
Python++ Language Reference Manual

Nathan Cuevas

njc2150

Robert Kim

rk3145

Nikhil Min Kovelamudi

nmk2146

David Steiner

ds3816

February 2021

Contents

1 Introduction 2

2 Lexical Conventions 2
2.1 Keywords . 2
2.2 Type names . 2

2.2.1 Primitive type tokens . 2
2.2.2 Class names . 3
2.2.3 Array types . 3

2.3 Identifiers . 3
2.4 Operators . 3

2.4.1 Object operators . 3
2.5 Literals . 3

2.5.1 Integer literals . 3
2.5.2 Long literals . 3
2.5.3 Floating point literals . 3
2.5.4 Boolean literals . 4
2.5.5 Character literals . 4
2.5.6 String literals . 4

2.6 Comments . 4
2.7 Punctuation . 4
2.8 Syntactically significant whitespace . 4

3 Syntax 5
3.1 Conventions used in this manual . 5
3.2 Types . 5

3.2.1 Representation of primitives in memory . 5
3.2.2 Classes . 5
3.2.3 Arrays . 6

3.3 Functions . 6
3.3.1 Function declarations . 6
3.3.2 Function calls . 6

3.4 Expressions . 7
3.4.1 Literals . 7
3.4.2 Identifiers, functions, and classes . 7
3.4.3 Array expressions . 7
3.4.4 Parentheses . 7
3.4.5 Mathematical operators . 8
3.4.6 Assignments . 8

1

3.4.7 Boolean operators . 9
3.5 High-level program structure . 9

3.5.1 The program . 9
3.6 Statements . 10

3.6.1 If statements . 10
3.6.2 Loop statements . 10

3.7 Parameters and variable declarations . 10
3.8 Associativity and precedence table . 11

4 Semantics 11
4.1 Declaration rules . 11
4.2 Scoping rules . 12
4.3 Function parameters are passed by value . 12
4.4 Mutability . 13

5 Conversions 13
5.1 Floats and Integers . 13
5.2 Characters and Strings . 13
5.3 Object operators . 13

1 Introduction

Python++ is a general-purpose imperative programming language inspired by Python that aims to create
a language as easy to use as Python, but with the added type safety of Java. The language is strongly and
statically typed, has no type inferencing, and supports object-oriented programming without requiring that
all functions be part of objects.

Python++ uses syntactically significant whitespace as opposed to curly braces and semicolons. In addi-
tion to adding static typing to a Python-style syntax, Python++ aims to add quality of life features such as
automatic constructor generation for data classes, a new syntax for loops, and a better operator overloading
syntax. Python++ does not offer any garbage collection nor does it allow for pointer arithmetic.

2 Lexical Conventions

Python++ has the following kinds of tokens: keywords, type names, identifiers, operators, literals, comments,
punctuation, and syntactically significant whitespace. Python++ uses the ASCII character set and is case-
sensitive.

2.1 Keywords

Python++ treats the following keywords as reserved and will always return a special token matching the
name rather than treating it as any other type of token. The reserved keywords are: not or and loop

while if elif else def class return returns self required optional static NULL

2.2 Type names

Python++ is a statically typed language. A type is either a primitive type, which means it matches one of
the below types, a class name, or it is an array type.

2.2.1 Primitive type tokens

The primitive datatype tokens are: int, long, float, boolean, char, string, void

2

2.2.2 Class names

Class names must start with a capital letter, followed by one or more letters of any case. Class names are
encouraged to take the UpperCamelCase form but are not required to by the compiler. Class names cannot
contain anything other than letters. Class names are identified by the regular expression [’A’-’Z’][’a’-’z’

’A’-’Z’]*

2.2.3 Array types

Array types consist of a primitive type token followed by a [, followed by an integer literal, followed by a
closing].

2.3 Identifiers

Identifiers are case-sensitive. They consist of a lowercase letter followed by one or more lowercase letters,
uppercase letters, numbers, or underscores in any order. Keywords cannot be used as identifiers, so if a
keyword is seen it will always be tokenized as the keyword above and not the identifier. Identifiers are
identified by the regular expression [’a’-’z’][’a’-’z’ ’A’-’Z’ ’0’-’9’]*

2.4 Operators

Python++ includes the following tokens for operators: + - * / % = += -= *= /= == != > < >= <=

See mathematical operators and boolean operators below for the semantic meaning of each operator.

2.4.1 Object operators

Python++ allows for users to define custom infix operators as syntactic sugar for classes. See this section
for a complete code example. An object operator is defined to be one or more special characters. This is the
precise regex: [’+’ ’-’ ’%’ ’&’ ’$’ ’@’ ’!’ ’#’ ’^’ ’*’ ’/’ ’~’ ’?’ ’>’ ’<’]+

Note that if something matches both an object operator and a primitive operator, then the primitive
operator token above will be emitted by the scanner/lexer.

2.5 Literals

Python++ supports integer literals, floating point literals, boolean literals, character literals, and string
literals.

2.5.1 Integer literals

Integer literals consist of one or more numbers between 0 and 9 next to each other. We do not support any
syntax for numbers using e. The regular expression for int literals is [’0’-’9’]+

2.5.2 Long literals

Long literals consist of an integer literal followed by the character ‘L’. For instance, “500L” would be treated
as a literal for a long.

2.5.3 Floating point literals

Floating point literals consist of one or more numbers, followed by a period, followed by one or more numbers.
We do not support any syntax for numbers using e. We also do not support starting a floating point with a
period, such as in .5. The regular expression for float literals is [’0’-’9’]+(’.’[’0’-’9’]+)?

3

2.5.4 Boolean literals

Boolean literals are either the string “true” or the string ”false”. These are case-sensitive, so “True” or
“FALSE” will not match the boolean literal token. Boolean literals have a higher precedence than identifiers,
so “true” and “false” always get tokenized as a boolean literal rather than an identifier. Thus “true” and
“false” are not valid identifiers.

2.5.5 Character literals

Character literals consist of a single quote, followed by a single character, followed by a single quote. The
exact regex to match character literals is ‘.’

2.5.6 String literals

String literals consist of a double quote, followed by any character other than a double quote or newline,
followed by a double quote. String literals cannot contain newlines or double quote characters in Python++.

2.6 Comments

Python++ supports both single-line and multi-line comments. Single-line comments start with a # character
and indicate that everything after the # on that line is a comment and can be discarded.

Alternatively, a comment can be started using /# and closed using #/. Comments starting with /# are
allowed to span multiple lines.

2.7 Punctuation

Python++ uses the following characters for punctuation: () [] : . ,

• Left and right parentheses can be used to group expressions and are also used to define and call
functions.

• Left and right brackets are used for array literals and array access.
• Colons are used when defining classes and functions.
• Periods are used to invoke functions that are part of objects.
• Commas are used to separate parameters to function calls as well as array parameters.
• Underscores are used exclusively to indicate that a method in a class is an object operator.

2.8 Syntactically significant whitespace

Python++ uses syntactically significant whitespace rather than curly braces or semi-colons. Python++
differs from Python in that spaces are not syntactically significant and only tab characters can be used.

The NEWLINE character is used to indicate the end of each statement. One INDENT token is used every
time a line has increased indentation level compared to the previous indentation level. A DEDENT token is
released for each corresponding decrease in the indentation level.

Consider the following code block for a concrete example:

1 int x = 5

2

3 def foo(string y) returns void:

4 char c = 'c'

5 if x > 5:

6 if c == 'c':

7 println("foo")

8 elif: x > 10:

9 println("x was greater than 10")

10

11 println(1)

4

An INDENT token would be emitted after the NEWLINE on line 3. Another would be emitted after the NEWLINE
on lines 5, 6, and 8. No INDENT would be emitted after the NEWLINE on line 4, because line 5 is at the same
level of indentations. Thus INDENT is not the same as how many tab characters were on a line. Two DEDENT

tokens would be emitted after the NEWLINE on line 7, and one DEDENT would be emitted after the NEWLINE

on line 10.

3 Syntax

3.1 Conventions used in this manual

A context-free grammar is used to specify valid syntax for Python++ programs. In this manual, nonterminal
symbols will appear as italicized-strings-in-lowercase (clicking the nonterminal will open the section of the
document where productions of that nonterminal are defined). Terminals will appear as uppercase strings
in a monospaced font. For enhanced legibility, hyphens will be used to separate words within a nonterminal
or terminal. An example of a terminal could be TERMINAL. If there is more than one production for the same
nonterminal symbol, the different alternatives will be listed on separate lines.

An example of a production would be

foo→ bar BAZ

Which would mean the nonterminal foo consists of the nonterminal bar followed by the terminal BAZ.

3.2 Types

3.2.1 Representation of primitives in memory

• int refers to a 32-bit integer and corresponds to i32 in LLVM.
• long refers to a 64-bit integer and corresponds to i64 in LLVM.
• float refers to a 32-bit floating point value and corresponds to float in LLVM.
• char refers to an ASCII character and corresponds to the i8 type in LLVM.
• string refers to an array whose elements are all char. string’s are immutable in Python++.
• boolean refers to a value that is either “true” or “false” and corresponds to the i1 type in LLVM.

3.2.2 Classes

The primitive types above can be combined to yield more powerful types. Python++ allows users to define
objects which are “manipulatable regions of storage” which consist of a struct that has fields made up of
primitive types or other objects. Classes in Python++ do not support inheritance.

Formally, we say a class definition consists of only the following rule:

classdecl→ CLASS TYPE : NEWLINE

INDENT STATIC : NEWLINE INDENT assigns NEWLINE

DEDENT REQUIRED : NEWLINE INDENT vdecls NEWLINE

DEDENT OPTIONAL : NEWLINE INDENT assigns NEWLINE

DEDENT optional-fdecls NEWLINE

The fact that the entries appear on different lines here does not indicate that there is more than one
production here. This was purely a cosmetic choice since the real production, which should all go on a single
line, is too long to fit on this page.

Objects can be instantiated using the following rule.

object-instantiation→ TYPE(params)

→ TYPE()

5

That is to say, an object can be instantiated with or without parameters in its constructor.
Fields within objects can be accessed directly (i.e. without needing to go through a function) using the

following syntax:

object-variable-access→ IDENTIFIER.IDENTIFIER

→ SELF.IDENTIFIER

SELF is a keyword that allows the programmer to access an object’s field from within the object itself.

3.2.3 Arrays

Arrays are available as an aggregate data type. Arrays can consist of any type, e.g. primitives, objects, or
other arrays. Python++ does not allow for nested arrays, so something like int[][] x would not be legal.

Arrays can be defined via the following array literal syntax:

array-literal→ [params]

→ []

The entry at a given index within an array is accessed via the following syntax:

array-access→ IDENTIFIER[expr]

3.3 Functions

3.3.1 Function declarations

Functions in Python++ do not need to be declared within a class. Functions can either specify their return
type using the returns keyword followed by a TYPE, or if this is absent the function will behave as though
it returned void.

fdecl→ DEF IDENTIFIER(type-params) RETURNS TYPE : NEWLINE INDENT stmts DEDENT

→ DEF IDENTIFIER(type-params) : NEWLINE INDENT stmts DEDENT

→ DEF IDENTIFIER() RETURNS TYPE : NEWLINE INDENT stmts DEDENT

→ DEF IDENTIFIER() : NEWLINE INDENT stmts DEDENT

→ DEF UNDERSCORE OBJ-OPERATOR(TYPE IDENTIFIER) RETURNS TYPE : NEWLINE INDENT stmts DEDENT

An optional block of function declarations can be defined using the following rules:

optional-fdecls→ optional-fdecls fdecl

→ ε

3.3.2 Function calls

Functions can either be called directly or be called as methods on an object. Functions can be called with
or without parameters.

func-call→ IDENTIFIER PERIOD IDENTIFIER(params)

→ SELF PERIOD IDENTIFIER(params)

→ IDENTIFIER(params)

→ IDENTIFIER PERIOD IDENTIFIER()

→ SELF PERIOD IDENTIFIER()

→ IDENTIFIER()

6

3.4 Expressions

3.4.1 Literals

A literal by itself can be considered an expression. NULL is also considered an expression.
Thus all of the following productions are valid expressions:

expr→ INT-LITERAL

→ LONG-LITERAL

→ FLOAT-LITERAL

→ CHAR-LITERAL

→ STRING-LITERAL

→ BOOLEAN-LITERAL

→ NULL

3.4.2 Identifiers, functions, and classes

Identifiers by themselves are considered valid expressions. This applies whether the identifier is used on its
own or it refers to a field inside an object. Instantiations of objects are also valid expressions.

Thus all of the following productions are valid expressions:

expr→ IDENTIFIER

→ object-instantiation

→ object-variable-access

→ func-call

3.4.3 Array expressions

Array expressions can be either an array-literal or an array-access. Thus the following productions are valid
expressions:

expr→ array-literal

→ array-access

3.4.4 Parentheses

Expressions can be wrapped in parentheses. The type and value of an expression are the same as that of
the original expression. Parentheses allow for grouping of expressions to override the default precedence for
mathematical operators.

expr→ (expr)

7

3.4.5 Mathematical operators

expr→ expr + expr

→ expr - expr

→ expr * expr

→ expr / expr

→ expr % expr

→ expr OBJ-OPERATOR expr

→ -expr

+ refers and − (when appearing between two expressions) refer to addition and subtraction, respectively,
and group from left to right. They have equal precedence among themselves and are lower precedence than
∗, /, and %.
∗, /, and % refer to multiplication, division, and modulo, respectively, and group from left to right. They

have equal precedence among themselves and are higher precedence than + and −.
OBJ-OPERATOR refers to a user defined infix operator, which appears as a method prefixed by an underscore

on the class. See this section for more information and a code sample.
Unary minus, as in −expr, refers to the negative sign and has a higher precedence than the other

mathematical operators.

3.4.6 Assignments

Assignments are also expressions. Assignment operators all have the same precedence, and their precedence
is lower than all other operators. Assignment operators are right associative.

assign→ TYPE IDENTIFIER = expr

→ IDENTIFIER = expr

→ object-variable-access = expr

Python++ also includes the update and assign operators + =, − =, ∗ =, and / =. These refer to setting
the new value of the left-hand side equal to the old value of the left-hand side plus/minus/times/divided by
the value of the right-hand side, respectively.

assign-update→ IDENTIFIER += expr

→ IDENTIFIER -= expr

→ IDENTIFIER *= expr

→ IDENTIFIER /= expr

→ object-variable-access += expr

→ object-variable-access -= expr

→ object-variable-access *= expr

→ object-variable-access /= expr

Thus the following are valid expressions:

expr→ assign

→ assign-update

8

Assignments can also be placed in a block, one after the other.

assigns→ assign

→ assigns NEWLINE assign

3.4.7 Boolean operators

Python++ supports comparison operators such as greater than, greater than equals, less than, less than
equals, not equals, and equals. The language also supports not, or, and and.

All of the boolean operators are left associative. Their precedence, in ascending order of precedence, is
or, and, not, followed by ==, !=, >, <, >=, and <=, which all have the same level of precedence.

Boolean operators rank above assignments in terms of precedence but below mathematical operators.
In sum, the valid expressions involving boolean operators are:

expr→ expr == expr

→ expr != expr

→ expr > expr

→ expr < expr

→ expr >= expr

→ expr <= expr

→ NOT expr

→ expr OR expr

→ expr AND expr

== and != check value based equality for primitive types and check pointer equality for user defined types.
That is to say, if == or != are used for user defined objects, they are only deemed equal/not equal based on
whether the objects refer to the same location in memory or not, respectively.

3.5 High-level program structure

3.5.1 The program

A program in Python++ is made up of one or more statements, function declarations, class declarations, or
newlines in any order, ending with the EOF token.

Formally, a program is:

program→ program-without-eof EOF

Where program-without-eof is:

program-without-eof→ program-without-eof stmt

→ program-without-eof fdecl

→ program-without-eof classdecl

→ program-without-eof NEWLINE

→ ε

9

3.6 Statements

Python++ makes a distinction between statements and expressions, even though both can have side effects
and an expression by itself can be a statement. Each statement in Python++ is terminated by a NEWLINE.
No semicolons are used in Python++.

Python++ has four types of statements: expressions, return statements, if statements, and loops. For-
mally, these are specified as:

stmt→ expr NEWLINE

→ RETURN expr NEWLINE

→ if-stmt

→ loop

A group of statements can appear one after the other:

stmts→ stmt NEWLINE

→ stmts stmt

3.6.1 If statements

Users can branch on conditionals using if statements. If statements can be used as solo if statements, if/else
statements, or if/elif/else statements, with an arbitrary amount of elifs.

Formally, if statements are defined as:

if-stmt→ IF expr : NEWLINE INDENT stmts DEDENT

→ IF expr : NEWLINE INDENT stmts DEDENT ELSE : NEWLINE INDENT stmts DEDENT

→ IF expr : NEWLINE INDENT stmts DEDENT elif ELSE : NEWLINE INDENT stmts DEDENT

→ IF expr : NEWLINE INDENT stmts DEDENT elif

Where elif is defined as:

elif→ ELIF expr : NEWLINE INDENT stmts DEDENT

→ elif ELIF expr : NEWLINE INDENT stmts DEDENT

3.6.2 Loop statements

Python++ only offers one kind of loop, a “loop while” construct that uses a novel syntax.

loop→ LOOP expr WHILE expr : NEWLINE INDENT stmts DEDENT

→ LOOP WHILE expr : NEWLINE INDENT stmts DEDENT

3.7 Parameters and variable declarations

As a statically typed language, Python++ requires function declarations to specify the types of parameters.
This is done using the following grammar, where each typed parameter is separated by a comma:

10

type-params→ TYPE IDENTIFIER

→ type-params , TYPE IDENTIFIER

Parameters written without their type are also available when making function calls and initializing array
literals. Their syntax is:

params→ expr

→ params , expr

Variables can also be declared without being part of an assignment. This can be used to define the fields
within a class.

vdecl→ TYPE IDENTIFIER

vdecls→ vdecl

→ vdecls NEWLINE vdecl

3.8 Associativity and precedence table

The table is increasing order of precedence.

Associativity Operator(s)

right = += -= *= /=

left OR

left AND

left NOT

left == != > < >= <=

left + -

left * / %

left OBJ-OPERATOR

non-associative UNARY-MINUS

4 Semantics

4.1 Declaration rules

Variables must be defined before they are used. Semantically,

int x = 5

println(x) # prints 5

is legal but

x = 5

11

is not. The initial declaration of a variable must include its type, but afterwards it can be modified/reassigned
without specifying its type. However, when this is done, the new value being assigned to it must match its
original value.

Thus,

int x = 5

x = 6

println(x) # prints 6

is legal but

int x = 5

x = "foo"

println(x)

is not, because x was declared to be an int but the next line is trying to assign a string to it.

4.2 Scoping rules

Scoping is determined by the level of indentation. A variable’s scope applies starting on its level of indentation
and all subsequent lines that have an indentation level greater than or equal to the indentation level of the
most recent declaration or assignment.

Consider the following program as an example:

int x = 5

println(x) # prints 5

def foo(int x) returns int:

x = x + 1

return x

println(foo(5)) # prints 6

if true:

int x = 20

println(x) # prints 20

println(x) # prints 5

Inside of classes, there is no concept of a public or private variable. All fields within classes are public
and are visible throughout the class.

4.3 Function parameters are passed by value

Python++ passes by value. Objects are passed using the Java style, which is like “passing by value of the
reference.” The following code sample elucidates passing primitives and objects into functions.

class MyObject:

required:

int x

int y

int z

MyObject my_object = MyObject(1, 2, 3)

int primitive_param = 1

12

Before we call my_function_1, everything is as expected.

println(my_object.x) # prints 1

println(my_object.y) # prints 2

println(my_object.z) # prints 3

println(primitive_param) # prints 1

def my_function_1(MyObject object_param, int primitive_param):

object_param.x = 500

object_param.y = 500

object_param.z = 500

primitive_param = 500

my_function_1(my_object, primitive_param)

After we call my_function_1, the object was mutated but the primitive param was not.

println(my_object.x) # prints 500

println(my_object.y) # prints 500

println(my_object.z) # prints 500

println(primitive_param) # prints 1

def my_function_2(MyObject object_param):

object_param = MyObject(20, 20, 20)

my_old_object = my_object

my_function_2(my_object)

println(my_old_object == my_object) # prints "true"

4.4 Mutability

Objects in Python++ are mutable by default. Strings and primitives are immutable.

5 Conversions

Some operators in Python++ can cause conversion of the value of the operands from one type to another.

5.1 Floats and Integers

When floats and ints are combined in Python++ arithmetic, the integer is treated as a floating point number
and the result is always a float. This includes arithmetic expressions that include longs. If a long and an int
are combined in any arithmetic operator, the result is always of type long.

5.2 Characters and Strings

When a character is added to a string using the + operator for concatenation, i.e. ‘c’ + “haracter”, the
resulting data type is a string, in this case “character”. This string type conversion also occurs when 2
characters are concatenated, e.g. ‘o’+‘k’ == “ok”. Use of the + operator between chars and/or strings always
converts to a string.

5.3 Object operators

Python++ objects may also contain user-defined infix operator definitions in the form of special function
definitions that define how objects work with operators. The type used in the parameter within the function
declaration defines what types can work on the right hand side of the operator. The return type of the
expression is defined by the return type of the function.

13

The following sample code demonstrates how the custom infix operators work in practice:

class MyClass:

required:

int x

int y

def _+(MyClass b) returns MyClass: # addition function

return MyClass(self.x+b.x, self.y+b.y)

def _-(MyClass b) returns MyClass: # subtraction function

return MyClass(self.x-b.x, self.y-b.y)

def _%%%(MyClass b) returns int:

return self.x * b.x

MyClass instA = MyClass(1, 3)

MyClass instB = MyClass(2, 2)

MyClass sum = instA + instB # compiler will convert this to instA._+(instB)

MyClass difference = instA - instB # compiler will convert this to instA._-(instB)

int num = instA %%% instB # compiler will convert this to instA._%%%(instB)

println(sum.x) # prints '3'

println(sum.y) # prints '5'

println(difference.x) # prints '-1'

println(difference.y) # prints '1'

println(num) # prints '2'

14

	Introduction
	Lexical Conventions
	Keywords
	Type names
	Primitive type tokens
	Class names
	Array types

	Identifiers
	Operators
	Object operators

	Literals
	Integer literals
	Long literals
	Floating point literals
	Boolean literals
	Character literals
	String literals

	Comments
	Punctuation
	Syntactically significant whitespace

	Syntax
	Conventions used in this manual
	Types
	Representation of primitives in memory
	Classes
	Arrays

	Functions
	Function declarations
	Function calls

	Expressions
	Literals
	Identifiers, functions, and classes
	Array expressions
	Parentheses
	Mathematical operators
	Assignments
	Boolean operators

	High-level program structure
	The program

	Statements
	If statements
	Loop statements

	Parameters and variable declarations
	Associativity and precedence table

	Semantics
	Declaration rules
	Scoping rules
	Function parameters are passed by value
	Mutability

	Conversions
	Floats and Integers
	Characters and Strings
	Object operators

