
CGC Reference Manual

Lieyang Chen, Tianze Huang, Zhuoxuan Li, Fanhao Zeng
{lc3548, th2887, zl2890, fz2320}@columbia.edu

February 23, 2021

Contents

1 Overview 3

2 Lexical Conventions 3
2.1 Identifiers . 3
2.2 Operators . 3
2.3 Keywords . 4
2.4 Literals . 4
2.5 Separators . 4
2.6 Comments . 5

3 Data Types 5
3.1 Primitive Data Types . 5
3.2 Object Data Types . 6
3.3 User-Defined Data Types . 7
3.4 Memory Model . 8
3.5 Declarable Storage Class . 8

4 Garbage Collection 9

5 Statements and Expressions 10
5.1 Statements . 10

5.1.1 If-Else Statements . 11
5.1.2 For Statements . 11

5.2 Expressions and Operators . 11
5.2.1 Unary Operators . 11
5.2.2 Binary Operators . 12

5.3 Operator Precedence . 13
5.4 Functions . 13
5.5 Function Calls . 14

5.5.1 Variable Assignment from Functions 14

1

6 Standard Library 14
6.1 Array . 14
6.2 printf() . 15

7 Examples 15

2

1 Overview

The CGC programming language is a language built upon C language, but
comes with many handy syntax and features, and most importantly added
garbage collection feature. In addition to the three primitive data types (int,
char, float) and pointer similar to C, we provides a new built-in object type
Array that could be used to wrap all primitive data types.

• Garbage collection

The CGC language provides a garbage collector which will find unused
objects on the heap and deletes them to free up memory without the user
knowing it.

• Handy syntax/features

The CGC language will provide built-in methods for Array type, such
as len, append, pop. The CGC also supports control flows like range For

Loops

2 Lexical Conventions

2.1 Identifiers

• Valid identifiers maybe include ASCII letters, decimal digits and under-
score.

• An valid identifier must begin with a letter and can not be a CGC keyword.

Examples:

// valid identifier

int studentId

void get_bar2() {}

// invalid identifier

int static = 3

void 2getId() {}

2.2 Operators

• int: +, -, *, /, ==, <, >, <=, >=, =, &&, ||, !

• char: +, -, *, /, ==, <, >, <=, >=, =, &&, ||, !

• float: +, -, *, /, <, >, <=, >=, =, ==

3

• Array: =, ==, []

2.3 Keywords

• for, if, else, elseif, return, int, float, char, Array, void,

const, class, static

• Keywords are reserved identifiers that can not be used as variable names.

2.4 Literals

Literals represents strings or one of CGC’s primitive types: int, float, char.

• int: any sequence of integers between 0 and 9

• float: a number in decimal form, a fraction, and an exponent

• char: a single character within single quotes

• string: a sequence of characters enclosed in single or double quotation
marks

Examples:

// int literals

-5

0

130

// float literals

2.5

1e23

// char literals

’a’

’3’

// string literals

"Hi there!"

"When is iphone 13 coming out?"

2.5 Separators

• Parentheses are used to override the default precedence of expression eval-
uation.

• Semicolons are used to indicate the end of an expression.

4

Examples:

int x = (a + b) * c; // Using () to override default operator precedence

x = 3; y = x + 1; // Using ; to indicate the end of an expression

/*

Technically you can write all code in one line.

*/

2.6 Comments

• Single-line comments use double backslashes (//). Multi-line comments
are denoted with a /* */ notation.

Examples:

int x = 3 // This is a single-line comment

/*

And this is a multi-line comment

*/

3 Data Types

CGC is a statically typed language, so all of the variables must be declared first
before they can be used and all of them have a data type at compile time. CGC
is also a strongly typed language, it does not support variable type coercion and
implicit casts. These features enable CGC detects program errors easily in the
compile time.

There are two kinds of data types in CGC language, primitive type and object
type. The primitive data types of CGC are int, char, float. Besides them,
CGC provides a new built-in object type Array that could be used to wrap
all primitive data types as well as itself. Array in CGC is quite similar to the
vector in C++.

3.1 Primitive Data Types

Primitive data types in CGC are predefined and reserved as keywords. Specifi-
cally, there are 3 primitive types:

int: the int data type is a 32-bit signed two’s complement integer. int is able
to represents integer ranges from -2147483648 to 2147483647. int variables are
considered as signed by default, unsigned is not a keyword in CGC.int is the

5

only one type in CGC used to stores integer, CGC does not support keywords
like short or long to specify different variable length.

float: The float data type is a 64-bit IEEE 754 floating point.

char: The char data type is a single unsigned 8-bit ASCII character.
The operators of int, float and char are listed as below, detailed specification
of these operators are listed at part 5.
– The numerical comparison operators <, >, <=, and >=
– The numerical equality operators ==
– The multiplicative operators * and /
– The additive operators + and -
– The unary minus operator –
– The unary logical negation operator !
– The logical AND operator &&
– The logical OR operator ||
– The assignment operator =
– The comma operator ;

3.2 Object Data Types

CGC provides a new built-in object type Array that could be used to wrap
all primitive data types as well as itself (e.g., c below). The Array object is
allocated on heap, so it is always created during run time. The garbage collection
mechanism described in Section 4 will be used for memory management of Array
object. The Array object has three built-in member variables: size, ref count

and addr. The ref count variable will be briefly discussed in this section and
more details will be covered in Section 4. The size variable refer to the array
size. The addr variable is the address where the actual array begins on heap.
In CGC, the Array object manipulated by user is actually an address to a block
of memory on heap which contains the above three members. Such a block
contains another address(the addr member) which references the actual array.
The actual array is allocated on heap as well. There can be two cases when
initializing an Array variable:

• When assigning an array of literal(e.g., "1234" in example below) to an
Array variable, a block of memory whose size equals to the total size of
size, ref count and addr will be allocated on the heap. The address
of this memory block will be assigned to the Array variable. The size

member will be set to the size of literal array and ref count will be set
to 1. Then another block of memory with size equal to the size of literal
array will be allocated on heap and the address of this memory block will
be assigned to addr. Finally, the elements of literal array will be copied
to this memory block.

6

• When assigning another Array variable to a new Array variable, the new
Array variable will simply be set to the address that references the same
memory location as the assigning variable.

The Array is type mutable. For example, the statement b[1] = ‘3’ is legal in
CGC because the Array object is manipulating its own array instead of some
array on the text section. When assigning a literal array to a already existing
Array variable, the size of the existing Array object will be modified if the size
of the literal array is different from its member variable size. Namely, the
memory allocated on heap will be re-allocated if the sizes are different. The
member variable size and addr will be modified accordingly, but the member
variable ref will remain unchanged.

Array examples:

Array<char> a = "1234"; // Case1: Initialize array of characters,

a.size = 4, a.ref = 1

Array<char> b = a; // Case2: Assign address of memory location

referenced by a to b, b.size = 4, b.ref=2

b[1] = ’3’; // Array indexing and mutability

Array<Array<int>> c = {{1,2},{1,2,3}}; //Array of integer arrays

CGC also provides a series of built-in methods for Array object data type. De-
tails of these methods can be found in part 6 when describing CGC’s standard
library.
– The Array length method len()

– The Array element append method append()

– The Array element pop method pop()

– Insert an element into specific position insert()

– Remove an element from specific position remove()

3.3 User-Defined Data Types

In CGC, users can define their own data types by using the keyword class.
The class keyword is used to define new data types and describe how they are
implemented. In the body of a class, users are able to define its members (vari-
ables, methods). The CGC class does not support complex Object-Oriented
programming features such as inheritance.

Similar to Array, class use the same built-in parameter called ref count to
record the number of references that an instance have. Memory on heap will be
released when the ref count of an instance is 0.

//class

class foo {

void get_bar() {

return bar;

}

7

int bar;

}

int main{

foo foo_example;

foo_example.bar = 10;

int result = foo_example.get_bar();

printf("%d", result);// result has a value of 10 now

printf("%d", foo_example.ref_count);// prints 1

}

//foo_example.ref_count = 0 here, corresponding memory space

released.

3.4 Memory Model

In CGC, all function calls are by defalut ”pass by value”.In CGC language, user
can using class and Array to get a space in memory. CGC also provides a
reference-counting garbage collector to take care of the memory allocated on
the heap. As a result, explicit manually freeing memory are not supported in
CGC.

3.5 Declarable Storage Class

The CGC language maintains a keyword static, which is a declarable storage
class. A variable without a storage class declaration in a block, will be treated
as a local variable of that block, and it will be discarded once the end of the
block has been executed.In contrast, a static local variable is also local in a
block, but it retains its value independently and will not be discarded on exit
of the block.

int Example1()

{

int a = 0;

a = a + 1;

return a;

//default local variable’s scope only within the block

}

int Example2()

{

static int a = 0;

a = a + 1;

return a;

//static local variable persists until end of the program

}

int main()

{

8

for(int i = 0; i < 3; i = i + 1)

{

printf("Round %d\n", i + 1);

printf("auto variable = %d\n", Example1());

printf("static variable = %d\n", Example2());

}

//By default, a local variable initialized every iteration

//static variable contains previous value and increment

return 0;

}

4 Garbage Collection

There are two main reasons for which dynamically memory allocation is useful
in C language:

• When you want to share a variable across different function scopes, so that
all functions are referring to the same memory region of that variable.

• When you want to pass a huge object back to caller or forward it to callee
by its reference(namely pointer) instead of copying value.

Based on these observations, the implementation of dynamically allocated mem-
ory can help speed up program by reducing the overhead which is caused during
function call. However, the downside of it is that it is always annoying for the
programmer to manually free these allocated memory. Therefore, we introduce
the garbage collector in CGC.

Array and class objects in CGC almost support all dynamically memory allo-
cation implementations. Since these objects are allocated on heap, the garbage
collection in CGC is especially designed for these built-in data types. The main
mechanism behind GC(garbage collection) is counting the number of references
to the memory region on the heap. To achieve this implementation, we make
Array and class objects have a built-in parameter called ref count to trace
the number of references they currently have.
The ref count member will be incremented by 1 when:

• The object is passed to other function as an argument.

• The object is returned to the calling function as an argument and the
returned argument is assigned to a variable in the calling function.

• The object is assigned to a variable.

The ref member will be decremented by 1 when:

9

• The variable which references the memory on heap leaves its current scope.

When the last variable which references the memory on heap leaves its scope,
the The ref count member becomes 0 and the heap memory will be released.
For the sake of simplicity, an Array or class object is passed by reference in-
stead of copying its memory.

Examples:

fun(Array<int>[] array) //pass by reference

{

printf("%d", array.ref_count);

return array;

}

int main()

{

Array<int> array;

printf("%d", array.ref_count);// prints 1

Array<int> array2 = fun(array);// prints 2

printf("%d", array.ref_count);// prints 2

fun(array);// prints 3

printf("%d", array.ref_count);// prints 2

{

Array<int> array2 = array;

printf("%d", array.ref_count);// prints 3

}

printf("%d", array.ref_count);// prints 2

Array<int> array3 = array;

printf("%d", array3.ref_count);// prints 3

}// array.ref=0, memory referenced by array is released

5 Statements and Expressions

5.1 Statements

A CGC program is made up of a list of statements. A statement is one of the
following:

Expression

Class declaration

Function definition

Return statement

If statement

If-else statement

For loop

10

Blocks of statements can be enclosed using curly braces.

5.1.1 If-Else Statements

If statements consist of a condition (an expression) and a series of statements.
The series of state- ments is evaluated if the condition evaluates to True. If the
condition evaluates to False, either the program continues or an optional else
clause is executed.

Examples:

if condition{

//series of statements

}

else{

//other series of statements

}

5.1.2 For Statements

There are two ways to write a For Loop in CGC. The first kind of For Loop
iterate over an Array. It consists of a looping variable, an instance of a Array.
The series of statements is evaluated for each item in the Array in order, where
the looping variable is assigned to the first element of the list for the first
iteration, the second for the second iteration, etc. to be looped over, and a
series of statements.

Array<int> x = {1,2,3}

//second format

for (int i = 0; i < x.len(); i = i + 1) {

x[i] = x[i] + 1;

}

5.2 Expressions and Operators

Expressions are part of statements that are evaluated into expressions and vari-
ables using operators. These can be arithmetic expressions or a function call.

5.2.1 Unary Operators

CGC has two types of operators: unary operators and binary operators.
In CGC, the unary operators are NEG and NOT, i.e ”-” and ”!”.

int x = -1 // represents the negative number 1

11

NOT represents negation of a boolean expression. It can also be applied to
integers and floats, where any non-zero number is considered to be True, and
False otherwise.

int a = 1;

int b = 1;

int c = 0;

if (a == b){

//series of statements that will be evaluated

}

if (!(a == c)){

//series of statements that will be evaluated

}

if (!a) {

//series of statements that will not be evaluated

}

5.2.2 Binary Operators

The following list describes the binary operators in CGC. All of the operators
act on two expressions. Unless otherwise stated, they act only on primitives.

1. Assignment Operator
The assignment operator stores values into variables. This is done with
the ”=” symbol. The value of the right side is stored in the variable on
the left side.

int x = 1; // x = 1

int y = 0; // y = 0

y = x; // y = 1

2. Arithmetic Operator

a. Addition is performed on two values of the same type. Addition
between different types is not permitted.

int x = 1;

int y = 2;

int z = x + y; // z = 3;

float f = 1.2 + 2.3; // f = 2.5

b. Subtraction is performed on two values of the same type. Subtraction
between different types is not permitted.

int x = 1;

int y = 2;

int z = x - y; // z = -1;

float f = 2.5 - 2.3; // f = 0.2

12

c. Multiplication is performed on two values of the same type. Multi-
plication between different types is not permitted.

int x = 2;

int y = 3;

int z = x * y; // z = 6;

float f = 2.0 * 2.5; // f = 5.0

d. Division is performed on two values of the same type. Division be-
tween different types is not permitted.

int x = 4;

int y = 3;

int z = y / x; // z = 1;

float f = 5.0 / 2.0; // f = 2.5

3. Relational Operators
Relational operators determine how the operands relate to another. There
are two values as inputs and outputs either true or false. The operators
includes: == >,<,>=, <=,&&, ‖

int x = 1;

int y = 2;

int z = 3;

if (x > y){

//Evaluate to be false

}

if (x < y){

//Evaluate to be true

}

if (x == y){

//Evaluate to be false

}

if (x == y || x < z){

//Evaluate to be true

}

5.3 Operator Precedence

The following is an operator precedence table for all the operators, from lowest
to highest precedence.

5.4 Functions

A function is a type of statement. It takes in a list of arguments and return one
value. The body of a function is delimited by curly braces. The return type is

13

Operator Meaning Associativity
; Sequencing Left
= Assignment Right
‖ Or Left

&& And Left
== Equality Left

>,<,>=, <= Comparison Left
+ - Addition/ Subtraction Left
* / Multiplication/ Division Left
! Not Right

specified before to the function name. An example of function declaration is as
follows:

int add_one(int x)

{

int y = x + 1;

return y;

}

5.5 Function Calls

Functions are called using their identifier and arguments inside parentheses. For
example:

int x = 1;

add_one(x);

5.5.1 Variable Assignment from Functions

A function may be called as the right value of a variable assignment. The
variable would be assigned to the return value of the function.

int x = 1;

int z = add_one(x); // z would be 2

6 Standard Library

6.1 Array

CGC’s built-in Array data type associates with many library methods:

• Get the size of Array object x: x.len().

14

• Append a new integer y to the end of Array<int> object x: x.append(y).

• Pop the the last element of Array<int> object x and return it: int y =
x.pop().

• Get the element of Array<int> object x at a given position 0: int y =
x[0].

• Remove the element of Array<int> object x at a given position 0: x.remove(0).

• Insert an integer y to Array<int> object x at a given position 0: x.insert(0,
y).

6.2 printf()

Examples:

int main()

{

printf("%d", 1);// prints 1

printf("%c", ’c’);// prints c

printf("%s", "string");// prints string

}

7 Examples

// An example of garbage collection of class object.

class example1

{

int examp_method()

{

return value;

}

int value;

}

int main()

{

example1 examp_a;

example1 examp_b;

example1 tmp;

examp_a.value;

printf("%d", examp_a.ref_count); // prints 1

printf("%d", examp_b.ref_count); // prints 1

a = tmp;

// prints 2, now the space pointed by previous examp_a is released.

15

printf("%d", tmp.ref_count);

} // space of tmp and examp_b are also released now.

// A simple binary search algorithm in CGC

class example2

{

int binarySearch(int target)

{

if (array[0] == target) return 0;

// binary search

for (int left, right = len[array] - 1; left < right;)

{

int mid = left + (right - left) / 2;

if (array[mid] == target) return mid;

else if (array[mid] < target) left = mid + 1;

else right = mid;

}

return -1;

}

void setArray(Array<int> a)

{

array = a;

}

Array<int> array;

};

16

