
AllHandsOnDeck
Language Reference Manual

Caitlyn Chen - Language Guru
Tiffeny Chen - System Architect

Jang Hun Choi - System Architect
Mara Dimofte - Manager

Christi Kim - Tester
{ckc2143, tc2963, jc5112, md3713, cwk2109}@columbia.edu

Contents

1 Introduction 3

2 Lexical Conventions 4
2.1 Tokens . 4
2.2 Comments . 4
2.3 Identifiers . 4
2.4 Keywords . 5
2.5 Data Types . 5
2.6 Operators . 5

3 Grammar 6
3.1 Syntax Notation . 6
3.2 Types, Params, and Args . 6

3.2.1 Types . 6
3.2.2 Params . 6
3.2.3 Args . 7

3.3 Program Structure . 7
3.4 Declarations . 7

3.4.1 Function Declarations . 7
3.4.2 Class Declarations . 9

3.5 Statements . 11
3.5.1 Expression statement . 11
3.5.2 Pass statement . 11
3.5.3 Conditional statement . 11
3.5.4 While statement . 11
3.5.5 For statement . 12
3.5.6 Return statement . 12

3.6 Expressions . 12
3.6.1 Identifiers . 13
3.6.2 None . 13
3.6.3 Literals . 13
3.6.4 Negation . 13
3.6.5 Operations . 14
3.6.6 Comparison . 14
3.6.7 Assignment . 14
3.6.8 Class Call . 14
3.6.9 Function Call . 14
3.6.10 Comprehension . 15

1

3.6.11 Range . 15
3.6.12 Indexing . 15

3.7 Context-Free Grammar . 16

4 Standard Library 19
4.1 Built-in classes . 19
4.2 Built-in functions . 19

5 Sample Program 21

2

Chapter 1

Introduction

Card games come in many different forms: games based off the standard 52-card deck such as War or Black-
jack, and games relying on unique decks such as Apples to Apples, UNO, SET, etc. We drew inspiration
from past proposals, which shared similar motivations of building out languages aimed to support card game
development. We found that there was a shortcoming in how past languages focused on supporting standard
52-card deck based games. And though existing card game languages might be able to represent standard
52-card games reasonably, they fail to generalize to the full breadth of card games out there. Not only
does our language allow the user to create any turn-based card game, but it also supports general-purpose
programming. The goal of our object-oriented, Python, Ruby, and C++-inspired language is to enable pro-
grammers to easily code the gameplay and functionality of a turn-based card game with an emphasis on code
readability and modularity.

3

Chapter 2

Lexical Conventions

2.1 Tokens
There are six kinds of tokens: identifiers, keywords, comments, strings, expression operators, and other
separators. AllHandsOnDeck employs Python-like indentation and uses whitespaces as separators.

2.2 Comments
For comments, the character # is inserted at the beginning of the line and is terminated by the newline
character \n. The compiler ignores all content between a # and a new line.

1 # This is a comment
2

3 hand = ['a', 'b', 'c'] # this is another comment
4 deck = Stack('d', 'e', 'f', 'g')
5

6 hand do PUSH_FRONT(deck do POP_BOTTOM(3)) # deck.bottom(3) gives ['g', 'f', 'e']
7

8 hand = ['e', 'f', 'g', 'a', 'b', 'c']
9 deck = Stack('d')

2.3 Identifiers
Identifiers in AllHandsOnDeck are sequences of letters and digits, and underscores ’_’, where the first char-
acter must be a letter. Uppercase and lowercase letters are considered different. There are three kinds of
identifiers: ACTION, Class, and id.

ACTION identifiers denote state mutating functions in the AllHandsOnDeck language and may consist of
uppercase letters, digits, and underscores only.

ACTION:
(’A’-’Z’) (’A’-’Z’ | ’0’-’9’ | ’_’)*

4

Identifiers for variables and helper functions (non-state mutating functions) are denoted by id and may con-
sist of lowercase letters, digits, and underscores only.

id:
(’a’-’z’) (’a’-’z’ | ’0’-’9’ | ’_’)*

Class identifiers denote classes, must start with an uppercase letter, and may consist of uppercase and low-
ercase letters and digits only.

Class:
(’A’-’Z’) (’a’-’z’ | ’0’-’9’ | ’A’-’Z’)*

2.4 Keywords
The following are reserved keywords in AllHandsOnDeck:

int, float, bool, string, True, False, None, const, not, let, be, with, when, do, if,
elif, else, for, in, range, while, pass, times, return, main

2.5 Data Types
Primitive Data Type Description

int integers are positive or negative whole numbers without decimal points
float floats represent real numbers written with a decimal point
string strings are sequences of characters that handle textual data

f-string formatted string literals using the syntax f’{expression}’
boolean boolean variables are defined by the True and False keywords

Object Types Description
Object Any non-primitive that has arbitrary mutable and immutable attributes
Actor Object that can do ACTIONs that mutate the attributes of more than just the object itself
Range A set of values with a beginning and an end

Collection A virtual class representing an iterable container called Collection
Series Iterable Collection with a front (leftmost element) and a back (rightmost element)
Stack Iterable Collection with a top and a bottom

2.6 Operators
Operator Description

+,-,*,/,%,**,// arithmetic operators
==, <, >, <=, >= comparison operators

|, &, ^, ˜ bitwise operators
and, or, not logical operators

is, is not identity operators
in, not in membership operators

5

Chapter 3

Grammar

3.1 Syntax Notation
In the syntax notation used in this manual, syntactic categories are indicated by typewriter font, characters
are indicated as the character itself in quotation marks, and the NEWLINE, INDENT, OUTDENT, and EOF tokens
are capitalized. The context free grammar is written in regex for the purpose of clarity, with the standard use
of |Pipe, ?Question Mark, *Asterisk, +Plus, -Hyphen, and ()Parentheses.

3.2 Types, Params, and Args
3.2.1 Types
AllHandsOnDeck supports two fundamental types: primitive types and classes.

type:
prim_type | Class | template_Class

Primitives include integers, floating-point numbers, booleans, strings, and formatted strings.

prim_type:
int | float | bool | string | fstring

Classes can be templated for a specific type.

template_Class:
Class ’<’ type ’>’

3.2.2 Params
Params_list consists of parameters and are used in class constructors and function definitions.

params_list:
param (’,’ param)*

Params consist of variable and function identifiers and can have a specified type enforced.

6

param:
type? id

3.2.3 Args
Args_list consists of arguments and is used in specifying instances of classes and function calls.

args_list:
arg (’,’ arg)*

Args consist of expressions and programmers can add on the name of the parameter they’re providing an
argument for.

arg:
(id ’=’)? expr

3.3 Program Structure
Program is the top-level node in the syntax tree. Since we parse bottom-up, all parsing must end here.

program:
main_decl (action_decl | helper_decl | class_decl)* EOF

A program is made up of a main function, and any number of classes, ACTION functions, and helper func-
tions. All programs written in AllHandsOnDeck must contain a main function.

3.4 Declarations
There are four different types of declarations that can be made: the main function, ACTION functions, helper
functions, and classes.

3.4.1 Function Declarations
There are three types of functions: the main function, which runs the gameplay of the program, ACTIONs,
which are functions that mutate the gamestate, and helper functions, which are functions that do not mutate
the gamestate and always have a return value.

The main function takes the form of the keyword main and : followed by stmt_block. A stmt_block is
an indented block of statements where each INDENT token is paired with an OUTDENT token.

main_decl:
main ’:’ stmt_block

stmt_block:
NEWLINE INDENT stmt+ OUTDENT

The main function is intended to be a high-level, readable representation of what the gameplay entails for
any game programmed using AllHandsOnDeck. Programmers of our language are required to wrap all state
changes in an ACTION, which means that main has to call those ACTIONs in the statement block instead of

7

defining them.

Sample main function:

1 main:
2 do INIT
3 for 10 times:
4 do ROUND_INIT
5 # do rest of game

ACTIONs are declared with the when...do ACTION structure and : followed by stmt_block. ACTION
function declarations can specify whether the ACTION is tied to a specific class of an object by indicating
the type and id of the object that the ACTION is tied to in a when type id do ACTION structure. Program-
mers can also specify any params the ACTION should take in, and have the choice of enforcing a specific type.

action_decl:
when (type id)? do ACTION (’(’ params_list ’)’)? ’:’ stmt_block

In the case of a general ACTION that is tied to the entire game and not to a specific entity, then the function
is defined as when do ACTION, without a specified entity. For example, any initialization of the game setup
may be done in such a function like INIT. See below for an example.

1 when do INIT:
2 players = [Player() for 2 times]
3 deck = Deck(
4 Card(rank, suit, faceup = False)
5 for rank in ['A'] + 2..10 + ['J','Q','K']
6 for suit in 'CDHS'
7).shuffled()
8

9 when do ROUND_INIT:
10 for player in players:
11 deck do PUSH_TOP(player.hand do CLEAR)
12

13 deck do SHUFFLE
14

15 while not deck.empty():
16 players[0].hand do PUSH_BACK(deck do POP_TOP)
17 players[1].hand do PUSH_BACK(deck do POP_TOP)

When an ACTION is tied to a specific Actor or Object, then the function signature should specify the specific
class of the object it is attached to. In the following example, the function BET describes the outcome of any
Player performing the BET action.

1 when Player player do BET(int amount):
2 player.chips -= amount
3 player.bet += amount
4 betting_pot += amount

8

Helper functions are declared with the id of the function and : followed by stmt_block. Helper functions
can take in params, which may or may not have an enforced type.

helper_decl:
id ’(’ params_list? ’)’ ’:’ (expr | stmt_block)

The following helper function match(Card card1, Card card2, Card card3) determines if a group
of three cards is a valid set according to the rules of SET.

1 # having param type be optional supports methods where params can have different types
2 # the following helper function is able to allow for both string type and int type attributes
3

4 match_attribute(attribute1, attribute2, attribute3):
5 return (attribute1 == attribute2 == attribute3) \
6 or ((attribute1 != attribute2) and (attribute2 != attribute3) and (attribute1 != attribute3))
7

8 match(Card card1, Card card2, Card card3):
9 return match_attribute(card1.number, card2.number, card3.number) \

10 and match_attribute(card1.shape, card2.shape, card3.shape) \
11 and match_attribute(card1.shading, card2.shading, card3.shading) \
12 and match_attribute(card1.color, card2.color, card3.color)

3.4.2 Class Declarations
Class declarations follow the let Class be type... structure, where Class is the new class being
created and type is the super class the new class is extending. AllHandsOnDeck includes certain prede-
fined base classes such as Object, Actor, Stack, and Series. Programmers are able to extend subclasses from
those classes, with or without parameters, by indicating the list of parameters for the new Class and by
specifying the arguments for a specific instance of the super Class. To extend the super class, the with :
class_block structure is used to specify the attributes and helper functions for the new class .

A class_block is an indented block following the same indentation pattern as stmt_block and consists of
attributes and helper function declarations. Helper functions can be declared in one-liners or multi-liners, as
previously illustrated, and attributes are declared with an id and : followed by an expression or stmt_block.
Programmers have the option of specifying the type of the attribute, along with whether or not the attribute’s
value should be immutable by using the const keyword.

class_decl:
| let Class be type (with ’:’ class_block)?
| let Class ’(’ params_list? ’)’ be type ’(’ args_list? ’)’ (with ’:’ class_block)?

class_block:
NEWLINE INDENT (attr_decl | helper_decl)+ OUTDENT

attr_decl:
const? type? id ’:’ (expr | stmt_block)

The following examples illustrate some different use cases and what is and isn’t possible for class declara-
tions using AllHandsOnDeck’s predefined base classes.

9

An Object entity can be defined as follows:

1 let Square(side) be Object with:
2 side: side
3 area(): side * side

Classes may only contain attributes and non-state mutating functions, and so cannot have attribute-changing
functions, which must be wrapped within ACTIONs. Therefore, the following would be invalid:

1 let Square(side) be Object with:
2 side: side
3 area(): side * side
4 modify_side(new_side):
5 side = new_side

In order to modify an attribute, the programmer must define an ACTION function outside of the class. In our
above example, this can be done as follows:

1 when Square square do MODIFY_SIDE(new_side):
2 square.side = new_side

An Actor entity can be defined as follows:

1 let Scissor be Actor with:
2 int uses: 0
3

4 when Scissor scissor do CUT(target: Square):
5 target do MODIFY_SIDE(target.side / 2)
6 scissor.uses += 1

A Stack entity can be defined as follows:

1 let Deck be Stack<Card>

A Series entity can be defined as follows:

1 let Hand(Player owner) be Series<Card> with:
2 owner: owner
3 uno(): size() == 1
4 winner(): empty()

An object can be instantiated as follows:

10

1 empty_deck = Deck()
2 deck = Deck(
3 Card(1),
4 Card(2),
5 Card(3)
6)

3.5 Statements
Statements, unless noted otherwise, are executed in sequence.

stmt:
expr NEWLINE | pass NEWLINE | if_stmt | for_stmt | while_stmt | return_stmt

3.5.1 Expression statement
Most statements are expression statements, usually assignments or function calls, and take the form of an
expression followed by a NEWLINE token.

expr NEWLINE

3.5.2 Pass statement
In AllHandsOnDeck, the pass statement is a null statement. It is different from a comment in that while the
interpreter ignores comments entirely, pass is not ignored.

pass NEWLINE

3.5.3 Conditional statement
The code within an if...elif...else block will be executed if the result of the test expression in the if
statement evaluates to True. If the test expression is False, the stmt_block will not be executed.
AllHandsOnDeck interprets non-zero values as True, and 0 and None as False.

if_stmt:
if expr ’:’ stmt_block elif_stmt | if expr ’:’ stmt_block else_block?

elif_stmt:
elif expr ’:’ stmt_block elif_stmt | elif expr ’:’ stmt_block else_block?

else_block:
else ’:’ stmt_block

3.5.4 While statement
The code within a while block will be executed repeatedly as long as the evaluation of the test expression
in the while statement evaluates to True.

11

while_stmt:
while expr ’:’ stmt_block else_block?

3.5.5 For statement
A for loop is used to iterate over a sequence (like a Collection, a Range, or a string). For loops can be
used to execute a set of statements, once for each item in a given sequence.

for_stmt:
| for id in expr ’:’ stmt_block
| for expr times ’:’ stmt_block

1 for card in deck:
2 print(f'({card.type}, {card.color})')

For loops using the times keyword:

1 for 3 times:
2 do INIT

For loops can be nested:

1 deck = Deck()
2 for type in [0] + 2 * (1..9 + ['Skip', 'Reverse', 'Draw 2']):
3 for color in 'RYGB':
4 deck do PUSH_BOTTOM(Card(type, color, faceup = False))

3.5.6 Return statement
ACTIONs and helper functions return to their callers by means of the return statement, which either returns
no value or returns the value of the specified expression to the caller of the function.

return_stmt:
return expr? NEWLINE

3.6 Expressions
Expressions are sequences of operands and operators and are meant to be evaluated.

expr:
| id | None | neg_expr | iliteral | fliteral | sliteral | bliteral | Series_literal
| binary_op | comparison | assignment | augassign | call_class | call_helper | call_action
| dotted_range | comprehension | index | slice

12

3.6.1 Identifiers
Identifiers denote names of variables, functions, and classes in AllHandsOnDeck. Refer to section 2.3 of
Chapter 2 for more details.

3.6.2 None
The None keyword is used to define null objects and variables.

3.6.3 Literals
There are five kinds of literals in AllHandsOnDeck: integer literals, floating-point literals, string literals,
boolean literals, and Series literals.

Integer and floating-point literals are immutable.

iliteral:
(’0’-’9’)*

fliteral:
(’0’-’9’)* ’.’ (’0’-’9’)* ((’e’ | ’E’)(’+’ | ’-’)?(’0’-’9’)*)?

String literals are sequences of characters surrounded by single quotes or double quotes.

sliteral:
(’"’ _* ’"’) | (”’ _* ”’)

A boolean literal can have either the True or False value.

bliteral:
True | False

A Series literal is a representation of a Series in AllHandsOnDeck. Alternatively, a programmer can call
the Series class to instantiate a Series object.

Series_literal:
’[’ (expr (’,’ expr)*)? ’]’

3.6.4 Negation
The not keyword is a logical operator and the return value will be True if the statements are not True, and
wille be False otherwise.

neg_expr:
not expr

13

3.6.5 Operations
The following binary operations are supported by AllHandsOnDeck:

binary_op:
expr ("+" | "-" | "*" | "/" | "/" | "%" | "&" | "|" | "^" | "˜") expr

3.6.6 Comparison
Comparisons yield boolean values: True or False and can be chained arbitrarily. All comparison operators
have the same priority, which is lower than that of any arithmetic, shifting or bitwise operation.

comparison:
expr ("==" | "!=" | "<" | "<=" | ">" | ">=") expr

3.6.7 Assignment
An assignment expression assigns an expression to an identifier, while also returning the value of the
expression.

assignment:
id "=" expr

augassign:
id ("+=" | "-=" | "*=" | "/=" | "/=" | "**=" | "%=" | "&=" | "|=" | "^=") expr

3.6.8 Class Call
Classes can be called with or without a constructor and take the structure of Class name followed by optional
arguments in parens.

call_class:
Class ’(’ args_list? ’)’

3.6.9 Function Call
Calls to ACTIONs have different syntax from calls to helper functions in AllHandsOnDeck.

A call to a non-state mutating helper function follows the structure of function name followed by any argu-
ments in parentheses. A helper function may be called by itself or on an object.

call_helper:
id ’(’ args_list? ’)’

State mutating ACTION functions are called following the structure of do ACTION or object do ACTION.

14

call_action:
expr? do ACTION (’(’ args_list ’)’)?

3.6.10 Comprehension
Comprehensions on Series and Stacks allow for shorter syntax when a programmer wants to create a new
list based on the values of an existing list.

comprehension:
expr for id in expr

Without comprehension on Collections, the following example would have to be written as a nested for
loop:

1 deck = Deck(
2 Card(type, color, faceup = False)
3 for type in [0] + 2 *
4 (1..9 + ['Skip', 'Reverse', 'Draw 2'])
5 for color in 'RYGB'
6)

3.6.11 Range
Ranges are useful when a programmer wants to create a deck with type taken from a sequential set of values
(can be numerical, lexicographical, etc.) without having to enumerate out the entire sequence themselves.

Ranges may be constructed using the s..e and s...e literals, where the former runs from the beginning of
the interval to the end inclusively and the latter runs through the interval excluding the end value.

dotted_range:
expr ".." expr | expr "..." expr

For loops can be iterated over a Range as follows:

1 for val in 1..9:
2 card.type = val
3

4 for num in 0...players.size():
5 players[num].turn = num

3.6.12 Indexing
Slicing and indexing can be done following the structure expr[index] or expr[index:index].

index:
’[’ slice ’]’

15

slice:
expr? ’:’ expr? (’:’ expr)? | expr

3.7 Context-Free Grammar
program:

main_decl (action_decl | helper_decl | class_decl)* EOF

main_decl:
main ’:’ stmt_block

class_decl:
| let Class be type (with ’:’ class_block)?
| let Class ’(’ params_list? ’)’ be type ’(’ args_list? ’)’ (with ’:’ class_block)?

action_decl:
when (type id)? do ACTION (’(’ params_list ’)’)? ’:’ stmt_block

helper_decl:
id ’(’ params_list? ’)’ ’:’ (expr | stmt_block)

attr_decl:
const? type? id ’:’ (expr | stmt_block)

stmt_block:
NEWLINE INDENT stmt+ OUTDENT

class_block:
NEWLINE INDENT (attr_decl | helper_decl)+ OUTDENT

type:
prim_type | Class | template_Class

prim_type:
int | float | bool | string | fstring

template_Class:
Class ’<’ type ’>’

params_list:
param (’,’ param)*

param:
type? id

args_list:
arg (’,’ arg)*

16

arg:
(id ’=’)? expr

stmt:
expr NEWLINE | pass NEWLINE | if_stmt | for_stmt | while_stmt | return_stmt

if_stmt:
if expr ’:’ stmt_block elif_stmt | if expr ’:’ stmt_block else_block?

elif_stmt:
elif expr ’:’ stmt_block elif_stmt | elif expr ’:’ stmt_block else_block?

else_block:
else ’:’ stmt_block

for_stmt:
| for id in expr ’:’ stmt_block
| for expr times ’:’ stmt_block

while_stmt:
while expr ’:’ stmt_block else_block?

return_stmt:
return expr? NEWLINE

expr:
| id | None | iliteral | fliteral | sliteral | bliteral | Series_literal | neg_expr
| binary_op | comparison | assignment | augassign | call_class | call_helper | call_action
| dotted_range | comprehension | index | slice

iliteral:
(’0’-’9’)*

fliteral:
(’0’-’9’)* ’.’ (’0’-’9’)* ((’e’ | ’E’)(’+’ | ’-’)?(’0’-’9’)*)?

sliteral:
(’"’ _* ’"’) | (”’ _* ”’)

bliteral:
True | False

Series_literal:
’[’ (expr (’,’ expr)*)? ’]’

neg_expr:
not expr

binary_op:
expr ("+" | "-" | "*" | "/" | "/" | "%" | "&" | "|" | "^") expr

17

comparison:
expr ("==" | "!=" | "<" | "<=" | ">" | ">=") expr

assignment:
id "=" expr

augassign:
id ("+=" | "-=" | "*=" | "/=" | "/=" | "**=" | "%=" | "&=" | "|=" | "^=") expr

call_class:
Class ’(’ args_list? ’)’

call_helper:
id ’(’ args_list? ’)’

call_action:
expr? do ACTION (’(’ args_list ’)’)?

dotted_range:
expr ".." expr | expr "..." expr

comprehension:
expr for id in expr

index:
’[’ slice ’]’

slice:
expr? ’:’ expr? (’:’ expr)? | expr

id:
(’a’-’z’) (’a’-’z’ | ’0’-’9’ | ’_’)*

ACTION:
(’A’-’Z’) (’A’-’Z’ | ’0’-’9’ | ’_’)*

Class:
(’A’-’Z’) (’a’-’z’ | ’0’-’9’ | ’A’-’Z’)*

18

Chapter 4

Standard Library

4.1 Built-in classes
Actor, Object, and Collection entities are all predefined classes in AllHandsOnDeck that a programmer
can use to define their own classes and objects.

Actor entities are distinct from Object entities in that Actors can mutate the attributes of other Objects
but Objects cannot.

Collections are virtual classes and Stacks and Series are special Collection objects that are also
built into the standard library. Both Stacks and Series are deques.

A Stack can be thought of as a vertical list where the top element is index 0 and the bottom element is index
-1 and can be used to represent a deck of cards. In addition to the methods inherited from Collection,
the built-in methods for a Stack include helper functions like top() and bottom(), and ACTIONs like
PUSH_TOP(elements...), PUSH_BOTTOM(elements...), POP_TOP(num = 1), and POP_BOTTOM(num
= 1).

A Series can be thought of as a horizontal list where the front element is index 0 and the back element is in-
dex -1 and can be used to represent a player’s hand. In addition to the methods inherited from Collection,
the built-in methods for a Series include helper functions like front() and back(), and ACTIONs like
PUSH_FRONT(elements...), PUSH_BACK(elements...), POP_FRONT(num = 1), and POP_BACK(num
= 1).

4.2 Built-in functions
• print() prints the specified object to the screen after first converting it to a string

• input() asks the user for input

• random(Range) returns a random integer or floating-point number based on the type and values of
the starting and ending elements in a specified range.

• <Collection> do SHUFFLE shuffles elements inside the Collection

• <Collection> do INSERT(index,elements...) inserts 1 or more elements at a specified index
inside the Collection

19

• <Collection> do DELETE(slice) deletes elements at a specified index or slice of the Collection

• <Collection>.shuffled() returns a copy of the shuffled Collection

• <Collection> do CLEAR empties the contents of the Collection and returns a copy of the Collection

• <Collection>.copy() returns a copy of the Collection

• <Collection>.empty() returns a boolean True or False of whether the Collection is empty

• <Collection>.size() returns the number of elements in the Collection

• <Stack>.top() returns the top element of the Stack

• <Stack>.bottom() returns the bottom element of the Stack

• <Stack> do PUSH_TOP(elements...): push 1 or more elements onto the top of a Stack

• <Stack> do PUSH_BOTTOM(elements...): push 1 or more elements to the bottom of a Stack

• <Stack> do POP_TOP(num = 1): pop 1 or more elements one at a time from the top of a Stack and
returns the elements

• <Stack> do POP_BOTTOM(num = 1): pop 1 or more elements one at a time from the bottom of a
Stack and returns the elements

• <Series>.front() returns the front element of the Series

• <Series>.back() returns the back element of the Series

• <Series> do PUSH_FRONT(elements...): push 1 or more elements to the front of a Series

• <Series> do PUSH_BACK(elements...): push 1 or more elements to the back of a Series

• <Series> do POP_FRONT(num = 1): pop 1 or more elements one at a time from the front of a
Series and returns the elements

• <Series> do POP_BACK(num = 1): pop 1 or more elements one at a time from the back of a Series
and returns the elements

20

Chapter 5

Sample Program

The following implementation of UNO in AllHandsOnDeck showcases most of the features of the language.

1 main:
2 do INIT(4)
3

4 do FIRST_PLAY
5

6 while not player_won(): # define later
7 if move_available(): # define later
8 current_player do INPUT_PLAY_OR_DRAW
9 else:

10 current_player do DRAW
11

12 do PRINT_WINNER # define later
13

14 let Card(type, color, faceup) be Object with:
15 const type: type
16 const color: color
17 bool faceup: faceup
18

19 when Card card do FLIP:
20 card.faceup = not card.faceup
21

22 when Collection<Card> cards do FLIP:
23 for card in cards:
24 card do FLIP
25

26 let Deck be Stack<Card>
27

28 let Hand be Series<Card>
29

30 let Player(name) be Actor with:
31 const name: name
32 hand: new Hand()
33 uno(): hand.size() == 1
34 winner(): hand.empty()

21

35

36 when do FIRST_PLAY:
37 deck.top() do FLIP
38 discard do PUSH_TOP(deck do POP_TOP)
39 do PROCESS_TOP_CARD
40

41 when Player player do PLAY(index):
42 if not match(player.hand[index], discard.top()):
43 return
44 discard do PUSH_TOP(player.hand do DELETE(index))
45 do PROCESS_TOP_CARD
46

47 when Player player do DRAW:
48 deck.top() do FLIP
49 player.hand do PUSH_BACK(deck do POP_TOP)
50

51 if match(player.hand.back(), discard.top()):
52 discard do PUSH_TOP(player.hand do POP_BACK)
53 do PROCESS_TOP_CARD
54

55 when do PROCESS_TOP_CARD:
56 if discard.top().type == 'Reverse':
57 do REVERSE
58 do NEXT_PLAYER
59 else:
60 do NEXT_PLAYER
61

62 if discard.top().type == 'Skip':
63 do NEXT_PLAYER
64 elif discard.top().type == 'Draw 2':
65 deck.top(2) do FLIP
66 current_player.hand do PUSH_BACK(deck do POP_TOP(2))
67 do NEXT_PLAYER
68

69 match(Card card1, Card card2):
70 return card1.type == card2.type or card1.color == card2.color
71

72 when do REVERSE:
73 play_dir *= -1
74

75 when do NEXT_PLAYER:
76 if current_player is None:
77 current_player_i = random(0...players.size()))
78 current_player = players[current_player_i]
79 else:
80 current_player_i = (current_player_i + play_dir) % players.size()
81 current_player = players[current_player_i]
82

83 when Player player do INPUT_PLAY_OR_DRAW:
84 print('Would you like to play or draw?\n')
85 action = input()
86 if action == 'play':

22

87 print('Which card?\n')
88 int index = input()
89 player do PLAY(index)
90 elif action == 'draw':
91 player do DRAW
92

93 when do INIT(n_players):
94 players = [Player(f'Player {i + 1}') for i in 0...n_players]
95

96 deck = Deck(
97 Card(type, color, faceup = False)
98 for type in [0] + 2 *
99 (1..9 + ['Skip', 'Reverse', 'Draw 2'])

100 for color in 'RYGB'
101)
102

103 deck do SHUFFLE
104

105 for player in players:
106 player.hand do PUSH_BACK(deck do POP_TOP(7))
107

108 discard = Deck()
109

110 current_player_i = None
111 current_player = None
112 play_dir = 1

23

