
Meowlang Programming Language Reference Manual

Language Guru: Carolyn Chen (cec2192)

Manager: Megan Frenkel (mmf2171)

System Architects: William Penney (wjp2114) & Lauren Pham (lyp2106)

Tester: Michelle Lin (ml4080)

Programming Languages and Translators
Spring 2021

Contents

1 Introduction and Overview 2

2 Language Paradigm 2

3 Programming in Meowlang 3

3.1 Conventions . 3

3.1.1 Whitespace . 3

3.1.2 Identifiers . 3

3.1.3 Keywords . 3

3.1.4 Blocks and Scope . 4

3.1.5 Comments . 4

3.2 Built-In Data Types . 5

3.2.1 Strings . 5

3.2.2 Integers and Floats . 5

3.2.3 Boolean . 6

3.3 Variables . 6

3.3.1 Type Casting . 7

3.4 Arrays . 7

3.5 Basic Operations . 9

3.5.1 Math . 9

3.5.2 Boolean . 10

3.5.3 Comparison . 10

3.5.4 Concatenation . 10

3.6 Control Flow . 11

3.6.1 If-Then-Else . 11

3.6.2 For Loops . 13

3.7 Functions . 14

3.8 Modules/Libraries . 15

3.8.1 Standard Library . 16

3.9 Object Oriented Programming . 16

3.9.1 Accessing Class Variables . 18

3.10 Writing a Complete Program . 18

4 Code Examples 20

1

1 Introduction and Overview

Meowlang is an esoteric programming language inspired by LOLCODE, a language created

by Adam Lindsay based on internet lolspeak. Meowlang pushes the boundaries of language

design in a creative, humorous way while still providing functionality and usability. Over-

all, Meowlang abbreviates and/or adjusts original LOLCODE keywords and syntax where

needed to improve readability. But more specifically, Meowlang improves on the safety and

functionality of LOLCODE in two ways. Firstly in safety, unlike LOLCODE’s dynamic

typing, Meowlang enforces strong static typing to reinforce the integrity of users’ code. Sec-

ondly in functionality, Meowlang provides an implementation of arrays and limited support

for object-oriented programming, both of which LOLCODE currently lacks. Arrays are an

important and versatile construct in programming, while the introduction of object oriented

programming allows the creativity of the esolang to shine and provides helpful constructs

for organizing data and functionality to Meowlang programmers.

2 Language Paradigm

Meowlang is heavily inspired by LOLCODE, sharing similar syntax and keywords. The

original LOLCODE can be found here: https://github.com/justinmeza/lolcode-spec/

blob/master/v1.2/lolcode-spec-v1.2.md.

However, Meowlang has some key differences in its language paradigm. Meowlang shares

similarities with both C and Java, with its lack of garbage collection and object-oriented

programming features, respectively. Meowlang has object-oriented features like classes,

class variables, class methods/functions, instance variables and instance methods/functions.

Memory is manually managed through constructors and destructors.

2

https://github.com/justinmeza/lolcode-spec/blob/master/v1.2/lolcode-spec-v1.2.md
https://github.com/justinmeza/lolcode-spec/blob/master/v1.2/lolcode-spec-v1.2.md

3 Programming in Meowlang

3.1 Conventions

3.1.1 Whitespace

Spaces are used to demarcate tokens in Meowlang, although some keyword constructs may

include spaces (see 3.1.3). However, Meowlang is not whitespace sensitive; multiple spaces

and tabs are treated as single spaces and are otherwise irrelevant. Indentation is also

irrelevant. This means that statements may span multiple lines, as long as the end of

the statement is properly marked using the “.” character, as explained in section 3.1.4.

Nevertheless, it is recommended to make thoughtful use of tabs, new lines and spaces and use

the Meowlang conventions illustrated in the following code samples to maximize readability.

3.1.2 Identifiers

Identifiers in Meowlang cannot be strictly numeric (i.e., ‘123’). Convention dictates that

identifiers do not begin with numeric characters, but they can be a combination of alphanu-

meric characters. Meowlang uses the following capitalization conventions for different types

of identifiers:

• Classes: All capitalized characters: [A-Z][A-Z0-9]*

• Functions: First character is capitalized: [A-Z][a-z0-9]*

• Variables: Lower case characters: [a-z][a-z0-9]*

Code examples provided in this reference manual illustrate these identifier rules.

3.1.3 Keywords

Meowlang utilizes a set of ”reserved” words or keywords that cannot be used as identifiers.

Keywords have all capital letters and are case sensitive. The following is a list of keywords

Meowlang relies on, by category:

Listing 1: keywords.meow

1 PSST (1) Structure and Control of Flow

2 IZ GIMME HAI ITZ ME KBYE GIVE WIT R AN NEW MAEK BLEEP PURR O

RLY? YA RLY NO WAI IM IN YR LOOP UPPIN NERFIN

3

3

.
[A-Z][A-Z0-9]*
[A-Z][a-z0-9]*
[a-z][a-z0-9]*

4 PSST (2) Types

5 CLASS FUNC YARN BOO AYE NAY NUMBR NUMBAR BUCKET

6

7 PSST (3) Operators

8 CAT SUM DIFF PRODUKT QUOSHUNT MOD BIGGR SMALLR BOTH EITHER NOT

SAEM DIFFRINT THAN OF

3.1.4 Blocks and Scope

As a whitespace-insensitive language, Meowlang requires programmers to make use of two

different constructs to denote (a) the end of statements and (b) the beginning and end of

function and class definitions.

All statements in Meowlang must end with the period (".") character to indicate comple-

tion. Its use is analogous to the use of the semi-colon in the C programming language and

should be used in the same way.

The keywords HAI and KBYE denote the beginning and end of both class and function decla-

rations, respectively. These keywords enclose the statements relevant to the function/class,

similar to the way curly brackets are used in C, except that the opening bracket in Meowlang

precedes the function/class definition. Variables declared within a HAI and KBYE block are

local variables available only within the scope of these “brackets.” Taking into consideration

the verbosity of Meowlang, it is recommended that additional HAI and KBYE brackets are

used outside of declarations to add structure and readability to code.

3.1.5 Comments

The PSST keyword precedes every comment and continues until the end of the line, for single

line comments and comments inline with code. There are no multi-line comments.

Listing 2: comment.meow

1 PSST This is a valid single -line comment

2 ITZ ME YARN kitty IZ "Furry". PSST Comments inline w/ code

4

"."
HAI
KBYE
HAI
KBYE
HAI
KBYE
PSST

3.2 Built-In Data Types

Four data types are supported by Meowlang out of the box: strings (YARN), integers (NUMBR),

floats (NUMBAR) and booleans (BOO).

3.2.1 Strings

What other languages refer to as a “string” Meowlang refers to as an instance of the YARN

data type. YARN literals must be demarcated by double quotation marks, and the content of

a string can be any sequence of characters. Under the hood, strings are arrays of characters,

but there is no separate type for characters. A character is a string of length 1. The YARN

type is immutable, so manipulations of a YARN variable always produce a new YARN.

Listing 3: valid and invalid strings.meow

1 PSST These are valid strings

2 ""

3 "hi, I'm a string"

4

5 PSST These are not valid strings

6 "Something seems incomplete here ...

7 'I am not a string '

3.2.2 Integers and Floats

Numeric data types referred to as integers and floats in other languages correspond to the

NUMBR and NUMBAR data types in Meowlang, respectively.

Integer literals are a sequence of digits and can be expressed as: [‘0’-‘9’]+. Note that if

your program provides an integer literal with leading zeros, such as 002, this is read as the

integer literal 2.

Because Meowlang relies on the period character "." to terminate statements, float and

integer literals have one key difference from other language implementations: whereas other

languages would consider 2. a float declaration, Meowlang considers it an integer. Writ-

ing 2. would otherwise be ambiguous and could mean either a float declaration without a

termination or an integer with a termination character. If you want to declare a float, you

5

YARN
NUMBR
NUMBAR
BOO
YARN
YARN
YARN
YARN
YARN
NUMBR
NUMBAR
[`0'-`9']+
002
2
"."
2.
2.

must include a value after the decimal point (i.e., 2.0). Note that if you choose to utilize

expressions using e or E, such as 1e-10, the data type will be interpreted as a float.

To be explicit, the following regular expression is specified for floats, where digits is equiv-

alent to [‘0’-‘9’]+:

digits '.' ((digit+ | (['e' 'E'] ['+' '-']? digits))

| (digit* (['e' 'E'] ['+' '-']? digits)))

3.2.3 Boolean

Meowlang supports boolean values with the BOO data type. Items of type BOO can be have

either the value AYE (true) or NAY (false), which underneath the hood correspond to values

of 1 and 0, respectively. Note that boolean values can neither be used in substitution of 1

and 0 and cannot be cast into integer values 1 and 0.

3.3 Variables

Variables are declared with the keyword phrase ITZ ME followed by the variable type and

selected identifier. To create new identifiers, please refer to the identifier rules in section

3.1.2. Below is a template variable declaration:

ITZ ME <type> <identifier>.

Note that is is possible to define and declare a variable at the same time. Defining a

variable requires use of the keyword IZ, which acts like the assignment operator “=” in

other languages. Variable identifiers must be unique within a scope.

ITZ ME <type> <identifier> IZ <value>.

Below, find examples of variable declarations and definitions for various built-in data types.

Listing 4: definitions.meow

1 ITZ ME NUMBR num IZ 2.

2 ITZ ME YARN random_string IZ "This is a string".

3 ITZ ME NUMBAR value IZ 2.0.

4 ITZ ME BOO fact IZ AYE.

5 ITZ ME BOO fiction IZ NAY.

6

2.0
e
E
1e-10
digits
[`0'-`9']+
BOO
BOO
AYE
NAY
ITZ
ME
IZ
=

3.3.1 Type Casting

Among the different variable types, only integers (NUMBR) and floats (NUMBAR) may be casted.

Casting a NUMBR to a NUMBAR concatenates a ’.0’ to the integer value. Casting a NUMBAR to

a NUMBR truncates the float to the decimal point. Casting is demonstrated below using the

keyword IZ.

To convert a float to an integer:

NUMBR <int variable> IZ NUMBAR <float variable>.

To convert an integer to a float:

NUMBAR <float variable> IZ NUMBR <int variable>.

3.4 Arrays

An array is called BUCKET in Meowlang. Meowlang supports the creation of fixed-length

arrays with size known at compile time or dynamic arrays created at runtime. Each BUCKET

can only hold elements of one type; valid types include primitives as well as user-defined

classes. To create a new BUCKET, you have several options:

1. Declare a new BUCKET, specifying the size of the BUCKET and the type of each element

in the BUCKET. You cannot provide more elements than the number specified by the

given size:

MAEK <identifier> NEW <bucket_type> BUCKET OF <bucket_size>,

WIT element1_value AN element2_value AN ... AN elementX_value.

2. Declare a new BUCKET with a specified size, but no elements initialized. Be careful in

using these arrays as the memory will be allocated, but the contents will be “garbage”

until the program sets the values explicitly:

MAEK <identifier> NEW <bucket_type> BUCKET OF <bucket_size>.

3. Declare a new BUCKET with both size and contents unspecified:

MAEK <identifier> NEW <bucket_type> BUCKET.

7

NUMBR
NUMBAR
NUMBR
NUMBAR
NUMBAR
NUMBR
IZ
BUCKET
BUCKET
BUCKET
BUCKET
BUCKET
BUCKET
BUCKET
BUCKET

Meowlang requires that users provide either a integer variable (with a value >0) or a integer

literal (>0) for the array size (i.e., what is referred to as <bucket_size> in the templates

above). In other words, the compiler will not accept any arbitrary expression. This deci-

sion was made for practicality purposes; Meowlang is a verbose language and this rule is in

place to ensure readability. Instead, users should create an integer variable, define it using

whatever complex expression they require, and use that variable in the array declaration,

as in the code example in Listing 5 below.

Individual BUCKET elements may be accessed using standard bracket notation to access

element in index i: <bucket_identifier>[i]. Array indexing starts at index 0 and ends

at array_length-1. Below, we create an array of pet names and access the first element,

which is the string “Lucky.” You cannot access elements beyond the defined size of the array.

Listing 5: array declaration.meow

1 PSST Creating a new array of three strings called my_pets

2 ITZ ME YARN BUCKET OF 3 my_pets

3 WIT "Lucky"

4 AN "Elliot"

5 AN "Wellington".

6

7 PSST Accessing the first element of my_pets , "Lucky"

8 ITZ ME YARN first_pet IZ my_pets [0].

9

10 PSST Bucket size is left unspecified

11 MAEK unknown_array NEW YARN BUCKET.

12

13 PSST Bucket size specified , no contents

14 MAEK empty_array NEW BOO BUCKET OF 10.

15

16 PSST Array size calculation prior to creation of array

17 ITZ ME NUMR complex_expr IZ SUM OF 2 AN 4.

18 MAEK complex_array NEW YARN BUCKET OF complex_expr.

8

>0
>0
<bucket_size>
BUCKET
i
<bucket_identifier>[i]
0
array_length - 1

3.5 Basic Operations

Meowlang has support for a number of built-in operators that allow programmers to perform

basic math, boolean expressions and comparisons out of the box. These operators rely on

prefix notation, taking the form:

Unary operators:

<operator> <expression>

Binary operators:

<operator> <expression1> AN <expression2>

More specifically, Meowlang supports the basic operations outlined below.

3.5.1 Math

Basic math operators are binary prefix operators. These operations are available for use on

items of type NUMBR and NUMBAR only.

SUM OF X AN Y PSST +

DIFF OF X AN Y PSST -

PRODUKT OF X AN Y PSST *

QUOSHUNT OF X AN Y PSST /

MOD OF X AN Y PSST modulo

BIGGR OF X AN Y PSST max

SMALLR OF X AN Y PSST min

Note that each X and Y below could be another math expression, such that the operators can

be nested. As expected, multiplication and division have higher precedence than subtraction

and addition. The use of a prefix operator also clearly denotes how an expression should be

interpreted, without further parentheses, and operators are right-associative. This means

that if you wanted to write an expression for 2 * 4 + 5, you could write either:

SUM OF 5 AN PRODUKT OF 2 AN 4.

SUM OF PRODUKT OF 2 AN 4 AN 5.

9

NUMBR
NUMBAR
X
Y
2
*
4
+
5

3.5.2 Boolean

Boolean operators are limited to the following set of operators. Note here that X and Y must

themselves be boolean (AYE/NAY) conditions:

BOTH OF X AN Y PSST X and Y

EITHER OF X AN Y PSST X or Y

NOT X PSST not X

3.5.3 Comparison

Comparisons of two items can be performed using the following operators. Note that com-

parisons of two NUMBRs use integer math, and floating point math if one or both is a NUMBAR.

You cannot compare a string and an integer, or a primitive with any custom object. Only

comparisons between primitives are supported.

SAEM X AN Y PSST AYE (true) if x == y, else NAY (false)

DIFFRINT X AN Y PSST AYE (true) if x != y, else NAY (false)

SMALLR X THAN Y PSST AYE (true) if x < y, else NAY (false)

BIGGR X THAN Y PSST AYE (true) if x > y, else NAY (false)

3.5.4 Concatenation

Two variables of type YARN can be concatenated into a single YARN using the CAT operator.

Note that this creates a new YARN.

CAT X AN Y PSST x + y = xy

Listing 6: basic operators demo.meow

1 PSST ~~ Math Examples ~~

2 SUM OF PRODUKT 3 AN 4 AN 5 PSST (3 * 4) + 5

3 BIGGR OF 15 AN QUOSHUNT 100 AN 10 PSST 15 > (100 / 10)

4

5 PSST ~~ Boolean Examples ~~

6 PSST (2 < 4) && (10 > 12) = false

7 BOTH OF SMALLR 2 THAN 4 AN BIGGR 10 THAN 12

8

9 PSST ~~ Concatenation Example ~~

10

X
Y
AYE
NAY
NUMBR
NUMBAR
YARN
YARN
CAT
YARN

10 PSST create string "one fish two fish red fish blue fish"

11 CAT CAT CAT "One fish " AN "two fish " AN "red fish " AN "blue

fish"

3.6 Control Flow

3.6.1 If-Then-Else

Branching in Meowlang is accomplished by if-then-else statements, as in other languages.

The template for a set of if-else conditions is as follows:

<expression> PSST Conditional expression

O RLY? PSST If keyword

YA RLY HAI PSST Then keyword and opening bracket to begin code block

<code block> PSST Jump here if expression is true

KBYE PSST Closing bracket on code block

NO WAI HAI PSST Else keyword and opening bracket to begin code block

<code block> PSST Jump here if expression is not true

KBYE PSST Closing bracket on code block

Note that it is possible to omit the HAI and KBYE keywords if the code block includes exactly

a single statement, as in:

<expression>

O RLY?

YA RLY

<statement>

NO WAI

<statement>

It is also possible to omit the ELSE if you only need an IF condition:

<expression>

O RLY?

YA RLY

<statement>

11

HAI
KBYE
ELSE
IF

The following code snippet illustrates usage of the if-then-else construct in Meowlang. Note

carefully that there is no period (“.”) after the comparison expression and that although

the construct spans multiple lines, the whitespace is not required.

Listing 7: if else.meow

1 HAI ITZ ME FUNC conditions_example ,

2 PSST Test if -then -else

3 ITZ ME YARN condition.

4

5 PSST IF THEN

6 SMALLR 4 THAN 10

7 O RLY?

8 YA RLY

9 condition IZ "math is the only Truth".

10

11 PSST IF THEN ELSE

12 SAEM 4 AN 4

13 O RLY?

14 YA RLY

15 condition IZ "same same".

16 NO WAI

17 condition IZ "not same same".

18

19 PSST IF THEN ELSE with code blocks

20 SAEM "kittens" AN "puppies"

21 O RLY?

22 YA RLY HAI

23 condition IZ "this is not the correct answer. ".

24 condition IZ CAT condition AN "pick a team!".

25 KBYE

26 NO WAI HAI

27 condition IZ "clearly kittens are cuter".

28 condition IZ CAT condition AN "or are they?".

29 KBYE

30

12

31 GIVE condition.

32 KBYE

3.6.2 For Loops

The only count-controlled loop in Meowlang is the for-loop. The loop may either increment

an index variable value (using the UPPIN keyword) or decrement an index variable value

(using the NERFIN keyword) with each iteration. A general template for creating a loop is

provided below for the increment case (replace UPPIN with NERFIN for the decrement case):

IM IN YR LOOP <index var identifier> UPPIN <index var assignment (optional)>

AN <termination condition>

HAI

<code block>

KBYE

Note that you may initialize the value of the index variable in the loop, as is customary in

many languages. For example, a common programming pattern is to set an index variable

to 0 at the beginning of a loop. However, the index variable assignment can be omitted

when you have previously declared and instantiated the index variable you want to use, as

in the first two loops in the Listing 8 example below.

Listing 8: for loops.meow

1 HAI ITZ ME FUNC loops_test ,

2

3 ITZ ME NUMBR count.

4 ITZ ME YARN condition.

5 count IZ 0.

6

7 PSST Incrementing with already instantiated index

8 IM IN YR LOOP count UPPIN AN SMALLR count THAN 10

9 condition IZ "count is still not 10".

10

11 PSST Decrementing with already instantiated index

12 count IZ 20.

13 IM IN YR LOOP count NERFIN AN BIGGR count THAN 10 HAI

13

UPPIN
NERFIN
UPPIN
NERFIN
0

14 condition IZ "count is still more than 10".

15 condition IZ CAT condition AN "count is".

16 condition IZ CAT condition AN count.

17 KBYE

18

19 PSST Instantiating index and incrementing

20 IM IN YR LOOP index NERFIN index IZ 15 AN BIGGR index

THAN 10

21 condition IZ "index is still more than 10".

22 KBYE

3.7 Functions

Functions in Meowlang have a fixed number of zero or more arguments and can return at

most one value. The types of arguments and return types must be specified in the function

definition. A new function can be defined using the following syntax pattern, which makes

use of the HAI and KBYE scoping keywords. The list of parameters uses the WIT.. AN ..

construct, as previously seen in array declarations. Note that the number of arguments is

may extend indefinitely, though it is recommended to keep the number of arguments to no

more than four for readability:

HAI ITZ ME <return_type> FUNC <function_identifier>

WIT <arg1_type> <arg1> AN <arg2_type> <arg2> ... ,

... all statements go here...

KBYE

To return a value from a function, use the keyword GIVE and any expression:

GIVE <expression>.

Below, we define a new function called ‘Chase‘ that takes two YARN arguments and returns

another YARN representing the concatenation of the two provided strings with “chases”.

Listing 9: chase.meow

1 # PSST return values and arguments are optional

2 HAI ITZ ME FUNC Do_Nothing ,

3 PSST This function does nothing

14

HAI
KBYE
WIT
AN
GIVE
YARN
YARN

4 KBYE

5

6 HAI ITZ ME YARN FUNC Chase WIT YARN bad_cat AN YARN poor_mouse ,

7 GIVE CAT CAT bad_cat AN " chases " AN poor_mouse.

8 KBYE

Once a function is defined, it can be called using the keyword PURR in the following way,

which again makes use of the WIT.. AN .. pattern:

PURR <function_identifier> WIT <arg1> AN <arg2>.

The code sample below calls the Chase function defined in Listing 9. Note that we capture

the returned string in a new variable of type YARN:

Listing 10: chase call.meow

1 PSST This function call will return "Silvester chases Gary"

2 ITZ ME YARN message IZ

3 PURR Chase WIT "Silvester" AN "Gary".

3.8 Modules/Libraries

Meowlang source files end in .meow. By convention, source filenames should be camel-case

and consist of lowercase letters only. Standard libraries and source code in other files can be

imported into another source file with the keyword GIMME and will end with the character

“?” as in the following pattern:

GIMME <module_name>?

Note that the module_name that should be used for the import is actually the name of

the .meow source file, but transformed into uppercase and without the .meow suffix. This

means that if you defined a source file hello_world.meow it becomes importable into

another ‘.meow‘ file as HELLO_WORLD. The Meowlang compiler will always look for the

hello_world.meow source file first in current directory, then the system PATH. Note that

importing functions/variables of the same name causes a compiler error; you cannot dupli-

cate identifiers.

15

PURR
WIT
AN
Chase
YARN
.meow
GIMME
?
module_name
.meow
.meow
hello_world.meow
.meow
HELLO_WORLD
hello_world.meow
PATH

3.8.1 Standard Library

A basic standard library, entitled STDIO, is implemented to provide basic support for printing

(MEOW) and retrieving input from users (SCAN). This module is imported and used in the

code sample below. Note that SCAN always read input in as a YARN, so the variable accepting

the input must also be a YARN.

Listing 11: hello world.meow

1 GIMME STDIO?

2

3 HAI ITZ ME FUNC MAIN ,

4 MEOW "Hello World". PSST Say hello to user

5

6 ITZ ME YARN message.

7 SCAN message. PSST retrieve user 's hello message

8 KBYE

3.9 Object Oriented Programming

Unlike the original LOLCODE, which does not have support for custom objects, Meowlang

allows programmers to define their own classes with instance variables and methods. Ob-

jects are referred to by reference. Classes are composed of class variables and class functions.

Inheritance and interfaces are not supported in this version of Meowlang.

You can define a new class using syntax similar to that used when defining a new function

with the HAI ITZ ME set of keywords, specifying that you are creating a new class with the

CLASS keyword. As previously mentioned, the Meowlang convention is for class name to be

given in all capital letters (see section 3.1.2); when an instance of a class is created, only

the first character of its identifier is capitalized. Below is the template for class creation;

the ellipses (...) specifies that there can be an indefinite number of instance variables and

methods for a given class.

HAI ITZ ME CLASS class_name,

ITZ ME type instance_variable1.

...

HAI ITZ ME return_type FUNC method_name1 WIT type1 arg1 AN type2 arg2,

16

STDIO
MEOW
SCAN
SCAN
YARN
YARN
HAI
ITZ
ME
CLASS
...

<statements>

KBYE

...

KBYE

Below, we create a new custom MOUSE class, which has a single instance variable cookies

of type NUMBR. The class also has three methods: squeek, which simply prints out the

sound that a mouse makes, count_cookies which returns the number of cookies that the

instance has stored in the cookies instance variable, and give_cookie, which takes a NUMBR

representing the number of cookies to increment give_cookie by.

Listing 12: mouse class.meow

1 PSST Create a custom MOUSE class , class convention is in all -

caps

2 HAI ITZ ME CLASS MOUSE ,

3

4 PSST This is an instance variable

5 ITZ ME NUMBR cookies IZ 0.

6

7 PSST This is a class method

8 HAI ITZ ME FUNC squeek ,

9 MEOW "Eeeeeeek!".

10 KBYE

11

12 HAI ITZ ME NUMBR FUNC count_cookies ,

13 GIVE cookies.

14 KBYE

15

16 HAI ITZ ME FUNC give_cookie WIT NUMBR count_cookies ,

17 PSST This uses the SUM prefix operator

18 cookies IZ SUM OF cookies AN count_cookies.

19 KBYE

20 KBYE

In order to create a new instance of a class, you must use the MAEK and NEW keywords, which

allow memory to be allocated on the heap for the new object. Note that because Meowlang

17

MOUSE
cookies
NUMBR
squeek
count_cookies
cookies
give_cookie
NUMBR
give_cookie
MAEK
NEW

does not support automatic garbage collection, the memory associated with the object must

be freed using the BLEEP keyword once there is no use for it anymore. Here is the general

pattern:

MAEK object_identifier NEW class_name.

BLEEP object_identifier.

Here we create a new instance of the MOUSE class and subsequently delete it. By convention,

the first letter of an instance identifier is capitalized.

Listing 13: ephemeral mouse.meow

1 MAEK Gus NEW MOUSE. PSST Create a object using 'NEW ' keyword

2 BLEEP Gus. PSST Release memory associated with gus

Note that classes have implicit constructors that allow you to set the values of instance

variables within a class instance. For example, our previously defined MOUSE class contains

an instance variable cookies. An instance of a class is initialized with either specified

default values or garbage values. To instantiate an instance with specific instance variable

values, use the following pattern:

MAEK object_identifier NEW class_name,

WIT instance_variable1 IZ value1

AN instance_variable2 IZ value2

...

AN instance_variableX IZ valueX.

3.9.1 Accessing Class Variables

Class variables may be accessed with the IN keyword. Values can be assigned with the IZ

keyword.

cookies IN Gus.

cookies IN Gus IZ 100.

3.10 Writing a Complete Program

The Meowlang programming language expects the programmer to define a single “main”

function that is the first function that gets executed when a program starts running. This

18

BLEEP
MOUSE
MOUSE
cookies
IN
IZ

Main function is declared like any other function.

Currently, Meowlang requires that source files have a three part structure: first module

imports, then functions, starting with Main, then custom classes. It is not necessary for a

single source file to contain all three, they simply must be ordered in this fashion if they all

are present. This structure is subject to change.

Below is a example Meowlang program made up of a single Main function. Although it is

rather useless and unextraordinary, simply creating a variable and ending, this is sufficient

for a full Meowlang program!

Listing 14: example main.meow

1 HAI ITZ ME NUMBR FUNC Main ,

2 ITZ ME YARN cat_name IZ "Silvester".

3 GIVE 0.

4 KBYE

19

Main
Main
Main

4 Code Examples

The following code sample uses our examples above to create a single Meowlang program.

Listing 15: mouse.meow

1 GIMME STDIO? PSST Import the Standard Library

2

3 HAI ITZ ME FUNC Main ,

4

5 PSST Declaring a bunch of variables ...

6 ITZ ME YARN cat_name IZ "Silvester". PSST string

7 ITZ ME YARN mouse_name IZ "Gary".

8 ITZ ME NUMBR num IZ 2. PSST int

9 ITZ ME NUMBAR value IZ 2.0. PSST float

10 ITZ ME BOO mouse_is_small IZ AYE. PSST boolean

11 ITZ ME BOO cat_is_friendly IZ NAY.

12

13 PSST Create an array of 2 names

14 MAEK names NEW YARN BUCKET OF 2 names ,

15 WIT cat_name

16 AN mouse_name.

17

18 PSST Prints "Silvester chases Gary"

19 MEOW PURR Chase WIT names [0] AN names [1].

20

21 PSST Create new MOUSE instance

22 MAEK Gus NEW MOUSE ,

23 WIT cookies IZ 3.

24

25 MAEK Jerry NEW MOUSE. PSST no specification of cookies

26

27 PSST Release memory associated with gus and jerry

28 BLEEP Gus.

29 BLEEP Jerry.

30 KBYE

20

31

32 PSST custom MOUSE class , class convention is in all -caps

33 HAI ITZ ME CLASS MOUSE ,

34

35 ITZ ME NUMBR cookies IZ 0. PSST instance variable

36

37 HAI ITZ ME FUNC squeek , PSST class method

38 MEOW "Eeeeeeek!".

39 KBYE

40

41 HAI ITZ ME NUMBR FUNC count_cookies ,

42 GIVE cookies.

43 KBYE

44

45 HAI ITZ ME FUNC give_cookie WIT NUMBR count_cookies ,

46 PSST This uses the SUM prefix operator

47 cookies IZ SUM OF cookies AN count_cookies.

48 KBYE

49 KBYE

50

51 HAI ITZ ME YARN FUNC Chase WIT YARN bad_cat AN YARN poor_mouse ,

52 GIVE bad_cat CAT " chases " CAT poor_mouse.

53 KBYE

21

	Introduction and Overview
	Language Paradigm
	Programming in Meowlang
	Conventions
	Whitespace
	Identifiers
	Keywords
	Blocks and Scope
	Comments

	Built-In Data Types
	Strings
	Integers and Floats
	Boolean

	Variables
	Type Casting

	Arrays
	Basic Operations
	Math
	Boolean
	Comparison
	Concatenation

	Control Flow
	If-Then-Else
	For Loops

	Functions
	Modules/Libraries
	Standard Library

	Object Oriented Programming
	Accessing Class Variables

	Writing a Complete Program

	Code Examples

