
GWiz Programming Language Reference Manual

Katherine Duff kpd2128, Ashley Kim atk2141,
Elisa Luo eyl2130, Rebecca Yao rby2107

February 24, 2021

Contents

1 Overview of GWiz 2

2 Lexical Conventions 3
2.1 Tokens . 3
2.2 Comments . 3
2.3 Identifiers . 3
2.4 Separators . 3
2.5 Operators . 4
2.6 Keywords . 4
2.7 Literals . 4

2.7.1 Integer Literals . 4
2.7.2 Double Literals . 5
2.7.3 Character Literals . 5
2.7.4 Boolean Literals . 5
2.7.5 String Literals . 5

2.8 The Null Literal . 5

3 Data Types 6
3.1 Primitives . 6
3.2 Reference Types . 6
3.3 Null Type . 6
3.4 Mutability . 6
3.5 User Defined Types . 6
3.6 Standard Library Types . 7
3.7 Memory . 7

4 Type System 7
4.1 Explicit Typing . 7

1

5 Expressions and Operators 7
5.1 Unary Operators . 7
5.2 Binary Operators . 8
5.3 Operator Precedence . 9

6 Statements 9
6.1 If else Statement . 9
6.2 For Statement . 10
6.3 Return Statement . 10

7 Functions 10
7.1 Function Declarations . 10
7.2 Function Calls . 10
7.3 Variable assignment from functions 11

8 Classes 11

9 Standard Library 11
9.1 Array . 12
9.2 Strings . 12
9.3 print() . 12
9.4 Casting . 13
9.5 GPXFile . 13
9.6 GPXScanner . 13
9.7 Coordinate . 14
9.8 DateTime . 14
9.9 TrackPoint . 14
9.10 Activity . 15
9.11 Math . 16

10 Sample Code 16
10.1 Example 1 . 16
10.2 Example 2 . 16
10.3 Compare Distance . 17
10.4 Change Starting Point . 17

1 Overview of GWiz

GWiz is a class based, imperative, object oriented programming language that
allows for the analysis of GPX files. GPX files are generated by using a watch,
phone, or other device to track a run, walk, swim, hike, or bike ride.

Inspired by Java, GWiz is strongly and statically typed to help differentiate
between compile time and run time errors as well as to optimize language per-
formance. The GWiz programming language dynamically allocates and leaks
memory, unlike languages like C which require explicit allocation and dealloca-
tion of memory.

2

Most notable to GWiz is the Activity class built into Gwiz’s standard library.
Each GPX file can be represented as an Activity type through the structure of
a linked list.

2 Lexical Conventions

2.1 Tokens

After lexical translation, characters are reduced to a sequence of input elements,
those being white space, comments, and tokens. Tokens are divided into iden-
tifiers, separators, operators, GWiz keywords, and literals.

2.2 Comments

GWiz has both single-line and multi-line comments. They are both denoted
using the /* and */ symbols. Comments start with the /* characters and end
with the */ characters, ignoring all characters between the start and ending
characters.

1 /* This is a single line comment. Text in here is ignored */

1 /* This is a multi line comment.

2 Text in here

3 is ignored */

Comments cannot be nested.

2.3 Identifiers

An identifier in GWiz is an unlimited length sequence of ASCII letters [A-Z,
a-z] and decimal digits [0-9]. It must begin with a letter, cannot be a GWiz
keyword, or contain a character other than a letter or digit (e.g. student name
is not a valid identifier)

Convention for identifiers is camel case, where the first letter is lowercase and
every subsequent first character of a word is uppercase. (e.g. studentName)

The regex for identifiers following GWiz convention is [a-z][0-9a-zA-Z]*

2.4 Separators

The following 9 tokens are the separators in GWiz.

1 () { } [] ; , .

• () is used for precedence in expressions and denoting arguments in method
calls

3

• { } is used for method and class scoping

is used for array indices

• ; denotes the end of a line and separates statements

• , is used to separate variables or parameters

• . is used to separate a variable or method from a reference variable

2.5 Operators

The following 14 tokens are the operators in GWiz. These are the arithmetic,
assignment, comparison, and logical operators in GWiz.

1 + - * /

2 =

3 == < > != >= <=

4 ! && ||

2.6 Keywords

The following identifiers are reserved for use as keywords and may not be used
as identifiers.

1 if, else, for, return

2 void, class, this

3 int, double, char, boolean, string

Note, ”true/”false”, and ”null” are not keywords in GWiz, but are boolean
literals and the null literal, respectively.

2.7 Literals

A literal is a representation of a value of a primitive type, the String type, or
the null type.

2.7.1 Integer Literals

A sequence of one or more numerical digits representing an integer. The match-
ing regex is [-]?[0-9]+

Examples of integer literals:

1 0

2 5

3 163

4 -42

4

2.7.2 Double Literals

A sequence of zero or more numerical digits followed by a ’.’, followed by one or
more numerical digits. The matching regex is [-]?[0-9]*’.’[0-9]+

Examples of double literals:

1 1.4

2 .5

3 0.5829

4 -1.5

2.7.3 Character Literals

A single character enclosed by a pair of single quotation marks. The matching
regex is [a-zA-Z]

Examples of character literals:

1 char ch = ’c’;

2 char chCapital = ’C’;

2.7.4 Boolean Literals

Boolean types represent true and false. They are represented as true and false

in GWiz.
Boolean literals:

1 true

2 false

2.7.5 String Literals

A sequence of characters enclosed in double quotes. Escape sequences may be
present between the double quotes.
Examples of string literals:

1 String str = "hello world!";

2 String c = "c";

3 String empty = "";

2.8 The Null Literal

The null type has one value, the null reference, represented by null.

5

3 Data Types

There are two kinds of data values that can be stored in variables, passed
as arguments, returned by methods, and operated on: primitive values and
reference values.

3.1 Primitives

The primitive types are the boolean type and the numeric type. The numeric
types are the integral types int and char, and the floating point type double.

• int: 4 bytes, 2’s complement. From -2147483648 to 2147483647, inclusive

• char: 2 bytes, stores a single ASCII character. From ’\u0000’ to ’\uffff’
inclusive, that is, from 0 to 65535

• double: 8 bytes, IEEE 754 floating point value.

• boolean: 1 byte, 00000001 for true, 00000000 for false. Booleans will
default to false unless otherwise assigned.

3.2 Reference Types

The reference types are class types, type variables, and array types.

3.3 Null Type

The null type is a special type, of the expression null. Using the null reference
is the only possible value of an expression of the null type.

3.4 Mutability

In GWiz, all primitive objects are mutable, including ints, doubles, arrays of
chars, and booleans. Strings are not primitives and are the only immutable
object in GWiz. User defined types and standard library types are mutable, so
modifying them does not overwrite the underlying object.

3.5 User Defined Types

Users can define their own types through classes. Classes are declared using the
standard Java syntax. There is no inheritance.

1 class Person {

2 /* instance variables */

3 String name;

4 int age;

5

6 /*constructor*/

7 Person(String name, int age){

6

8 this.name = name;

9 this.age = age;

10 }

11

12 /*methods*/

13 String getName(){

14 return name;

15 }

16 }

3.6 Standard Library Types

GWiz provides a number of built-in types. This will be expanded upon in
a later section, but are implemented in GWiz as objects and have associated
methods and attributes. Strings in GWiz are immutable and have a plethora of
operations.

3.7 Memory

GWiz dynamically allocates and leaks memory. It does not require explicit
memory allocation or management. Objects are passed by value, not by refer-
ence.

4 Type System

4.1 Explicit Typing

Variable declarations, parameters, and return values must be associated with
an explicit type. Variable type is denoted by a type specifier which precedes
a variable name. Type specifiers include int, char, string, float/double, or a
user-defined type.

5 Expressions and Operators

An expression consists of at least one operand and zero or more operators.
Available operators in GWiz are detailed in the following subsections.

5.1 Unary Operators

Unary operators act on an expression. In GWiz, NEG and NOT are the two
unary operators. NEG is denoted by the symbol - and indicates the negation of
an integer or float. NOT is denoted by the symbol ! and indicates the negation
of a boolean expression.

7

5.2 Binary Operators

Binary operators act on two expressions. Examples of binary operators in GWiz
include: +, -, *, /, =, ==,, !, ¡, ¿, ¡=, ¿=, &&, ——

1. Arithmetic Operators

(a) Addition is performed on two values of the same type. Two strings
can also be concatenated using the addition operator.

1 2 + 3 /* Evaluates to 5 */

2 1.2 + 5.0 /* Evaluates to 6.2 */

3 "hello" + "world" /* Evaluates to "helloworld" */

(b) Subtraction is performed on two values of the same type.

1 10 - 3 /* Evaluates to 7 */

2 9.2 - 5.1 /* Evaluates to 4.1 */

(c) Multiplication is performed on two values of the same type.

1 8 * 6 /* Evaluates to 48 */

2 2.2 * 1.1 /* Evaluates to 2.42 */

(d) Division is performed on two values of the same type.

1 10 / 2 /* Evaluates to 5 */

2 3.0 / 0.5 /* Evaluates to 6.0 */

2. Assignment Operator
The assignment operator, denoted by =, stores a value in a variable. The
variable appears on the left of the = and the value to store appears on the
right.

1 x = 3.0; /* The value 3.0 is stored in the variable x */

3. Relational Operators
Relational operators determine how two operands relate to each other. In
GWiz, relational operators include equal to, not equal to, greater than,
and less than, denoted by ==, !=, ¿, ¡, ¿=, ¡= respectively. An expression
containing two inputs and a relational operator returns true or false.

1 x = 0;

2 y = 1;

3 x > y /* Evaluates to false */

4 x == y /* Evaluates to false */

5 x != y /* Evaluates to true */

8

5.3 Operator Precedence

Operator precedence from lowest to highest precedence:

Operator Meaning Associativity
; Statement end Left
= Assignment Right
. Access Left
‖ OR Left

&& AND Left
= != Equality/Inequality Left

><>=<= Comparison Left
+ - Addition/Subtraction Left
*/ Multiplication/Division Left

type(variable) Casting Left
! NOT Right
- NEGATION Right

6 Statements

In GWiz, a statement is one of the following:

• expression

• return statement

• if statement

• if else statement

• for loop

6.1 If else Statement

An if statement evaluates a condition (an expression) in parentheses to be true,
the program will evaluate the statements demarcated by immediate curly braces.
Otherwise, if the condition evaluates to false, the program will check for an else
statement and execute the block of statements contained in the curly braces
following else.

1 if (condition) {

2 /* some statements */

3 } else {

4 /* some other statements */

5 }

9

6.2 For Statement

For statements are used to iterate through a range of values. The statement
must include an expression that initializes a looping variable, an expression that
constrains that variable to indicate when to stop looping, and an expression that
increments or changes the looping variable. Statements inside the for loop as
many times as the variable is incremented and/or execute with the value of the
looping variable.

1 for (int i=0; i<10; i=i+1) {

2 /* some statements */

3 }

6.3 Return Statement

The return statement indicates the end of a function’s execution and returns
control to the function that called it. The type of the return value must match
the return type explicitly named in the function declaration.

1 int foo() {

2 int x = 2;

3 return x; /* x is of type int */

4 }

7 Functions

7.1 Function Declarations

A function statement takes certain inputs as parameters and returns one value.
The body of a function statement is delimited by curly braces, and the return
type of the function value must be explicitly stated. The type returned must
match with the expected return type. An example of a function declaration
follows:

1 int foo(int x, int y) {

2 return x+y;

3 }

7.2 Function Calls

A function is called by its identifier. Its arguments must be contained in paren-
theses and separated by commas. An example of a function call follows:

1 foo(2,3);

10

7.3 Variable assignment from functions

A function may be called as the right-hand side of a variable assignment. The
variable would be assigned to the return value of the function as follows:

1 int x = foo(2,3);

8 Classes

GWiz supports basic classes without any inheritance. Classes can have instance
variables, and class methods. Class variables are not supported, so each instan-
tiation of a class has unique variables. All variables and methods are public
and can be accessed from other classes. Each class must have a constructor: a
method declared using the name of the class which returns a new instance of
the class. The constructor has user-defined parameters. All classes are mutable.

Syntax for declaring a class with one instance variable of type integer follows:

1 class Test {

2 int t1;

3

4 Test(int t2) {

5 t1 = t2;

6 }

7

8 int add(int t3) {

9 return t1 + t3;

10 }

11 }

Classes are instantiated as follows:

1 Test test1 = Test(3);

Class methods are called as follows:

1 test1.add(2); //returns 5

9 Standard Library

All methods and attributes in the GWiz Standard Library are mutable and
public.

11

9.1 Array

Arrays in GWiz operate similarly to arrays in Java. Users must declare the type
of the list and its length at instantiation. All elements of the array must be of
the same type, and the length of the array cannot change. A new instance of
an array can be defined as follows.

1 int[] list = new int[5]; //array of type int with length 5

Method/operator Behavior
list[n] Returns nth element from the list

list.length Returns the number of elements in the list

Array methods can be called exactly as specified above.

9.2 Strings

Strings are a class implemented to handle text-based data. Strings are im-
mutable, so any operation or method performed on a string will return a refer-
ence to a new String.

A String object is instantiated as follows:

1 String str = "hello";

Method/operator Behavior

equals(String other)
Returns true if each element of the String

has equal ASCII values, false otherwise

str1 + str2
Returns the concatenation of two operand

Strings in a new String reference

The String methods listed above can be called as follows:

1 String str = "gee whiz";

2 str.equals("gee whiz"); // returns true

3 String s = str + " kid"; // "gee whiz kid"

9.3 print()

A call to the method print() sends a String representation of the operand to
output. Primitive types have a defined print function which will be applied to
x. If x is a reference to an object, then the .toString() method will be called if it
is defined. Otherwise, the memory address of the object will be sent to output.

12

9.4 Casting

The user can explicitly cast integers into doubles, doubles into integers, and
primitive types into Strings. The user can cast both literals and expressions.
Expressions in the parentheses will be evaluated first before being cast to String.
Checking for casting will be done at compile time.

1 double(int x) -> double

2 int(double x) -> int

3 String(int x) -> String

4 String(double x) -> String

5 String(char x) -> String

The following classes in the Standard Library are created with the purpose
of simplifying the analysis and application of .gpx data.

9.5 GPXFile

A GPXFile is an abstract representation of file and directory path names. The
original .gpx file cannot be modified. An invalid file path results in a compile
time error.

A GPXFile can be instantiated as follows:

1 GPXFile file = GPXFile(/home/documents/Running/jan3.gpx);

All methods and attributes use dot notation for calling, access mutation.

1 file.filepath //access the filepath attribute

Constructor Parameter and Type Description

filepath ->(String)
A String representing the absolute

file path to the .gpx file

9.6 GPXScanner

A GPXScanner is a simple text scanner that can parse a GPXFile using regular
expressions. GPXScanner will link to an external C library to parse a .gpx file.
The parsed data will be used to create an Activity object. This class has no
parameters.

A GPXScanner can be instantiated as follows:

1 GPXScanner g = GPXScanner();

All methods and attributes use dot notation for calling, access mutation.

1 Activity a = g.readGPX(file); // parses file and returns Activity

13

Method/Attributes Behavior

readGPX(GPXFile file)
Parses the .gpx file associated

with the GPXFile object

9.7 Coordinate

A Coordinate is a representation of a single point on Earth.
A Coordinate can be instantiated as follows:

1 Coordinate c = Coordinate(0, 0);

All methods and attributes use dot notation for calling, access mutation.

1 double long = c.longitude; //returns the longitude of this Coordinate

Constructor Parameter and Type Description
longitude ->(double) Longitude
latitude ->(double) Latitude

Methods/Attributes Behavior

distance(Coordinate other)
Returns the euclidean distance

between the two points

9.8 DateTime

Representation of a single naive date and time. A DateTime can be constructed
with either a UTCDateTime string, or one or more of its components which
DateTime will use to construct a UTCDateTime representation.

A DateTime can be instantiated as follows:

1 DateTime d = DateTime(2020, 02, 24, 10, 3, 7.58);

All methods and attributes use dot notation for calling, access mutation.

1 int k = d.year; //access year attribute

9.9 TrackPoint

Representation of a single GPS waypoint (Coordinate and DateTime).
A TrackPoint can be instantiated as follows:

1 TrackPoint t = TrackPoint(c, d);

14

Constructor Parameter and Type Description
UTCDateTime ->(String) A String representing a UTC Date and Time

year ->(int) A year represented as an int
month ->(int) A month represented as an int

day ->(int) A day represented as an int
hour ->(int) An hour represented as an int
min ->(int) A minute represented as an int

second ->(double) A second represented as an int

All methods and attributes use dot notation for calling, access mutation.

1 double dist = t.distDiff(t1);

Constructor Parameter and Type Description
coor ->(Coordinate) Coordinate

dt ->(DateTime) DateTime

Methods/Attributes Behavior

timeDiff(TrackPoint other)
Returns a double representing the time

difference between the two DateTimes in seconds.

distDiff(TrackPoint other)
Returns a double representing the Euclidean

distance between the two Coordinates
next A reference to the following TrackPoint

9.10 Activity

A singly linked list of TrackPoints representing a cumulative exercise activity.
This class typically will be instantiated through the use of the GPXScanner’s
.readGPX(GPXFile file) method. Otherwise, the user can construct an Activity
as defined.

An Activity can be instantiated as follows:

1 Activity a = Activity(t); //New Activity with TrackPoint t as the head

All methods and attributes use dot notation for calling, access mutation.

1 double dist = a.getRouteTime();

Constructor Parameter and Type Description
head ->(TrackPoint) The first TrackPoint in the linked list

15

Methods/Attributes Behavior

getRouteTime()
Returns a double representing the total

time of the Activity in seconds

getRouteDistance()
Returns a double representing the total
point-to-point distance of the Activity

getEuclidDistance()
Returns a double representing the Euclidean

distance from the first to last point.
last A reference to the last TrackPoint in the Activity list

9.11 Math

Math methods can be called as follows:

Methods/Attributes Behavior

sqrt(double d)
Returns a double representing

the square root of the parameter

exp(double base, int power)
Returns a double representing the first

parameter raised to the second power. get
square(int d);

square(double d);
Returns a double representing the square

of the input parameter.

10 Sample Code

10.1 Example 1

1 boolean greaterThanTwo (int a) {

2 return (a > 2);

3 }

10.2 Example 2

1 int gcd (int a, int b) {

2 int remainder = 0;

3 while (a % b > 0) {

4 remainder = a % b;

5 a = b;

6 b = remainder;

7 }

8 return b;

9 }

16

10.3 Compare Distance

This program takes two .gpx files and prints out the longer of the two distances
travelled.

1 void main() {

2 // Create two GPXFile objects with .gpx files taken from a run

3 GPXFile jan30 = GPXFile(/home/documents/user2_01_30_2021.gpx);

4 GPXFile jan31 = GPXFile(/home/documents/user2_01_31_2021.gpx);

5

6 // Create GPXScanner object to parse the two GPXFiles

7 GPXScanner reader = GPXScanner();

8

9 // Parse the GPXFile using the GPXScanners method read_gpx()

10 Activity satRun = reader.readGPX(jan30);

11 Activity sunRun = reader.readGPX(jan31);

12

13 // Use the Activity objects distance method to get distances for each

14 double satDist = satRun.getRouteDistance();

15 double sunDist = sunRun.getRouteDistance();

16

17 // Compare total distances and print distance of the longer activity

18 if (satDist > sunDist) {

19 print(satDist);

20 } else {

21 print(sunDist);

22 }

23 }

10.4 Change Starting Point

This program parses a .gpx file, then changes the starting latitude, longitude,
date, time and prints out the new total distance.

1 void main() {

2 // Create a GPXFile object

3 GPXFile file1 = GPXFile(/home/documents/user3_01_21_2021.gpx);

4

5 // Create a GPXScanner object to parse the GPXFile

6 GPXScanner reader = GPXScanner();

7

8 // Parse the GPXFile using GPXScanners method read_gpx();

9 Activity goldenRun = reader.readGPX(file1);

10

11 // Create new TrackPoint object with a coordinate and DateTime

12 Coordinate c = Coordinate(0, 0);

13 DateTime dt = DateTime("2021-01-21T23:30:42Z");

14 TrackPoint tp = TrackPoint(c, dt);

15

17

16 // Modify the head of the Activity to be the above TrackPoint

17 goldenRun.head = tp;

18

19 print(goldenRun.getRouteDistance());

20 }

18

	Overview of GWiz
	Lexical Conventions
	Tokens
	Comments
	Identifiers
	Separators
	Operators
	Keywords
	Literals
	Integer Literals
	Double Literals
	Character Literals
	Boolean Literals
	String Literals

	The Null Literal

	Data Types
	Primitives
	Reference Types
	Null Type
	Mutability
	User Defined Types
	Standard Library Types
	Memory

	Type System
	Explicit Typing

	Expressions and Operators
	Unary Operators
	Binary Operators
	Operator Precedence

	Statements
	If else Statement
	For Statement
	Return Statement

	Functions
	Function Declarations
	Function Calls
	Variable assignment from functions

	Classes
	Standard Library
	Array
	Strings
	print()
	Casting
	GPXFile
	GPXScanner
	Coordinate
	DateTime
	TrackPoint
	Activity
	Math

	Sample Code
	Example 1
	Example 2
	Compare Distance
	Change Starting Point

