
Lucifer Language Reference Manual

Michael Fagan (mef2224)
Elliott Morelli (gnm2123)
Cherry Chu (ccc2207)
Robert Becker (rb3307)

February 24th 2021

Contents

1 Lexical 4
1.1 Identifiers . 4
1.2 Comments . 4
1.3 Separators . 4
1.4 White Space . 4
1.5 Reserved Keywords . 4

2 Primitive types 5
2.1 Integer . 5
2.2 Float . 5
2.3 Char . 6
2.4 Boolean . 6

3 Literals 6
3.1 Integer Literals . 6
3.2 Float Literals . 6
3.3 Bool Literals . 7
3.4 Char Literals . 7

4 Arrays 7

5 Expressions 8
5.1 Primary Expressions . 8
5.2 Precedence of Operators . 8

5.2.1 Expressions formed from function calls 9
5.2.2 Expressions formed from object function calls 10
5.2.3 Expressions formed from array accesses 10

5.3 Statements . 10
5.4 Declarations . 10

1

5.4.1 Assignments . 11
5.4.2 Object Instantiations . 11
5.4.3 Blocks and Control Flow 11

6 Operators 11
6.1 Arithmetic Operators . 11
6.2 Comparison Operators . 12
6.3 Negation Operator . 12
6.4 Logical Operators . 13
6.5 Assignment Operators . 13

7 Program Structure 13
7.1 The if Statement . 13
7.2 The while Statement . 14
7.3 The for Statement . 14
7.4 The runGame() Statement . 15

7.4.1 How to use runGame() . 15
7.5 What rungame() does internally 15
7.6 Scope . 16

8 Standard Functions 16
8.1 Function Declarations . 16
8.2 Function Calls . 16
8.3 Return Statements . 17

9 Built-in Functions 17
9.1 The init() function . 17
9.2 The checkKey(<int>) function 17

10 Built-in Classes 18
10.1 Constructing Built-in Objects . 18
10.2 Accessing and Updating Instance Variables of Built-in Objects . 18

10.2.1 Accessing Instance Variables 18
10.2.2 Updating Instance Variables 18

10.3 Using Functions of Built-in Objects 19
10.4 The Entity Class . 19

10.4.1 Instance Variables . 19
10.4.2 Constructor . 19
10.4.3 Functions . 19

10.5 The Player Class . 20
10.5.1 Player Instance Variables 20
10.5.2 Player Constructor . 20
10.5.3 Player Functions . 21

10.6 Extending Classes . 21
10.6.1 Syntax Rules for Extending Classes 21
10.6.2 Fields . 22

2

10.6.3 Constructor . 22
10.6.4 Adding Functions . 22
10.6.5 Extended Class Example 22

11 Sample Code 23

3

1 Lexical

1.1 Identifiers

Identifiers in Lucifer are sequences of characters are composed of ASCII letters,
decimal digits and the underscore character .

The first character of an identifier has to be a letter.

1.2 Comments

Lucifer supports both multi-line and single-line comments. Comments are ig-
nored by parser.

Single-line comment starts with double backslash //.

int r = 1; // r is radius of a circle

Multi-line comment are enclosed by /* and */.

float x = 2.91;

/*

This is a multi line comment

*/

1.3 Separators

Separators separate tokens. Lucifer accepts () { } [] ; , . as separa-
tors.

Example of separator usage

int x = (1 + 2) * (2 + 3); x + 1;

1.4 White Space

White Space characters are separator that are discarded during parsing. Valid
white space characters include space characters and newline characters. Tab
characters are invalid.

1.5 Reserved Keywords

return

if

elif

else

4

noelse

for

while

int

bool

true

false

float

void

char

string

class

new

extends

fun

Entity

Player

runGame

Lucifer also accepts the predefined SDL Scancodes as keywords. They can be
looked up in https://wiki.libsdl.org/SDLScancodeLookup

2 Primitive types

Lucifer supports four primitive types of objects: integers, character literals,
single-precision floating point numbers and booleans.

2.1 Integer

Integer has 4 bytes.The 32-bit int data type can hold integer values in the range
of -2,147,483,648 to 2,147,483,647.

Here is an example to declare and define integer variable.

int a = 1;

2.2 Float

Float has 8 bytes.Float data type has size ranges from 1e-37 to 1e37.

5

https://wiki.libsdl.org/SDLScancodeLookup

An example to declare and define float variable is

float foo = 3.14;

2.3 Char

Char has 1 byte and it can be any ASCII characters.

2.4 Boolean

Boolean has 1 byte. It is a binary data type with either true or false value.
Boolean values are represented by the reserved keyword true and false.

3 Literals

Lucifer supports integer literals, float literals, char literals and bool literals.

3.1 Integer Literals

An integer literals is a sequence of decimal digits.

The regular expression for integer literal is

[0-9]+

Examples of integer literals are

72

0

1327

The context free grammar for integer literal in the parser is:

expr: LITERAL

3.2 Float Literals

A float Literal consists of an integer part, a decimal point, a fraction part, an e
and an optionally signed integer exponent.

The regular expression representing the float literal is

((([0-9]+[\.][0-9]*)|([\.][0-9]+))(([e][+-]?[0-9]+)?))|([0-9]+[e][+-]?[0-9]+)

Examples of float literals are

6

0.5e+15

8.3

1.

13e9

The context free grammar for float literal in the parser is:

expr: FLIT

3.3 Bool Literals

A bool literal is represented by keywords true and false.

The context free grammar for bool literal in the parser is:

expr: BLIT

3.4 Char Literals

A char literal is a sequence of ASCII characters enclosed by double quotation
characters (” ”). If the char literal content contains any double quotation char-
acters, the character should be preceded by the escape character \.

The regular expression for string literals is

"([^"\\]|\\.)*"

Example of char literals are

"Hello World!"

"foo"

"bar\"baz"
"abc345@#&"

The context free grammar for char literal in the parser is:

expr: CLIT

4 Arrays

Arrays in Lucifer are indexed collections of values. Lucifer supports array literals
containing primitive types and other arrays.

Syntax for initializing an array is as follows:

<valtype> [] <arrayid> = new <valtype>[<arrsize>]

7

Where <valtype> is either a <type> as seen in 3.5.1, an array type, a
<parent> class name(Entity or Player), or an extended class identifier. <arrayid>
is the unique identifier for the array, and <arrsize> is an integer literal that
represents the size of the array.

1. Values in arrays can be accessed and overwritten.

Brackets indicate and access to array elements:
Syntax:

<arrid> [<index>] where <arrid> is the unique identifier for
the array and <index> is some expression that evaluates to an in-
teger.

For multidimensional arrays, additional brackets would be used to
access values of nested arrays.
<arrid> [<index1>][<index2>]

arr[0] //access to element at index 0 in array arr

arr[0][1] //access to element at index 1 in array element arr[0]

5 Expressions

5.1 Primary Expressions

Primary expressions involving ’.’ and function calls group left to right.
Expressions include the following:

1. Literals, whose grammar rules are described in 3.1

2. Identifiers, who have the token ID

5.2 Precedence of Operators

Operators in Lucifer follow rules of precedence and associativity that determine
the order in which expressions will be evaluated.

Table 2 lists each operator and indicates the precedence and associativity of
each. Table 3 shows some simple examples of precedence and associativity.
Parentheses can be used to override these rules.

The list below shows the grammar rules for operator expressions:

expr:

8

expr + expr

expr - expr

expr * expr

expr / expr

expr % expr

expr == expr

expr != expr

expr <= expr

expr > expr

expr >= expr

expr && expr

expr || expr

-expr

!expr

Tokens (From High
to Low Priority)

Operators Associativity

! - Unary negation R-L

* / % Multiplicative L-R

+ - Additive L-R

< <= > >= Relational comparisons L-R

== != Equality comparisons L-R

&& Logical AND L-R

|| Logical OR L-R

= Assignment R-L

, Comma L-R

Table 1: Operator Precedence and Associativity

5.2.1 Expressions formed from function calls

func-call-expr:

identifier.(actualparams-list)

9

Expression Results Comments

3 + 2 * 5 13
Multiplication is done before di-
vision

3 + (2 * 5) 13
Same order as before, but paren-
theses provide clarification

(3 + 2) * 5 25
Parentheses override
the precedence rules

true || true && false true
Logical AND has higher
priority than logical OR

true || (true && false true
Same order as before, but
parenthesis provide clarification

(true || true) && false false
Parentheses override
the precedence rules

Table 2: Precedence and Associativity Examples

5.2.2 Expressions formed from object function calls

obj-func-call-expr:

identifier.expression(actualparams-list)

5.2.3 Expressions formed from array accesses

arr-access-expr:

expression [expression]

5.3 Statements

5.4 Declarations

Syntax for declaring variables takes the following form:
<type> <identifier> ;

where a <type> is any of the following:

type:

int

bool

float

char

Rules for function declarations can be found in Section 8.1

10

5.4.1 Assignments

Primitive Variable Assignment syntax:

<type> <varidentifer> = <expression>;

where the left side of the statement is the variable’s type and identifier and
the right hand side is an expression.

5.4.2 Object Instantiations

Object Instantiations take the following form:
<objtyp> <objidentifier> = new <objtyp> (args opt);

Where <objtyp> is either the identifier of an extended class , or the keyword
name of a built-in class (Entity, Player), <objidentifier> is the identifier
for the object, new is the keyword for instantiation, and args opt is an optional
list of actual parameters that the constructor takes.

5.4.3 Blocks and Control Flow

If statements, While Statements, For Statements, and the runGame() statement
are all considered statements in Lucifer.
Their rules and syntax can be found in Section 7.

6 Operators

6.1 Arithmetic Operators

Lucifer supports standard two-operands arithmetic operations: addition, sub-
traction, multiplication, division, and modulo. Two-operands operations re-
quire the two operands to be of the same type. For the modulo operation, both
operands must be of type integer.

/* Addition */

a = 1 + 3;

b = 3.4 + 5.2;

c = a + b;

/* Subtraction */

a = 1 - 3;

b = 3.4 - 5.2;

c = a - b;

11

operator meaning usage
== equal to foo == bar

!= not equal to foo != bar

> greater than foo > bar

< less than foo < bar

>= greater than or equal to foo >= bar

<= less than or equal to foo <= bar

Table 3: Comparison Operators

/* Multiplication */

a = 1 * 3;

b = 3.4 * 5.2;

c = a * b;

/* Division */

a = 1 / 3; // resulting quotient is truncated to integer value

b = 3.4 / 5.2;

c = 20.3 / b;

/* Modulo */

a = 17 % 3;

b = 5 % a;

Lucifer also supports single-operand arithmetic negation.

/* Negation */

int a = -2;

float b = -3.14;

6.2 Comparison Operators

Comparison operators compare the two operands and determines how they re-
lates to each other. The two operands are expressiontokens that must evaluate
to the same type, and the result of comparison is a boolean type.

Details of each operators and their usage are illustrated in Table 1.

6.3 Negation Operator

Negation operator is denoted by the character ! and is applied to a single
operand of boolean type to negate its value.

12

Example of negation operator usage

if (!(foo == 1)) print("hello world.");

6.4 Logical Operators

Lucifer support the OR and AND logical operators. Logical operator evaluates
the truth value of the two operands of boolean type.

The OR operator || evaluates to true if either of the operands is true, false
otherwise.

if ((bar == 2) || (foo == 1)) print("bar is 2 and foo is 1.");

The AND operator && evaluates to true if both operands are true, false other-
wise.

if ((bar == 2) && (foo == 1)) print("Either bar is 2 or foo

is 1.");

6.5 Assignment Operators

Assignment operator is denoted by the character =. It is used to define or assign
value to a variable.

The left operand is a variable and the right operand is a value to be stored in
the variable on the left.

Example of assignment operator usage

int a;

a = 3 + 2;

7 Program Structure

A typical program structure in Lucifer contains extended class definitions and
function definitions, followed by a main() function.
In Lucifer, statements allowed in global scope are class definitions, variable dec-
larations, and function definitions.
The starting execution point for a program in Lucifer is the main() function
which is required to be the last function definition in the program file.

7.1 The if Statement

The if/else statement in Lucifer supports branching of program flow based on
the evaluation of a boolean expression. An if/else statement introduces a new
scope and therefore must be surrounded by curly brackets.
The if statement has the following general form

13

if (condition) {then-statement}
else {else-statement}

When there is no action for the else part, the statement takes the following
form.

if (condition) {then-statement}
noelse

When there is more than one condition to compare, elif statement is used

if (condition) {then-statement}
elif (condition) {then-statement}
else {else-statement}

The context free grammar for if statement is:

stmt: IF (expr) stmt elif opt ELSE stmt

stmt: IF (expr) stmt elif opt NOELSE

elif opt: ε | elif opt ELIF (expr) stmt

7.2 The while Statement

The while loop statement has the following syntax:

while (expression) {statement}

The statement within the loop is executed repeatedly so long as the value of the
expression evaluates to true. The value of the expression is tested before each
execution of the statement.

The context free grammar for while statement is:

stmt: WHILE (expr) stmt

7.3 The for Statement

The for loop statement has the following syntax:

for (init; condition; increment)

{statement}

Only the condition part is required, while the init and increment parts are
optional. The increment part updates the condition after every loop. The
statement within the for loop is executed repeatedly as long as the condition is
true.

The context free grammar for for statement is:

stmt: FOR (expr opt; expr; expr opt) stmt

14

7.4 The runGame() Statement

The runGame() loop in Lucifer is responsible for making internal calls to SDL
library functions in order to render Entity and Player objects in a window.

7.4.1 How to use runGame()

The runGame() loop should be the last statement in a Lucifer program, within
the main() method. It can contain expressions.

runGame() takes three integer arguments: desired framerate, display window
width, and display window height. These arguments of runGame() are optional.

main(){

runGame(<int> framerate,<int> window width, <int> window height){

expressions

}

}

7.5 What rungame() does internally

1. runGame() internally calls SDL SetRenderDrawColor() and SDL RenderClear()
to prepare the window for rendering.

2. runGame() internally calls SDL PollEvent() in order to update the keyboard
scancode array, which is accessible through the checkkey() function.

3. runGame() runs all code written within its function body. This should
be game logic that updates positions and states of Players and Entities.
In this stage, runGame() calls loadTexture() and SDL QueryTexture() for
each Player and Entity.

4. runGame() draws any Entities and Players that are accessible in the scope
of its function body by calling SDL QueryTexture() and SDL RenderCopy().

5. runGame() renders the updated scene by calling SDL RenderPresent().

6. runGame() caps the framerate of the game by calling SDL GetTicks() and
SDL Delay().

15

7.6 Scope

Variables declared within a function have the scope of that function, and are
accessible only within that function’s body. Likewise, variables declared in class
definitions, if statements, and while statements are only accessible within the
subscopes created by those statements. Subscopes are designated using curly
brackets: {}.

8 Standard Functions

8.1 Function Declarations

Functions in Lucifer have the following syntax:
fun <functionId> <returnType> (<type> arg1,<type> arg2...<type>

argn){function body}

Where functionId is a unique identifier and returnType is the type that
the function returns.The arguments are variable declarations that are passed
into the function body when the function is called. Arguments are optional,
but must have their type stated in the function definition.

Example of function declaration:

fun add int (int a, int b){

return a + b;

}

In this example, add is the functionId, int is the returnType, and int a,

int b are the arguments.

8.2 Function Calls

When calling a function, the function call must have the same number, order-
ing, and type of actual parameters as the arguments declared in the function
declaration.

To supply actual parameters to a function and run the function body, the
following syntax is used:

functionId(actual parameters);

Example of a function call:

16

int g = 5;

int h = 10;

int res = add(g,h);

In this example, add(g,h); runs the function body of the add function and
supplies g and h as actual parameters.

8.3 Return Statements

The return statement allows a function to return an expression of the type
specified in its function declaration. If the type of the expression in the return

statement does not match the return type of the function, the compiler will
throw an error.The keyword void is used in the function declaration if the func-
tion does not return anything.

return (expr opt) ;

9 Built-in Functions

9.1 The init() function

The init() function in Lucifer is responsible for initializing SDL and internally
creates its window. It internally calls SDL CreateWindow(), SDL CreateRenderer(),
SDL SetHint(), and IMG Init().

It must be called in the main() before a rungame() loop can be used.

main(){

init();

}

9.2 The checkKey(<int>) function

The checkkey(¡int¿) function in Lucifer returns true if the key matching the
scancode passed to it has been pressed since its last call.

main(){

checkKey(<int>);

}

17

10 Built-in Classes

Lucifer has built-in Entity, and Player classes which may be used to construct
objects.

10.1 Constructing Built-in Objects

Built-in Objects are instantiated with Javalike syntax, using the new keyword:

<classid> <obectid> = new <classid> (args opt);

Example:

Player p = new Player(75,100, "texture.png",[82,81]);

After constructing an object, refer to it by its variable name to access its
variables and functions.

10.2 Accessing and Updating Instance Variables of Built-
in Objects

To access or update an object’s instance variable, use the ’.’ character before
the variable name.

10.2.1 Accessing Instance Variables

Syntax for accessing intstance variables of objects is as follows:

<objectid> . <variableid>;

Example:

Player p = new Player(75,100, "texture.png",[82,81]);

int i = p.x;

//i now holds the integer value of 75

10.2.2 Updating Instance Variables

Player p = new Player(75,100, "texture.png",[82,81]);

int i = 40;

p.x = i;

//p.x now holds the integer value of 40

18

10.3 Using Functions of Built-in Objects

To call an object’s function, use the ’.’ character before the function name and
two parentheses () after the function name.
Actual parameters of the function, if any, should be in between the parentheses:

<objectid>.<functionid>(actual list opt);

Example:

p.addHitbox(50,100);

10.4 The Entity Class

An Entity in Lucifer describes any game object that will be rendered on the
SDL Window. Entity serves as a superclass for the Player object.

10.4.1 Instance Variables

Entity stores a 2D (x, y) position, the name of a texture file(JPG,PNG) and a
2D hitbox (hx,hy).

int x;

int y;

String texture;

int hx;

int hy;

10.4.2 Constructor

The expected parameters for the Entity constructor are its starting (center) x
position, its starting y position, and its texture file for its sprite.

Entity e = new Entity(50,50, "texture.png");

10.4.3 Functions

fun void addHitbox(int x, int y);

Updates hitbox variables hx and hy.

fun void changeX(int dx);

19

Updates x to x+dx.

fun void changeY(int dy);

Updates y to y+dy.

10.5 The Player Class

In Lucifer, Player Objects are sprites that can be directly controlled by hardware
input. Player is a subclass of Entity.

10.5.1 Player Instance Variables

Player objects inherit Entity instance variables and functions. Player objects
also contain an array of integers that store the keycodes for player controls.

//Inherited from Entity

int x;

int y;

String texture;

int hx;

int hy;

//Extended by Player

int[] controls;

10.5.2 Player Constructor

The Player constructor has four arguments: starting (center) x position, its
starting y position, its texture file for its sprite, and an int value used to desig-
nate the size of its internal, array, which is an array of SDL Scancodes.

SDL Scancodes refer to hardware input from specific keyboard keys. Their
corresponding integer values can be found in this reference: https://wiki.libsdl.org/SDLScancodeLookup
Either an integer value or the SDL Scancode value is accepted, as shown below:

Player p = new Player(75,100, "texture.png",2);

p.addControl(0,SDL SCANCODE UP);

Player p = new Player(75,100, "texture.png",2);

p.addControl(0,82);

20

10.5.3 Player Functions

As a subclass of Entity, Player inherits all of the functions of Entity.
However, Player also contains addControl() and removeControl() functions.

fun void addControl(int i,int newcontrol);

This function replaces the scancode in Player’s controls array at
index i with the newcontrol int value.

fun void removeControl(int i,int newcontrol);

This function replaces the scancode in Player’s controls array at
indexiwith the newcontrol int value.

10.6 Extending Classes

In Lucifer, functionality can be added to Entity and Player classes by writing
extended class definitions.

The keywords Entity and Player are tokenized as parents in Lucifer’s grammar.
These new objects will inherit the basic functions of the objects they extend,
and can have an updated constructor, additional instance variables and func-
tions added to them.

10.6.1 Syntax Rules for Extending Classes

Use the class keyword to begin a class definition, followed by a unique identi-
fier for the extended class.
The class identifier should be followed by the extends keyword along with a
parent name (Entity or Player).

class <classidentifier> extends <parent>(){

vdecl list

constructor

fnct list

21

}

In this extended class definition, vdecl list

refers to a list of variable declarations, constructor
refers to the constructor syntax which can be found in 10.6.3, and fnct list

refers to a list of function declarations, whose syntax can be found in Section 8.1

10.6.2 Fields

Inside of an extended class, the superclass’ instance variables will be accessible
without needing to specify them. Any instance variables entered inside the class
will be added to the extended class.

10.6.3 Constructor

If a constructor is not written for a class, then it will default to calling super()
for its constructor.

An extended class can also take in additional parameters for its constructor.
Each additional parameter will have a type followed by its name in the con-
structor’s definition.

If a class is written with a defined constructor, then super() can be called to ini-
tialize the values as the parent would by passing the corresponding values along.

<classidentifier> (formals opt) {

stmt list

}

10.6.4 Adding Functions

Functions can be added to the class by creating a function inside of the extended
class.

Once created, these new functions can be used in the same way as other class
functions by entering the class name, followed by a . and the function name,
with any parameters that need to be passed through in parentheses.

10.6.5 Extended Class Example

class myEntity extends Entity {

22

int value; //additional field for myEntity

myEntity(int x, int y, String texture, int hx, int hy, int myValue){

super(x, y, texture, hx, hy); // call Entity’s constructor

value = myValue; // initializes value based on constructor
// parameter

}

fun int addxy(){

return x + y;

}

}

11 Sample Code

Here is the code for running a simple game with an obstacle and a player that
displays the player and entity as stationary textures.

1 | init();

2 | Entity rock = new Entity(50,50, "rock.png");

3 | rock.addHitBox(5, 5);

4 | Player p1 = new Player(75,100, "player1.png",2);

5 | p1.addControl(0,81);

6 | runGame(){ //statements go here };

23

	Lexical
	Identifiers
	Comments
	Separators
	White Space
	Reserved Keywords

	Primitive types
	Integer
	Float
	Char
	Boolean

	Literals
	Integer Literals
	Float Literals
	Bool Literals
	Char Literals

	Arrays
	Expressions
	Primary Expressions
	Precedence of Operators
	Expressions formed from function calls
	Expressions formed from object function calls
	Expressions formed from array accesses

	Statements
	Declarations
	Assignments
	Object Instantiations
	Blocks and Control Flow

	Operators
	Arithmetic Operators
	Comparison Operators
	Negation Operator
	Logical Operators
	Assignment Operators

	Program Structure
	The if Statement
	The while Statement
	The for Statement
	The runGame() Statement
	How to use runGame()

	What rungame() does internally
	Scope

	Standard Functions
	Function Declarations
	Function Calls
	Return Statements

	Built-in Functions
	The init() function
	The checkKey(<int>) function

	Built-in Classes
	Constructing Built-in Objects
	Accessing and Updating Instance Variables of Built-in Objects
	Accessing Instance Variables
	Updating Instance Variables

	Using Functions of Built-in Objects
	The Entity Class
	Instance Variables
	Constructor
	Functions

	The Player Class
	Player Instance Variables
	Player Constructor
	Player Functions

	Extending Classes
	Syntax Rules for Extending Classes
	Fields
	Constructor
	Adding Functions
	Extended Class Example

	Sample Code

