only if both operands evaluate to true, or false otherwise. If the left
operand already evaluates to false, then the expression returns false without
evaluating the right operand. Its associated expression is:

expr && expr

7.4.2 OR operator

The logical OR operator, or logical disjunction operator, || returns true if and
only if at least one of the two operands evaluates to true, or false otherwise.
If the left operand already evaluates to true, then the expression returns true

without evaluating the right operand. Its associated expression is:

expr || expr

7.4.3 NOT operator

The logical NOT operator, or logical negation operator, ! flips the truth value
of its operand. Its associated expression is:

!expr

Riya Chakraborty, Justin Chen, Yuanyuting Wang, Caroline Hoang 18

COMS W4115 RJEC Language Reference Manual

7.5 Arrow Operator

The arrow operator <- is used for sending and receiving elements through objects
of type chan. The expressions associated with this operator are:

chan-identifier <- expr
<- chan-identifer

For more details on its usage, see section 4.5.2.

7.6 Access Operators

The access operators are used to access specific items contained in the composite
data types struct and array. You can use the struct access operator . to access
the fields of a struct with the following expression:

struct-id.field-id

You can use the array access operator[] to access elements at specific indices
of an array with the following expression:

array-identifier[expr]

See sections 4.3.3 and 4.4.3 for more usage of access operators in composite data
types.

7.7 Assignment Operators

Assign operators = and := are used to store values in variables. The various
assignment statements are defined as such in the RJEC grammar:

assign-stmt:

id-list = args-list
vdecl = args-list
id-list := args-list

If the left-hand-side variable(s) have already been declared beforehand, then = is
used to store the right-hand-side expression value(s) in the variables, designated
by the identifier(s) on the left hand side. Both the variables and expressions are
separated by commas. For example, to assign 2 integer values to two previously-
declared int type variables:

a, b = 1, 2;

The assignment operators can also be used in the case where variable(s) are de-
clared and initialized in the same statement, in which case one could use either
the long-form or the short-form assignment statements.

A long-form assignment statement first declares the variable(s) to be initial-
ized, specifying their data type using the var keyword on the left hand side,
and then uses the = operator for the assignment. For example, to declare and
initialize one or two int variables:

Riya Chakraborty, Justin Chen, Yuanyuting Wang, Caroline Hoang 19

COMS W4115 RJEC Language Reference Manual

var a int = 0;

var b, c int = 1, 2;

Note that in the long-form statement, if there are multiple variables to be de-
clared, they are required to be of the same type.

A short-form assignment statement simply refers to variable(s) to be declared
by their identifier(s) on the left hand side, and directly initializes each variable
with its corresponding expression on the right hand side, using the := operator.
For example,

a := 0;

b, c := 1, 2;

Note that in this case, the variables to be declared together can have values of
different data types assigned to each of them. For example,

d, e := 3, "4";

8 Control Flow

8.1 for Loops

for loops are used in order to repeat the execution of a sequence of statements
and expressions for a specified number of repetitions, for until the termination
condition is reached, or infinitely otherwise. The conventional for loop defi-
nition involves specifying the initialize statement (run prior to the loop), test
boolean expression (termination condition checked after each iteration of the
loop), and step statement (run after each iteration of the loop).

for assign-stmtopt; expr; assign-stmtopt { statement-list }

A for loop may also have the behavior of a conventional while loop if only
the termination condition, or the test expression, is specified, in which case the
statements will keep executing until the condition evaluates to false.

for expr { statement-list }

If no conditions are specified, the for loop will continue executing infinitely,
unless a break or return statement is executed at some point.

for { statement-list }

Riya Chakraborty, Justin Chen, Yuanyuting Wang, Caroline Hoang 20

COMS W4115 RJEC Language Reference Manual

8.2 if and else Statements

if statements are used to place a condition on the execution of sequence of
statements. The statements wrapped in an if statement will only execute if
the condition expression evaluates to true.

The inclusion of else statements as well as else if statements are optional
but can be provided in order to further specify a group of a statements for exe-
cution under additional circumstances.

In an if statement block, there exists one if condition, at most one else,
and 0 or more else if conditions in-between. The conditions are evaluated in
order, and statements contained in the first true condition will be executed. If
an else exists, its statements are executed only after all preceding conditions
have evaluated to false.

statement:

...
if expr { statement-list } else-statement
...

else-statement:

no-else
else if expr { statement-list } else-statement
else { statement-list }

Where no-else is defined as an empty token and has lower precedence than the
else token.

8.3 break

break statements are used in order to directly specify when to terminate a for

loop and continue with the next statement after the

Grammar for the break statements:

break;

8.4 continue

continue statements are used to skip the remaining statements for the current
iteration of a for loop and begin the next iteration.

Grammar for the continue statements:

continue;

Riya Chakraborty, Justin Chen, Yuanyuting Wang, Caroline Hoang 21

COMS W4115 RJEC Language Reference Manual

8.5 select

The select statement is used in order to block and wait on multiple channel-
related expressions, each represented as a case. It then executes the state-
ments contained in the first case that successfully executes, i.e. the first channel
through which it is able to send or receive an element.

The select statement can be defined by the following grammar:

statement:

...
select{ case-list }
...

case-list:

case case-stmt : statement-list
case case-stmt : statement-list case-list

case-stmt:

identifier <- expr
<- identifier
assign-stmt

Note that for each case, the expr can take the form of either sending or receiving
an item through a channel object. It can also be an assignment statement where
an item is received from a channel and then directly assigned / used to initialize
a variable. An example of using select statements:

select {

case a := <- myChan:

...

case myChan2 <- b:

...

}

8.6 defer

The defer statement is used to defer the evaluation of certain expressions until
right before the current function returns.

A defer statement is defined as follows:

defer expr;

Riya Chakraborty, Justin Chen, Yuanyuting Wang, Caroline Hoang 22

COMS W4115 RJEC Language Reference Manual

9 Standard Library

We plan to include the print function (a formatted print function), an array
length function, and some map/reduce/filter functions in the standard li-
brary.

Furthermore, we intend to write some basic concurrent algorithms useful for
distributed programming, such as MapReduce and Paxos. If we can make them
general enough, we intend to include them in our standard library.

10 Example Code

10.1 Euclid’s Algorithm

func gcd (a int, b int) int {

for !(b == 0) {

t := b

b = a % b

a = t

}

return a

}

10.2 Single Producer-Consumer

func producer (data chan int, quit chan int) {

i := 0

for {

i = i + 1

select {

case data <- i:

case <- quit:

close(data)

return

}

}

}

func main () {

data := make(chan int)

quit := make(chan int)

// producer

yeet producer(data, quit)

// consumer, terminates when i reaches arbitrary value

Riya Chakraborty, Justin Chen, Yuanyuting Wang, Caroline Hoang 23

COMS W4115 RJEC Language Reference Manual

for i := range data {

print(i)

if i == 5 {

quit <- 1

close(quit)

}

}

return

}

Riya Chakraborty, Justin Chen, Yuanyuting Wang, Caroline Hoang 24

	Introduction
	Lexical Conventions
	Comments
	Reserved Keywords
	Literals
	Separators

	Variables
	Variable Naming
	Declaring a variable
	Multiple variable declaration

	Data Types
	Typing Methodology
	Basic Data Types
	int
	bool
	char

	Arrays
	Declaring Arrays
	Defining Arrays
	Accessing Array Elements
	Nested Arrays

	Structs
	Defining Structs
	Declaring and Initializing Variables of Type Struct
	Accessing Fields of a Struct

	Channels
	Declaring and Initializing Channels
	Sending and Receiving Items
	Passing Channels as Function Parameters
	Closing Channels

	Functions
	Defining Functions
	Calling Functions
	Passing Functions as Function Parameters
	The main Function
	The return Statement
	yeeting Functions

	Statements & Expressions
	Operators
	Associativity and Order of Precedence
	Arithmetic Operators
	Addition operator
	Subtraction operator
	Multiplication Operator
	Division Operator
	Modulo Operator
	Unary Negation Operator

	Boolean Operators
	Equality Operator
	Less Than Operator
	Less Than or Equal To Operator

	Logical Operators
	AND operator
	OR operator
	NOT operator

	Arrow Operator
	Access Operators
	Assignment Operators

	Control Flow
	for Loops
	if and else Statements
	break
	continue
	select
	defer

	Standard Library
	Example Code
	Euclid's Algorithm
	Single Producer-Consumer

