
Sick Lingo Ultra Reference Manual (SLURM)

Sophia Danielle Kolak - sdk2147
Jay Karp - jlk2225

Benjamin Flin - brf2117

February 2021

1

Contents
1 Introduction 3

2 Lexical Conventions 3
2.1 Comments . 3
2.2 Identifiers . 3
2.3 Keywords . 3
2.4 Integer Constants . 4
2.5 Character Constants . 4
2.6 Boolean Constants . 4
2.7 Special Identifiers . 4
2.8 Unit . 4
2.9 Curly Braces and Vertical Bars . 4
2.10 Forall and ForallM . 4
2.11 Operators . 5
2.12 Separating and other tokens . 5

3 Types 5

4 Multiplicities 6

5 Expressions 7
5.1 Lambda expressions . 7
5.2 Let-in expressions . 8
5.3 If expressions . 9
5.4 Case expressions . 9
5.5 Binary expressions . 9
5.6 Application expressions . 10
5.7 Literal expressions . 10
5.8 Precedence of Expressions . 10

6 Algebraic Data Types 11

7 Types Revisited and Kinds 11

8 Top-level Statements 12

9 Programs 12

10 Example Program 12

2

1 Introduction
The Lingo programming language is a functional programming language with rank-n
polymorphism and linear types. Our language is heavily inspired by Haskell’s imple-
mentation linear-core1, however, we extend some aspects of Haskell’s and Ocaml’s
syntax with a few features such as a specialized syntax for linear arrows. We choose
OCaml as inspiration for our syntax design because it is compact and easy to under-
stand. Unlike Haskell’s linear core, however, we wanted the design of our language to
highlight linearity as primary feature.

2 Lexical Conventions
There are six different kinds of tokens: identifiers, keywords, constants, binary op-
erators, arrows and other special tokens. These categories of tokens are not disjoint.
Similar to C, blanks, tabs newlines and comments are ignored except for their use in
separating tokens where at least one is required.

2.1 Comments
The characters (* introduce a comment. The characters *) terminate the comment.
Lingo does not allow single-line comments or nested multi-line comments

(*

This is a comment in Lingo, how cool.

*)

2.2 Identifiers
Lowercase identifiers must begin with a lowercase ASCII character. The rest of the
identifier string can be any combination of letters (uppercase or lower-case) and digits.
Identifiers can also end with any number of single quotes ’. Uppercase identifiers fol-
low the same rules as lowercase identifiers except that they must start with an uppercase
ASCII character.

let foo' : Int = 10;
(* foo' is a lowercase identifier *)
(* Int is an uppercase identifier *)

2.3 Keywords
The following keywords are reserved, and cannot be used as identifiers.

if, then, else, let, in, data, case, of, where, Unr, One

1https://arxiv.org/pdf/1710.09756.pdf

3

2.4 Integer Constants
Integer constants consist of a sequence of characters from 0 through 9. Note that in-
tegers are sized to 64 bits, so the value of any integer literal x is x mod 264. The
matching regex is [’0’-’9’]+

let integer : Int = 42;

2.5 Character Constants
Character constants are a single upper or lowercase character surrounded by single
quote. The matching regex is ’[a-z, A-Z’]’

let a : Char = 'a';

2.6 Boolean Constants
Boolean constants are characters with either a value of true or false.

let coolbool : Bool = true;

2.7 Special Identifiers

2.8 Unit
If the characters () appear in sequence then they form a token called unit. Otherwise,
they form two separate tokens left parentheses (and right parentheses).

let unit : () = (); (* unit *)

let foo : Int = (3 + 4); (* parentheses (not unit) *)

2.9 Curly Braces and Vertical Bars
Curly braces { } and the vertical bar | also form tokens.

let foo : Int = id {Int} 1;

let foo' : Int = id Int |Unr| 1;

2.10 Forall and ForallM
The tokens @ and # are called forall and forallm respectively form two tokens. Note
that each of these tokens can and often appear next to an identifier without whitespace.

let id {a} |p| x : @a #p (a -p> a) = x;

4

2.11 Operators
Lingo supports the following tokens as Operators.

!= Not Equal

<= Less Than or Equal to

< Less Than

>= Greater Than or Equal to

> Greater Than

== Equal

|| Or

&& And

* Multiplication (a.k.a. Star)

/ Division (a.k.a. Slash)

+ Addition

- Minus or Negate (a.k.a. Dash)

! Not

The greater than token >, the dash token -, the slash token / and the star token * are all
tokens which are also used in syntax outside the context of binary and unary operators,
as will be discussed later in this paper.

let x : Int = 10 * 10 / 10 + 10 - 10

We will discuss each of these operators behaviors and precedence later in the paper.

2.12 Separating and other tokens
The backslash token \, the wildcard token the colon : and the semicolon ; are the
remaining tokens not present elsewhere in this document.

data PartyAnimal {a} |p| where

Cow : a -p> PartyAnimal;

Giraffe : a -p> PartyAnimal;

Hyenas : a -> PartyAnimal;

Donkeys : a -> PartyAnimal; (* both : and ; tokens *)

let foo : Int = case (Just 4) of

Just a -> a + 1;

_ -> 0; (* wildcard *)

;

3 Types
Types are written after certain expressions and top-level statements, and are usually
separated from the expression/top-level statement using a colon.

let foo : Int = 0;

5

Since Lingo has no type inference, types are needed in most expressions.
There are three primitive types in Lingo: Int, Char, Bool. There is an infix type

operator a -> b which represents functions from types a to b. This binary operator on
types is right associative.

let f x : Int -> Int = x;

Lingo does support polymorphic types. This allows functions to be variable in the types
that they accept. In order to deal with polymorphism, Lingo builds these polymorphic
functions by type at compile time. To define a polymorphic function you use { as well
as the }. This can either take in multiple type arguments each individually surrounded
by these braces ({a} {b} {c}), or all of the types can be placed in the same set of braces
{a b c}. In the functions type declaration, you must also declare types using the forall
quantifier (@).

let foo {a b} f x : @a @b (a -> b) -> a -> b = f x;

let _ = foo {Int Char} toString 10;

let _ = foo {Char Int} toInt '1';

Lingo supports rank-N polymorphism allows for support of any number of quantifiers
which can appear before any argument in a lambda. For example:

data Tuple {a b} where

Tuple : a -> b -> Tuple;

let tup {b c} x y : @b @c (@a a -> a) -> Tuple b c

= Tuple (id {b} x) (id {c} y);

4 Multiplicities
Multiplicities describe how an argument is evaluated inside an expression. A multi-
plicity is either One or Unr. If a multiplicity of a variable is One, then the argument is
evaluated in the expression exactly once. If it is Unr than can be evaluated any number
of times, including zero.

The following expression is well-typed:

let x : One Int = 10 in x + 1

Arrows can be annotated with a multiplicity. The arrow (->) by default has multi-
plicity Unr and (-*) has multiplicity One.

Multiplicities can also be polymorphic, i.e. there are multiplicity variables. Intro-
duction of multiplicity variables is done through multiplicity lambdas, and multiplicity
quantifiers appear in types prepended with a # token. In arrows, the multiplicity vari-
ables appear infix.

For example:

let id {a} |p| x : @a #p (a -p> a) = x;

6

Multiplicities can also be multiplied. For concrete multiplicities One and Unr, One
* One is equivalent to One and all other cases are Unr. Multiplication of multiplicities
is associative and commutative by construction.

For example:

let compose {a b c} |p q| f g x :

@a @b @c #p #q

(b -q> c) ->

(a -p> b) ->

a -p*q> c = f (g x);

The above example expresses the constraint that x must be used p*q times where q
is the multiplicity of f in its argument and p is the multiplicity of p in its argument.

Below is a more comprehensive grammar for type, multiplicites and arrows:

<type> := @ <lowercase-id> <type>

| # <lowercase-id> <type>

| <type> <arrow> <type>

| <type> { <type+> }

| <type> | <type+> |

<arrow> := ->

| -*

| - <mult> >

<mult> := <lowercase-id>

| Unr

| One

| <mult> * <mult>

Note that <type+> denotes one or more types in sequence.

5 Expressions
We use the following syntax for specifying grammars. A terminal/token is either writ-
ten by the characters from which it is constituted or by using a self-descriptive name
like integer-literal. Non-terminals are given with angle brackets, such as <expr>.
A production rule is given using <non-terminal> := token <other-non-terminal>
... Anything contained in square brackets [] is considered optional.

5.1 Lambda expressions
There are three types of lambda expressions, one for values, types and multiplicities.
We use \ to denote the start of a lowercase lambda abstraction, / to denote an
uppercase (type lambda) and | to denote multiplicity abstraction.

Lambda expression:

<expr> := \(lowercase-id : <type>) <arrow> <expr>

Note that the non-terminals <type> and <arrow> are defined in sections 3 and ??.

7

\(x : Int) -* x + 1

Type lambda expression:

<expr> := /lowercase-id -> <expr>

e.g.

/a -> f {a} 10

Multiplicity lambda expression:

<expr> := |lowercase-id -> <expr>

e.g.

|x -> f |x| 10

Type and multiplicity abstraction allow for polymorphism in types and multiplic-
ities respectively which in turn can be passed around and applied to other type and
multiplicity abstractions. For more information on types and multiplicities see sections
3 and 4.

5.2 Let-in expressions
A let-in expression allows for binding a new variable equal to an expression inside
another expression.

let x : Int = 5 in x + 3

The above let-in expression is equivalent in terms of operational semantics to the fol-
lowing expression:

(\(x : Int) -> x + 3) 5

A let-in expression can optionally take in a list of parameters, which in themselves
are lists of lowercase ids surrounded by vertical bars, curly braces or just separated by
whitespace. (Note that a param-list is any number of params separated by whitespace,
and in general, a x-list is any number of xs surrounded by whitespace).

<expr> := let <lowercase-id> <param-list> : [<mult>] <type>

= <expr> in <expr>

<param> := | <lowercase-ids> |

| { <lowercase-ids> }

| <lowercase-ids>

The type parameter of the let-in expression is the type of the bound name given as the
lowercase identifier after the let.

Each parameter enclosed inside vertical bars, curly braces, or no enclosure repre-
sent multiplicity abstraction, type abstraction and value abstraction respectively. To
illustrate, the following represents pairs of let-in expressions which are equivalent:

8

let id x : Int -> Int = x in id 0

let id : Int -> Int = \(x: Int) -> x in id 0

let id {a} x : @a a -> a = x in id 0

let id : @a a -> a = /a -> \(x: a) -> x in id {Int} 0

let id {a} |p| x : @a #p a -> a = x in id 0

let id : @a #p a -> a = /a -> |p -> \(x: a) -p> x in id {Int} 0

let compose {a b c} |p q| f g x :

@a @b @c #p #q (b -q> c) -> (a -p> b) -> a -p*q> c

= f (g x) in (id (succ 0))

5.3 If expressions
An if expression takes the form

if <expr> then <expr> else <expr>

Note that the else is mandatory. The first expression after the if is expected to have a
type Bool.

5.4 Case expressions
Case expressions are syntactically similar to those in Haskell, however, in Lingo each
case expression is concluded with a ;, they take the following form:

<expr> := case <expr> of <casealts>

Casealts is a representation of all of the different case alternatives that are involved in
matching. They take the form:

uppercase-id <lowercase-ids> -> <expr>;

Each Casealt statement is made up of an uppercase identifier which allows for argument
deconstruction, a list of lowercase identifiers in sequence to pattern match on, as well
as the resulting expression to be evaluated when matching to that case. We do not
support deep pattern matching for individual cases. e.g.

let x : Maybe {Maybe {Int}} |One| = case (Just 4) of

Just a -> Just a;

Nothing -> Just 0;

;

5.5 Binary expressions
Binary expressions take the form

<expr> <binop> <expr>

9

Where the binary operators are:

||, &&, ==, !=, <, >, <=, >=, +, -, /, *, !

The operators are presented in order of least to most precedence, where the following
groups of operators each have equal precedence and are left-to right associative.

==, !=

<, >, <=, >=

+, -

*, /

In this context, * means multiply, / means divide, and - means subtract. Note that we
label these tokens as Star, Slash, and Dash in section 2.11 because each of these tokens
are used in other parts of Lingo’s syntax.

5.6 Application expressions
Lingo supports application of multiple different kinds. This includes type application,
multiplicity application and function application. The following two expression are
logically equivalent a display how application works in Lingo. Application is also left
associative by default.

let foo {a} {b} {c} |p| |q| f g x :

@a @b @c #p #q (a -p> b) -> ((a -p> b) ->

(b -q> c)) -> a -p*q> c

= f g x in

foo {Int} {Char} {Int} |Unr| |Unr|

let foo' {a b c} |p q| f g x :
@a @b #p #q (a -p> b) -> ((a -p> b) ->

(a -q> b))-> a -p*q> b

= (f g) x in

foo' {Int Char Int} |Unr Unr|

In Lingo these expressions would both need to be used in a top level declaration, how-
ever, this is omitted here for clarity.

5.7 Literal expressions
Expressions can consist of a single lowercase id which can refer to a variable. Expres-
sions can also consist of a integer literal token as well as a character token described in
sections 2.4 and 2.5 respectively.

5.8 Precedence of Expressions
Expressions described in this section are generally listed in order of lowest to highest
precedence, where the first four (sections 5.1-5.4) are of equal precedence. Applica-
tion has a higher precedence than any binary operator, for example. The following
expression

10

f a + g a

is equivalent to

(f a) + (g a)

Any expression surrounded with parentheses has highest precedence.

6 Algebraic Data Types
Algebraic Data Types allow Lingo to support sum types as well as product types. These
data types can take in both type and multiplicity parameters.

data Tuple {a b} |p| where

Tuple : a -p> b -p> Tuple;

data Maybe {a} |p| where

Just : a -p> Maybe;

Nothing : Maybe;

let x : Maybe {Int} |Unr| = Nothing;

let y : Maybe {Int} |Unr| = Just 10;

Here each case, which are separated by semicolons, represents a sum type. In this
example, a Tuple represents a product type. a and b represent type variables and p rep-
resents a multiplicity variable. We also do not allow quantifiers in each case definition.
We can instantiate the type and multiplicity variables in Algebraic Data Types using
the above syntax.

7 Types Revisited and Kinds
Kinds describe the ‘type’ of types. A kind can be either Mult or Type or an (->) from
any two kinds. Concrete types such as Bool or Maybe {Int} have a kind Type. All
arrows (->) are infix operators with kind

Type -> Type -> Type

which means (->) can produce a type if given two other types. The following defini-
tion

data Maybe {a} |p| where

Just : a -p> Maybe;

Nothing : Maybe;

has kind

Type -> Mult -> Type

11

We can instantiate any kind of the form

Type -> k

where k is any kind by application with curly braces, and we can instantiate a kind of
the form

Mult -> k

with vertical bars. Using the definition for Maybe given above, we can build the fol-
lowing:

let x : Maybe {Int} |Unr| = Just 1;

In Lingo, all kinds are inferred, so there is no syntax for specifying the kind of a
type. However, kinds are still useful concept in reasoning about types.

8 Top-level Statements
A top-level statement can consist of a let statement. The following are all valid let
statements.

let id {a} |p| x : @a a -p> a = x;

let foo : Maybe {Int} |Unr| = Just 1;

In general, a let statement follows the same syntax as a let-in expression, with the in
and the second <expr> omitted. A top-level statement can also be a datatype declara-
tion, defined in section 6.

9 Programs
A program consists a sequence of top-level statements. In a program, all top-level
statements are automatically mutually recursive, so the order in which they are defined
is irrelevant. The entry point for a program is a let statement with the identifier main
of type (). For example,

let main : () = print 0;

10 Example Program
Below is an example of a valid program:

data List {a} where

Cons : a -> List {a} -> List;

Nil : List;

let map {a b} l : @a @b (a -> b) -> List {a} -> List {b}

12

= case l of

Cons x xs -> Cons (f x) (map {a b} xs);

_ -> Nil;

;

let fin n : Int -> List {Int}

= if n == 0 then Nil else Cons n (fin (n - 1));

let ignore x : @a a -> () = unit;

let main : () = ignore (map print (fin 10));

13

