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The Final

120 minutes

24-hour window on Friday, April 16th

Download and submit to Gradescope

Closed book, notes, Internet

One 8-page PDF file of notes of your own devising. Upload
these to Courseworks separately

Comprehensive: Anything discussed in class is fair game

Little, if any, programming. This is not a test on OCaml

Details of OCaml/C/C++/Java syntax not required

See the cover sheet for details



Compiling a Simple Program

int gcd(int a, int b)
{
while (a != b) {
if (a > b) a -= b;
else b -= a;

}
return a;

}



What the Compiler Sees
int gcd(int a, int b)
{
while (a != b) {
if (a > b) a -= b;
else b -= a;

}
return a;

}

i n t sp g c d ( i n t sp a , sp i
n t sp b ) nl { nl sp sp w h i l e sp
( a sp ! = sp b ) sp { nl sp sp sp sp i
f sp ( a sp > sp b ) sp a sp - = sp b
; nl sp sp sp sp e l s e sp b sp - = sp
a ; nl sp sp } nl sp sp r e t u r n sp
a ; nl } nl

Text file is a sequence of characters



Lexical Analysis Gives Tokens

int gcd(int a, int b)
{
while (a != b) {
if (a > b) a -= b;
else b -= a;

}
return a;

}

int gcd ( int a , int b ) { while ( a

!= b ) { if ( a > b ) a -= b ; else

b -= a ; } return a ; }

A stream of tokens. Whitespace, comments removed.



Parsing Gives an Abstract Syntax Tree

func

int gcd args

arg

int a

arg

int b

seq

while

!=

a b

if

>

a b

-=

a b

-=

b a

return

a

int gcd(int a, int b)
{
while (a != b) {
if (a > b) a -= b;
else b -= a;

}
return a;

}



Semantic Analysis Resolves Symbols and Checks
Types

Symbol Table

int a

int b

func

int gcd args

arg

int a

arg

int b

seq

while

!=

a b

if

>

a b

-=

a b

-=

b a

return

a



Translation into 3-Address Code

L0: sne $1, a, b
seq $0, $1, 0
btrue $0, L1 # while (a != b)
sl $3, b, a
seq $2, $3, 0
btrue $2, L4 # if (a < b)
sub a, a, b # a -= b
jmp L5

L4: sub b, b, a # b -= a
L5: jmp L0
L1: ret a

int gcd(int a, int b)
{
while (a != b) {
if (a > b) a -= b;
else b -= a;

}
return a;

}

Idealized assembly language w/
infinite registers



Generation of 80386 Assembly

gcd: pushl %ebp # Save BP
movl %esp,%ebp
movl 8(%ebp),%eax # Load a from stack
movl 12(%ebp),%edx # Load b from stack

.L8: cmpl %edx,%eax
je .L3 # while (a != b)
jle .L5 # if (a < b)
subl %edx,%eax # a -= b
jmp .L8

.L5: subl %eax,%edx # b -= a
jmp .L8

.L3: leave # Restore SP, BP
ret



Describing Tokens

Alphabet: A finite set of symbols

Examples: { 0, 1 }, { A, B, C, . . . , Z }, ASCII, Unicode

String: A finite sequence of symbols from an alphabet

Examples: ε (the empty string), Stephen, αβγ

Language: A set of strings over an alphabet

Examples: ; (the empty language), { 1, 11, 111, 1111 }, all
English words, strings that start with a letter followed by
any sequence of letters and digits



Operations on Languages

Let L = { ε, wo }, M = { man, men }

Concatenation: Strings from one followed by the other

LM = { man, men, woman, women }

Union: All strings from each language

L∪M = {ε, wo, man, men }

Kleene Closure: Zero or more concatenations

M∗ = {ε}∪M ∪M M ∪M M M · · · =
{ε, man, men, manman, manmen, menman, menmen,
manmanman, manmanmen, manmenman, . . . }



Regular Expressions over an Alphabet Σ

A standard way to express languages for tokens.

1. ε is a regular expression that denotes {ε}

2. If a ∈Σ, a is an RE that denotes {a}

3. If r and s denote languages L(r ) and L(s),
Ï (r ) | (s) denotes L(r )∪L(s)
Ï (r )(s) denotes {tu : t ∈ L(r ),u ∈ L(s)}
Ï (r )∗ denotes ∪∞

i=0Li (L0 = {ε} and Li = LLi−1)



Nondeterministic Finite Automata

“All strings containing
an even number of 0’s
and 1’s”

A B

C D

0

0
11

0

0
1 1

1. Set of states

S :

{
A B C D

}
2. Set of input symbols Σ : {0,1}
3. Transition function σ : S×Σε → 2S

state ε 0 1
A ; {B} {C }
B ; {A} {D}
C ; {D} {A}
D ; {C } {B}

4. Start state s0 : A

5. Set of accepting states

F :

{
A

}



The Language induced by an NFA

An NFA accepts an input string x iff there is a path from the
start state to an accepting state that “spells out” x.

A B

C D

0

0
11

0

0
1 1

Show that the string “010010” is accepted.

A B D C D B A
0 1 0 0 1 0



Translating REs into NFAs

a
a

Symbol

r1r2
r1 r2r1 Sequence

r1 | r2

r1

r2

ε

ε

ε

ε

Choice

(r )∗ rε ε

ε

ε

Kleene Closure



Translating REs into NFAs

Example: Translate (a | b)∗abb into an NFA. Answer:

0 1

2 3

4 5

6 7 8 9 10
ε

ε
a

ε
b

ε

ε

ε a b b

ε

ε

Show that the string “aabb” is accepted. Answer:

0 1 2 3 6 7 8 9 10
ε ε a ε ε a b b



Simulating NFAs

Problem: you must follow the “right” arcs to show that a
string is accepted. How do you know which arc is right?

Solution: follow them all and sort it out later.

“Two-stack” NFA simulation algorithm:

1. Initial states: the ε-closure of the start state
2. For each character c,

Ï New states: follow all transitions labeled c
Ï Form the ε-closure of the current states

3. Accept if any final state is accepting



Simulating an NFA: ·aabb, Start

0 1

2 3

4 5

6 7 8 9 10
ε

ε
a

ε
b

ε

ε

ε a b b

ε

ε

0 1

2 3

4 5

6 7 8 9 10
ε

ε
a

ε
b

ε

ε

ε a b b

ε

ε



Simulating an NFA: a·abb
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6 7 8 9 10
ε

ε
a

ε
b

ε

ε

ε a b b

ε

ε

0 1
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ε

ε
a

ε
b

ε

ε

ε a b b

ε

ε



Simulating an NFA: aa·bb
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ε

ε
a

ε
b

ε

ε

ε a b b

ε

ε
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ε
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Simulating an NFA: aab·b
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ε
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b
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ε a b b

ε
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Simulating an NFA: aabb·, Done
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Deterministic Finite Automata

Restricted form of NFAs:

Ï No state has a transition on ε

Ï For each state s and symbol a, there is at most one edge
labeled a leaving s.

Differs subtly from the definition used in COMS W3261
(Sipser, Introduction to the Theory of Computation)

Very easy to check acceptance: simulate by maintaining
current state. Accept if you end up on an accepting state.
Reject if you end on a non-accepting state or if there is no
transition from the current state for the next symbol.



Deterministic Finite Automata

{
type token = ELSE | ELSEIF

}

rule token =
parse "else" { ELSE }

| "elseif" { ELSEIF }

e l s e i f



Deterministic Finite Automata

{ type token = IF | ID of string | NUM of string }

rule token =
parse "if" { IF }

| [’a’-’z’] [’a’-’z’ ’0’-’9’]* as lit { ID(lit) }
| [’0’-’9’]+ as num { NUM(num) }

NUM

ID IF

ID

0–9

i

a–hj–z

f

a–z0–9

a–eg–z0–9

0–9

a–z0–9



Building a DFA from an NFA

Subset construction algorithm

Simulate the NFA for all possible inputs and track the states
that appear.

Each unique state during simulation becomes a state in the
DFA.



Subset construction for (a | b)∗abb

a

b

a

b

b

a

a

ba

b



Subset construction for (a | b)∗abb

a

b

a

b

b

a

a

ba

b



Subset construction for (a | b)∗abb
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b

a
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Subset construction for (a | b)∗abb

a

b

a

b

b

a

a

b

a

b



Subset construction for (a | b)∗abb

a

b

a

b

b

a

a

ba

b



Result of subset construction for (a | b)∗abb

a

b

a
b

b

a

a

ba

b



Ambiguous Arithmetic

Ambiguity can be a problem in expressions. Consider
parsing

3 - 4 * 2 + 5

with the grammar

e → e +e | e −e | e ∗e | e /e | N

+

-

3 *

4 2

5

-

3 +

*

4 2

5

*

-

3 4

+

2 5

-

3 *

4 +

2 5

-

*

+

3 4

2

5



Operator Precedence

Defines how “sticky” an operator is.

1 * 2 + 3 * 4

* at higher precedence than +:

(1 * 2) + (3 * 4)

+

*

1 2

*

3 4

+ at higher precedence than *:

1 * (2 + 3) * 4

*

*

1 +

2 3

4



Associativity
Whether to evaluate left-to-right or right-to-left

Most operators are left-associative

1 - 2 - 3 - 4

-

-

-

1 2

3

4

-

1 -

2 -

3 4

((1−2)−3)−4 1− (2− (3−4))

left associative right associative



Fixing Ambiguous Grammars

A grammar specification:

expr :
expr PLUS expr

| expr MINUS expr
| expr TIMES expr
| expr DIVIDE expr
| NUMBER

Ambiguous: no precedence or associativity.

Ocamlyacc’s complaint: “16 shift/reduce conflicts.”



Assigning Precedence Levels

Split into multiple rules, one per level

expr : expr PLUS expr
| expr MINUS expr
| term

term : term TIMES term
| term DIVIDE term
| atom

atom : NUMBER

Still ambiguous: associativity not defined

Ocamlyacc’s complaint: “8 shift/reduce conflicts.”



Assigning Associativity

Make one side the next level of precedence

expr : expr PLUS term
| expr MINUS term
| term

term : term TIMES atom
| term DIVIDE atom
| atom

atom : NUMBER

This is left-associative.

No shift/reduce conflicts.



Rightmost Derivation of Id∗ Id+ Id

1 :e→ t +e
2 :e→ t
3 : t → Id ∗ t
4 : t → Id

e
t + e

t + t

t + Id

Id ∗ t + Id

Id ∗ Id + Id

At each step, expand the rightmost nonterminal.

nonterminal

“handle”: The right side of a production

Fun and interesting fact: there is exactly one rightmost
expansion if the grammar is unambigious.



Rightmost Derivation: What to Expand

1 :e→ t +e
2 :e→ t
3 : t → Id ∗ t
4 : t → Id

e
t + e
t + t

t + Id

Id ∗ t + Id

Id ∗ Id + Id

Expand here ↑Terminals only

e

t + e

t + t

t + Id

Id ∗ t + Id

Id ∗ Id + Id



Reverse Rightmost Derivation

1 :e→ t +e
2 :e→ t
3 : t → Id ∗ t
4 : t → Id

e
t + e
t + t

t + Id

Id ∗ t + Id

Id ∗ Id + Id

viable prefixes terminals

Id ∗ Id+ Id Id

tId ∗ t + Id ∗Id

tt + Id Id

tt + t

et + e

e

+
e



Shift/Reduce Parsing Using an Oracle

1 :e→ t +e
2 :e→ t
3 : t → Id ∗ t
4 : t → Id

e
t + e
t + t

t + Id

Id ∗ t + Id

Id ∗ Id + Id

stack input

Id ∗ Id+ Id shift
Id ∗ Id+ Id shift

Id ∗ Id+ Id shift
Id ∗ Id+ Id reduce 4
Id ∗ t + Id reduce 3

t + Id shift
t + Id shift

t + Id reduce 4
t + t reduce 2
t + e reduce 1

e accept



Handle Hunting

Right Sentential Form: any step in a rightmost derivation

Handle: in a sentential form, a RHS of a rule that, when
rewritten, yields the previous step in a rightmost derivation.

The big question in shift/reduce parsing:

When is there a handle on the top of the stack?

Enumerate all the right-sentential forms and pattern-match
against them? Usually infinite in number, but let’s try
anyway.



The Handle-Identifying Automaton
Magical result, due to Knuth: An automaton suffices to
locate a handle in a right-sentential form.

Id∗ Id∗·· ·∗ Id∗ t · · ·
Id∗ Id∗·· ·∗ Id · · ·
t + t +·· ·+ t +e

t + t +·· ·+ t+ Id

t + t +·· ·+ t + Id∗ Id∗·· ·∗ Id∗ t

t + t +·· ·+ t

Id

t

Id∗ t

t +e

e

t

+t

e

Id
Id

∗Id

t

e



Building the Initial State of the LR(0) Automaton

1 :e→ t +e
2 :e→ t
3 : t → Id ∗ t
4 : t → Id

e ′ →·e

e →·t +e
e →·t
t →·Id∗ t
t →·Id

Key idea: automata identify viable prefixes of right
sentential forms. Each state is an equivalence class of
possible places in productions.

At the beginning, any viable prefix must be at the
beginning of a string expanded from e. We write this
condition “e ′ →·e”

There are two choices for what an e may expand to: t +e
and t . So when e ′ →·e, e →·t +e and e →·t are also true, i.e.,
it must start with a string expanded from t .

Similarly, t must be either Id∗ t or Id, so t →·Id∗ t and t →·Id.

This reasoning is a closure operation like ε-closure in subset
construction.
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Building the Initial State of the LR(0) Automaton

1 :e→ t +e
2 :e→ t
3 : t → Id ∗ t
4 : t → Id

e ′ →·e
e →·t +e
e →·t
t →·Id∗ t
t →·Id

Key idea: automata identify viable prefixes of right
sentential forms. Each state is an equivalence class of
possible places in productions.

At the beginning, any viable prefix must be at the
beginning of a string expanded from e. We write this
condition “e ′ →·e”

There are two choices for what an e may expand to: t +e
and t . So when e ′ →·e, e →·t +e and e →·t are also true, i.e.,
it must start with a string expanded from t .

Similarly, t must be either Id∗ t or Id, so t →·Id∗ t and t →·Id.

This reasoning is a closure operation like ε-closure in subset
construction.



Building the LR(0) Automaton

S0 :

e ′ →·e
e →·t +e
e →·t
t →·Id∗ t
t →·Id

S1 :
t → Id ·∗t
t → Id·

S7 : e ′ → e·

S2 :
e → t ·+e
e → t ·

e

Id

t

S3 :
t → Id∗·t

t →·Id∗ t
t →·Id

S4 :

e → t +·e

e →·t +e
e →·t
t →·Id∗ t
t →·Id

∗

+

S5 : t → Id∗ t ·t

Id

S6 : e → t +e·

t

Id e

“Just passed a
prefix ending in
a string derived
from t”

“Just passed a
prefix that ended
in an Id”

“Just passed a string
derived from e”

The first state suggests a
viable prefix can start as any
string derived from e, any
string derived from t , or Id.

The items for these three
states come from advancing
the · across each thing, then
performing the closure
operation (vacuous here).
In S2, a + may be next. This
gives t +·e.

Closure adds 4
more items.

In S1, ∗ may be next, giving
Id∗·t

and two others.
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The first function
If you can derive a string that starts with terminal t from a
sequence of terminals and nonterminals α, then t ∈first(α).

1. If X is a terminal, first(X ) = {X }.
2. If X → ε, then add ε to first(X ).
3. If X → Y1 · · ·Yk and ε ∈first(Y1), ε ∈first(Y2), . . . , and

ε ∈first(Yi−1) for i = 1, . . . ,k for some k,
add first(Yi )− {ε} to first(X )

X starts with anything that appears after skipping
empty strings. Usually just first(Y1) ∈first(X )

4. If X → Y1 · · ·YK and ε ∈first(Y1), ε ∈first(Y2), . . . , and
ε ∈first(Yk ), add ε to first(X )
If all of X can be empty, X can be empty

1 :e→ t +e
2 :e→ t
3 : t → Id ∗ t
4 : t → Id

first(Id) = {Id}

first(t ) = {Id} because t → Id ∗ t and t → Id

first(e) = {Id} because e → t +e, e → t , and
first(t ) = {Id}.



First and ε
ε ∈first(α) means α can derive the empty string.

1. If X is a terminal, first(X ) = {X }.
2. If X → ε, then add ε to first(X ).
3. If X → Y1 · · ·Yk and

ε ∈first(Y1), ε ∈first(Y2), . . . , and ε ∈first(Yi−1)
for i = 1, . . . ,k for some k,

add first(Yi )− {ε} to first(X )
4. If X → Y1 · · ·YK and

ε ∈first(Y1), ε ∈first(Y2), . . . , and ε ∈first(Yk ),
add ε to first(X )

X →Y Z a
Y →
Y →b
Z →c
Z →W
W →
W →d

first(b) = {b} first(c) = {c} first(d) = {d} (1)
first(W ) = {ε}∪first(d) = {ε,d} (2,3)
first(Z ) =first(c)∪ (first(W )− {ε})∪ {ε} = {ε,c,d} (3,3,4)
first(Y ) = {ε}∪ {b} = {ε,b} (2,3)
first(X ) = (first(Y )− {ε})∪ (first(Z )− {ε})∪

first(a) = {a,b,c,d} (3,3,3)



The follow function
If t is a terminal, A is a nonterminal, and · · · At · · · can be
derived, then t ∈ follow(A).

1. Add $ (“end-of-input”) to follow(S) (start symbol).
End-of-input comes after the start symbol

2. For each prod. →··· Aα, add first(α)− {ε} to follow(A).
A is followed by the first thing after it

3. For each prod. A →···B or A →···Bα where ε ∈first(α),
then add everything in follow(A) to follow(B).
If B appears at the end of a production, it can be
followed by whatever follows that production

1 :e→ t +e
2 :e→ t
3 : t → Id ∗ t
4 : t → Id
first(t ) = {Id}
first(e) = {Id}

follow(e) = {$}
follow(t ) = {

+ ,$

}

1. Because e is the start symbol



The follow function
If t is a terminal, A is a nonterminal, and · · · At · · · can be
derived, then t ∈ follow(A).

1. Add $ (“end-of-input”) to follow(S) (start symbol).
End-of-input comes after the start symbol

2. For each prod. →··· Aα, add first(α)− {ε} to follow(A).
A is followed by the first thing after it

3. For each prod. A →···B or A →···Bα where ε ∈first(α),
then add everything in follow(A) to follow(B).
If B appears at the end of a production, it can be
followed by whatever follows that production

1 :e→ t +e
2 :e→ t
3 : t → Id ∗ t
4 : t → Id
first(t ) = {Id}
first(e) = {Id}

follow(e) = {$}
follow(t ) = {+

,$

}

2. Because e → t+e and first(+) = {+}



The follow function
If t is a terminal, A is a nonterminal, and · · · At · · · can be
derived, then t ∈ follow(A).

1. Add $ (“end-of-input”) to follow(S) (start symbol).
End-of-input comes after the start symbol

2. For each prod. →··· Aα, add first(α)− {ε} to follow(A).
A is followed by the first thing after it

3. For each prod. A →···B or A →···Bα where ε ∈first(α),
then add everything in follow(A) to follow(B).
If B appears at the end of a production, it can be
followed by whatever follows that production

1 :e→ t +e
2 :e→ t
3 : t → Id ∗ t
4 : t → Id
first(t ) = {Id}
first(e) = {Id}

follow(e) = {$}
follow(t ) = {+ ,$}

3. Because e → t and $ ∈ follow(e)



The follow function
If t is a terminal, A is a nonterminal, and · · · At · · · can be
derived, then t ∈ follow(A).

1. Add $ (“end-of-input”) to follow(S) (start symbol).
End-of-input comes after the start symbol

2. For each prod. →··· Aα, add first(α)− {ε} to follow(A).
A is followed by the first thing after it

3. For each prod. A →···B or A →···Bα where ε ∈first(α),
then add everything in follow(A) to follow(B).
If B appears at the end of a production, it can be
followed by whatever follows that production

1 :e→ t +e
2 :e→ t
3 : t → Id ∗ t
4 : t → Id
first(t ) = {Id}
first(e) = {Id}

follow(e) = {$}
follow(t ) = {+ ,$}

Fixed-point reached: applying any rule
does not change any set



Converting the LR(0) Automaton to an SLR Parsing
Table

S0

S1: t → Id·

S2: e → t ·

S3

S4

S5: t → Id∗ t ·

S6: e → t +e·

S7: e ′ → e·

t

Id

e

∗

+

Id

t

t

e

Id

1 :e→ t +e
2 :e→ t
3 : t → Id ∗ t
4 : t → Id

State Action Goto

Id + ∗ $ e t

0 s1 7 2

1 r4 s3 r4
2 s4 r2
3 s1 5
4 s1 6 2
5 r3 r3
6 r1
7 X

From S0, shift an Id and go to S1;
or cross a t and go to S2; or cross
an e and go to S7.



Converting the LR(0) Automaton to an SLR Parsing
Table

S0

S1: t → Id·

S2: e → t ·

S3

S4

S5: t → Id∗ t ·

S6: e → t +e·

S7: e ′ → e·

t

Id

e

∗

+

Id

t

t

e

Id

1 :e→ t +e
2 :e→ t
3 : t → Id ∗ t
4 : t → Id

State Action Goto

Id + ∗ $ e t

0 s1 7 2
1 r4 s3 r4

2 s4 r2
3 s1 5
4 s1 6 2
5 r3 r3
6 r1
7 X

From S1, shift a ∗ and go to S3;
or, if the next input could follow
a t , reduce by rule 4. According
to rule 1, + could follow t ; from
rule 2, $ could.



Converting the LR(0) Automaton to an SLR Parsing
Table

S0

S1: t → Id·

S2: e → t ·

S3

S4

S5: t → Id∗ t ·

S6: e → t +e·

S7: e ′ → e·

t

Id

e

∗

+

Id

t

t

e

Id

1 :e→ t +e
2 :e→ t
3 : t → Id ∗ t
4 : t → Id

State Action Goto

Id + ∗ $ e t

0 s1 7 2
1 r4 s3 r4
2 s4 r2

3 s1 5
4 s1 6 2
5 r3 r3
6 r1
7 X

From S2, shift a + and go to S4;
or, if the next input could follow
an e (only the end-of-input $),
reduce by rule 2.



Converting the LR(0) Automaton to an SLR Parsing
Table

S0

S1: t → Id·

S2: e → t ·

S3

S4

S5: t → Id∗ t ·

S6: e → t +e·

S7: e ′ → e·

t

Id

e

∗

+

Id

t

t

e

Id

1 :e→ t +e
2 :e→ t
3 : t → Id ∗ t
4 : t → Id

State Action Goto

Id + ∗ $ e t

0 s1 7 2
1 r4 s3 r4
2 s4 r2
3 s1 5

4 s1 6 2
5 r3 r3
6 r1
7 X

From S3, shift an Id and go to S1;
or cross a t and go to S5.



Converting the LR(0) Automaton to an SLR Parsing
Table

S0

S1: t → Id·

S2: e → t ·

S3

S4

S5: t → Id∗ t ·

S6: e → t +e·

S7: e ′ → e·

t

Id

e

∗

+

Id

t

t

e

Id

1 :e→ t +e
2 :e→ t
3 : t → Id ∗ t
4 : t → Id

State Action Goto

Id + ∗ $ e t

0 s1 7 2
1 r4 s3 r4
2 s4 r2
3 s1 5
4 s1 6 2

5 r3 r3
6 r1
7 X

From S4, shift an Id and go to S1;
or cross an e or a t .



Converting the LR(0) Automaton to an SLR Parsing
Table

S0

S1: t → Id·

S2: e → t ·

S3

S4

S5: t → Id∗ t ·

S6: e → t +e·

S7: e ′ → e·

t

Id

e

∗

+

Id

t

t

e

Id

1 :e→ t +e
2 :e→ t
3 : t → Id ∗ t
4 : t → Id

State Action Goto

Id + ∗ $ e t

0 s1 7 2
1 r4 s3 r4
2 s4 r2
3 s1 5
4 s1 6 2
5 r3 r3

6 r1
7 X

From S5, reduce using rule 3 if
the next symbol could follow a t
(again, + and $).



Converting the LR(0) Automaton to an SLR Parsing
Table

S0

S1: t → Id·

S2: e → t ·

S3

S4

S5: t → Id∗ t ·

S6: e → t +e·

S7: e ′ → e·

t

Id

e

∗

+

Id

t

t

e

Id

1 :e→ t +e
2 :e→ t
3 : t → Id ∗ t
4 : t → Id

State Action Goto

Id + ∗ $ e t

0 s1 7 2
1 r4 s3 r4
2 s4 r2
3 s1 5
4 s1 6 2
5 r3 r3
6 r1

7 X

From S6, reduce using rule 1 if
the next symbol could follow an
e ($ only).



Converting the LR(0) Automaton to an SLR Parsing
Table

S0

S1: t → Id·

S2: e → t ·

S3

S4

S5: t → Id∗ t ·

S6: e → t +e·

S7: e ′ → e·

t

Id

e

∗

+

Id

t

t

e

Id

1 :e→ t +e
2 :e→ t
3 : t → Id ∗ t
4 : t → Id

State Action Goto

Id + ∗ $ e t

0 s1 7 2
1 r4 s3 r4
2 s4 r2
3 s1 5
4 s1 6 2
5 r3 r3
6 r1
7 X

If, in S7, we just crossed an e,
accept if we are at the end of
the input.



Shift/Reduce Parsing with an SLR Table

1 :e→ t +e
2 :e→ t
3 : t → Id ∗ t
4 : t → Id

State Action Goto

Id + ∗ $ e t

0 s1 7 2
1 r4 s3 r4
2 s4 r2
3 s1 5
4 s1 6 2
5 r3 r3
6 r1
7 X

Stack Input Action

0 Id∗ Id+ Id$ Shift, goto 1

Look at the state on top of the
stack and the next input token.

Find the action (shift, reduce, or
error) in the table.

In this case, shift the token onto
the stack and mark it with state 1.

0 Id
1 ∗ Id+ Id$ Shift, goto 3

0 Id
1

∗
3 Id+ Id$ Shift, goto 1

0 Id
1

∗
3

Id
1 + Id$ Reduce 4

0 Id
1

∗
3

t
5 + Id$

Reduce 3

0
t
2 + Id$ Shift, goto 4

0
t
2

+
4 Id$ Shift, goto 1

0
t
2

+
4

Id
1 $ Reduce 4

0
t
2

+
4

t
2 $ Reduce 2

0
t
2

+
4

e
6 $ Reduce 1

0
e
7 $ Accept



Shift/Reduce Parsing with an SLR Table

1 :e→ t +e
2 :e→ t
3 : t → Id ∗ t
4 : t → Id

State Action Goto

Id + ∗ $ e t

0 s1 7 2
1 r4 s3 r4
2 s4 r2
3 s1 5
4 s1 6 2
5 r3 r3
6 r1
7 X

Stack Input Action

0 Id∗ Id+ Id$ Shift, goto 1

0 Id
1 ∗ Id+ Id$ Shift, goto 3

Here, the state is 1, the next
symbol is ∗, so shift and mark it
with state 3.

0 Id
1

∗
3 Id+ Id$ Shift, goto 1

0 Id
1

∗
3

Id
1 + Id$ Reduce 4

0 Id
1

∗
3

t
5 + Id$

Reduce 3

0
t
2 + Id$ Shift, goto 4

0
t
2

+
4 Id$ Shift, goto 1

0
t
2

+
4

Id
1 $ Reduce 4

0
t
2

+
4

t
2 $ Reduce 2

0
t
2

+
4

e
6 $ Reduce 1

0
e
7 $ Accept



Shift/Reduce Parsing with an SLR Table

1 :e→ t +e
2 :e→ t
3 : t → Id ∗ t
4 : t → Id

State Action Goto

Id + ∗ $ e t

0 s1 7 2
1 r4 s3 r4
2 s4 r2
3 s1 5
4 s1 6 2
5 r3 r3
6 r1
7 X

Stack Input Action

0 Id∗ Id+ Id$ Shift, goto 1

0 Id
1 ∗ Id+ Id$ Shift, goto 3

0 Id
1

∗
3 Id+ Id$ Shift, goto 1

0 Id
1

∗
3

Id
1 + Id$ Reduce 4

Here, the state is 1, the next
symbol is +. The table says reduce
using rule 4.

0 Id
1

∗
3

t
5 + Id$

Reduce 3

0
t
2 + Id$ Shift, goto 4

0
t
2

+
4 Id$ Shift, goto 1

0
t
2

+
4

Id
1 $ Reduce 4

0
t
2

+
4

t
2 $ Reduce 2

0
t
2

+
4

e
6 $ Reduce 1

0
e
7 $ Accept



Shift/Reduce Parsing with an SLR Table

1 :e→ t +e
2 :e→ t
3 : t → Id ∗ t
4 : t → Id

State Action Goto

Id + ∗ $ e t

0 s1 7 2
1 r4 s3 r4
2 s4 r2
3 s1 5
4 s1 6 2
5 r3 r3
6 r1
7 X

Stack Input Action

0 Id∗ Id+ Id$ Shift, goto 1

0 Id
1 ∗ Id+ Id$ Shift, goto 3

0 Id
1

∗
3 Id+ Id$ Shift, goto 1

0 Id
1

∗
3

Id
1 + Id$ Reduce 4

0 Id
1

∗
3

t
5

+ Id$

Reduce 3

Remove the RHS of the rule (here,
just Id), observe the state on the
top of the stack, and consult the
“goto” portion of the table.

0
t
2 + Id$ Shift, goto 4

0
t
2

+
4 Id$ Shift, goto 1

0
t
2

+
4

Id
1 $ Reduce 4

0
t
2

+
4

t
2 $ Reduce 2

0
t
2

+
4

e
6 $ Reduce 1

0
e
7 $ Accept



Shift/Reduce Parsing with an SLR Table

1 :e→ t +e
2 :e→ t
3 : t → Id ∗ t
4 : t → Id

State Action Goto

Id + ∗ $ e t

0 s1 7 2
1 r4 s3 r4
2 s4 r2
3 s1 5
4 s1 6 2
5 r3 r3
6 r1
7 X

Stack Input Action

0 Id∗ Id+ Id$ Shift, goto 1

0 Id
1 ∗ Id+ Id$ Shift, goto 3

0 Id
1

∗
3 Id+ Id$ Shift, goto 1

0 Id
1

∗
3

Id
1 + Id$ Reduce 4

0 Id
1

∗
3

t
5 + Id$ Reduce 3

Here, we push a t with state 5.
This effectively “backs up” the
LR(0) automaton and runs it over
the newly added nonterminal.

In state 5 with an upcoming +,
the action is “reduce 3.”

0
t
2 + Id$ Shift, goto 4

0
t
2

+
4 Id$ Shift, goto 1

0
t
2

+
4

Id
1 $ Reduce 4

0
t
2

+
4

t
2 $ Reduce 2

0
t
2

+
4

e
6 $ Reduce 1

0
e
7 $ Accept



Shift/Reduce Parsing with an SLR Table

1 :e→ t +e
2 :e→ t
3 : t → Id ∗ t
4 : t → Id

State Action Goto

Id + ∗ $ e t

0 s1 7 2
1 r4 s3 r4
2 s4 r2
3 s1 5
4 s1 6 2
5 r3 r3
6 r1
7 X

Stack Input Action

0 Id∗ Id+ Id$ Shift, goto 1

0 Id
1 ∗ Id+ Id$ Shift, goto 3

0 Id
1

∗
3 Id+ Id$ Shift, goto 1

0 Id
1

∗
3

Id
1 + Id$ Reduce 4

0 Id
1

∗
3

t
5 + Id$ Reduce 3

0
t
2 + Id$ Shift, goto 4

This time, we strip off the RHS for
rule 3, Id∗ t , exposing state 0, so
we push a t with state 2.

0
t
2

+
4 Id$ Shift, goto 1

0
t
2

+
4

Id
1 $ Reduce 4

0
t
2

+
4

t
2 $ Reduce 2

0
t
2

+
4

e
6 $ Reduce 1

0
e
7 $ Accept



Shift/Reduce Parsing with an SLR Table

1 :e→ t +e
2 :e→ t
3 : t → Id ∗ t
4 : t → Id

State Action Goto

Id + ∗ $ e t

0 s1 7 2
1 r4 s3 r4
2 s4 r2
3 s1 5
4 s1 6 2
5 r3 r3
6 r1
7 X

Stack Input Action

0 Id∗ Id+ Id$ Shift, goto 1

0 Id
1 ∗ Id+ Id$ Shift, goto 3

0 Id
1

∗
3 Id+ Id$ Shift, goto 1

0 Id
1

∗
3

Id
1 + Id$ Reduce 4

0 Id
1

∗
3

t
5 + Id$ Reduce 3

0
t
2 + Id$ Shift, goto 4

0
t
2

+
4 Id$ Shift, goto 1

0
t
2

+
4

Id
1 $ Reduce 4

0
t
2

+
4

t
2 $ Reduce 2

0
t
2

+
4

e
6 $ Reduce 1

0
e
7 $ Accept



Applicative- and Normal-Order Evaluation
int p(int i) {

printf("%d ", i);
return i;

}

void q(int a, int b, int c)
{
int total = a;
printf("%d ", b);
total += c;

}

q( p(1), 2, p(3) );

What does this print?

Applicative: arguments evaluated before function is called.

Result: 1 3 2

Normal: arguments evaluated when used.

Result: 1 2 3



Applicative- vs. and Normal-Order

Most languages use applicative order.

Macro-like languages often use normal order.

#define p(x) (printf("%d ",x), x)

#define q(a,b,c) total = (a), \
printf("%d ", (b)), \
total += (c)

q( p(1), 2, p(3) );

Prints 1 2 3.

Some functional languages also use normal order
evaluation to avoid doing work. “Lazy Evaluation”



Storage Classes and Memory Layout

Code

StaticStatic: objects allocated at compile
time; persist throughout run

Heap
Heap: objects created/destroyed in
any order; automatic garbage
collection optional

Program
break

Stack
Stack: objects created/destroyed in
last-in, first-out order

Stack
pointer

Low
memory

High
memory



Static Objects

class Example {
public static final int a = 3;

public void hello() {
System.out.println("Hello");

}
}

Examples

Static class variable

Code for hello method

String constant “Hello”

Information about the
Example class

Advantages

Zero-cost memory
management

Often faster access (address a
constant)

No out-of-memory danger

Disadvantages

Size and number must be
known beforehand

Wasteful if sharing is possible



Stack-Allocated Objects

Natural for supporting recursion.

Idea: some objects persist from when a procedure is called
to when it returns.

Naturally implemented with a stack: linear array of memory
that grows and shrinks at only one boundary.

Each invocation of a procedure gets its own frame
(activation record) where it stores its own local variables
and bookkeeping information.



An Activation Record: The State Before Calling bar

int foo(int a, int b) {
int c, d;
bar(1, 2, 3);

}

From Callerb
a

Return addr.
Old frame ptr.

Registers

c
d
3
2
1

Frame Ptr.

Stack Ptr.



Recursive Fibonacci
(Real C)
int fib(int n) {

if (n<2)

return 1;
else
return

fib(n-1)
+
fib(n-2);

}

(Assembly-like C)
int fib(int n) {

int tmp1, tmp2, tmp3;
tmp1 = n < 2;
if (!tmp1) goto L1;
return 1;

L1: tmp1 = n - 1;
tmp2 = fib(tmp1);

L2: tmp1 = n - 2;
tmp3 = fib(tmp1);

L3: tmp1 = tmp2 + tmp3;
return tmp1;

}

fib(3)

fib(2)

fib(1) fib(0)

fib(1)



Executing fib(3)

int fib(int n) {
int tmp1, tmp2, tmp3;
tmp1 = n < 2;
if (!tmp1) goto L1;
return 1;

L1: tmp1 = n - 1;
tmp2 = fib(tmp1);

L2: tmp1 = n - 2;
tmp3 = fib(tmp1);

L3: tmp1 = tmp2 + tmp3;
return tmp1;

}

n = 3
SP



Executing fib(3)

int fib(int n) {
int tmp1, tmp2, tmp3;
tmp1 = n < 2;
if (!tmp1) goto L1;
return 1;

L1: tmp1 = n - 1;
tmp2 = fib(tmp1);

L2: tmp1 = n - 2;
tmp3 = fib(tmp1);

L3: tmp1 = tmp2 + tmp3;
return tmp1;

}

n = 3

return address
last frame pointer
tmp1 = 2
tmp2 =
tmp3 =
n = 2

FP

SP



Executing fib(3)

int fib(int n) {
int tmp1, tmp2, tmp3;
tmp1 = n < 2;
if (!tmp1) goto L1;
return 1;

L1: tmp1 = n - 1;
tmp2 = fib(tmp1);

L2: tmp1 = n - 2;
tmp3 = fib(tmp1);

L3: tmp1 = tmp2 + tmp3;
return tmp1;

}

n = 3

return address
last frame pointer
tmp1 = 2
tmp2 =
tmp3 =
n = 2

return address
last frame pointer
tmp1 = 1
tmp2 =
tmp3 =
n = 1

FP

SP



Executing fib(3)

int fib(int n) {
int tmp1, tmp2, tmp3;
tmp1 = n < 2;
if (!tmp1) goto L1;
return 1;

L1: tmp1 = n - 1;
tmp2 = fib(tmp1);

L2: tmp1 = n - 2;
tmp3 = fib(tmp1);

L3: tmp1 = tmp2 + tmp3;
return tmp1;

}

n = 3

return address
last frame pointer
tmp1 = 2
tmp2 =
tmp3 =
n = 2

return address
last frame pointer
tmp1 = 1
tmp2 =
tmp3 =
n = 1

return address
last frame pointer
tmp1 = 1
tmp2 =
tmp3 =

FP

SP



Executing fib(3)

int fib(int n) {
int tmp1, tmp2, tmp3;
tmp1 = n < 2;
if (!tmp1) goto L1;
return 1;

L1: tmp1 = n - 1;
tmp2 = fib(tmp1);

L2: tmp1 = n - 2;
tmp3 = fib(tmp1);

L3: tmp1 = tmp2 + tmp3;
return tmp1;

}

n = 3

return address
last frame pointer
tmp1 = 2
tmp2 =
tmp3 =
n = 2

return address
last frame pointer
tmp1 = 0
tmp2 = 1
tmp3 =
n = 0

FP

SP



Executing fib(3)

int fib(int n) {
int tmp1, tmp2, tmp3;
tmp1 = n < 2;
if (!tmp1) goto L1;
return 1;

L1: tmp1 = n - 1;
tmp2 = fib(tmp1);

L2: tmp1 = n - 2;
tmp3 = fib(tmp1);

L3: tmp1 = tmp2 + tmp3;
return tmp1;

}

n = 3

return address
last frame pointer
tmp1 = 2
tmp2 =
tmp3 =
n = 2

return address
last frame pointer
tmp1 = 0
tmp2 = 1
tmp3 =
n = 0

return address
last frame pointer
tmp1 = 1
tmp2 =
tmp3 =

FP

SP



Executing fib(3)

int fib(int n) {
int tmp1, tmp2, tmp3;
tmp1 = n < 2;
if (!tmp1) goto L1;
return 1;

L1: tmp1 = n - 1;
tmp2 = fib(tmp1);

L2: tmp1 = n - 2;
tmp3 = fib(tmp1);

L3: tmp1 = tmp2 + tmp3;
return tmp1;

}

n = 3

return address
last frame pointer
tmp1 = 2
tmp2 =
tmp3 =
n = 2

return address
last frame pointer
tmp1 = 2
tmp2 = 1
tmp3 = 1

FP

SP



Executing fib(3)

int fib(int n) {
int tmp1, tmp2, tmp3;
tmp1 = n < 2;
if (!tmp1) goto L1;
return 1;

L1: tmp1 = n - 1;
tmp2 = fib(tmp1);

L2: tmp1 = n - 2;
tmp3 = fib(tmp1);

L3: tmp1 = tmp2 + tmp3;
return tmp1;

}

n = 3

return address
last frame pointer
tmp1 = 1
tmp2 = 2
tmp3 =
n = 1

FP

SP



Executing fib(3)

int fib(int n) {
int tmp1, tmp2, tmp3;
tmp1 = n < 2;
if (!tmp1) goto L1;
return 1;

L1: tmp1 = n - 1;
tmp2 = fib(tmp1);

L2: tmp1 = n - 2;
tmp3 = fib(tmp1);

L3: tmp1 = tmp2 + tmp3;
return tmp1;

}

n = 3

return address
last frame pointer
tmp1 = 1
tmp2 = 2
tmp3 =
n = 1

return address
last frame pointer
tmp1 = 1
tmp2 =
tmp3 =

FP

SP



Executing fib(3)

int fib(int n) {
int tmp1, tmp2, tmp3;
tmp1 = n < 2;
if (!tmp1) goto L1;
return 1;

L1: tmp1 = n - 1;
tmp2 = fib(tmp1);

L2: tmp1 = n - 2;
tmp3 = fib(tmp1);

L3: tmp1 = tmp2 + tmp3;
return tmp1;

}

n = 3

return address
last frame pointer
tmp1 = 3← result
tmp2 = 2
tmp3 = 1

FP

SP



Allocating Fixed-Size Arrays

Local arrays with fixed size are easy to stack.

void foo()
{
int a;
int b[10];
int c;

}

return address ← FP
a

b[9]
...

b[0]
c ← FP − 48



Allocating Variable-Sized Arrays

Variable-sized local arrays aren’t as easy.

void foo(int n)
{
int a;
int b[n];
int c;

}

return address ← FP
a

b[n-1]
...

b[0]
c ← FP − ?

Doesn’t work: generated code expects a fixed offset for c.
Even worse for multi-dimensional arrays.



Allocating Variable-Sized Arrays

As always:
add a level of indirection

void foo(int n)
{
int a;
int b[n];
int c;

}

return address ← FP
a

b-ptr

c
b[n-1]

...
b[0]

Variables remain constant offset from frame pointer.



Heap-Allocated Storage

Static works when you know everything beforehand and
always need it.

Stack enables, but also requires, recursive behavior.

A heap is a region of memory where blocks can be allocated
and deallocated in any order.

(These heaps are different than those in, e.g., heapsort)



Dynamic Storage Allocation in C

struct point {
int x, y;

};

int play_with_points(int n)
{
int i;
struct point *points;

points = malloc(n * sizeof(struct point));

for ( i = 0 ; i < n ; i++ ) {
points[i].x = random();
points[i].y = random();

}

/* do something with the array */

free(points);
}
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Dynamic Storage Allocation

Rules:

Each allocated block contiguous (no holes)

Blocks stay fixed once allocated

malloc()

Find an area large enough for requested block

Mark memory as allocated

free()

Mark the block as unallocated



Simple Dynamic Storage Allocation

Maintaining information about free memory

Simplest: Linked list

The algorithm for locating a suitable block

Simplest: First-fit

The algorithm for freeing an allocated block

Simplest: Coalesce adjacent free blocks



Simple Dynamic Storage Allocation
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Simple Dynamic Storage Allocation
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Fragmentation

malloc( ) seven times give

free() four times gives

malloc( ) ?

Need more memory; can’t use fragmented memory.

Zebra Tapir



Fragmentation and Handles

Standard CS solution: Add another layer of indirection.

Always reference memory through “handles.”

*a *b *c Pointers

**a **b **c Handles

The original
Macintosh did
this to save
memory.
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Automatic Garbage Collection

Entrust the runtime system with freeing heap objects

Now common: Java, C#, Javascript, Python, Ruby, OCaml
and most functional languages

Advantages

Much easier for the
programmer

Greatly improves reliability:
no memory leaks,
double-freeing, or other
memory management errors

Disadvantages

Slower, sometimes
unpredictably so

May consume more memory



Reference Counting
What and when to free?

Ï Maintain count of references to each object
Ï Free when count reaches zero

let a = (42, 17) in
let b = [a;a] in
let c = (1,2)::b in
b

0 42, 17
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Reference Counting
What and when to free?

Ï Maintain count of references to each object
Ï Free when count reaches zero

let a = (42, 17) in
let b = [a;a] in
let c = (1,2)::b in
b

2 42, 17
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Issues with Reference Counting

Circular structures defy reference counting:

a b

Neither is reachable, yet both have non-zero reference
counts.

High overhead (must update counts constantly), although
incremental



Mark-and-Sweep
What and when to free?

Ï Stop-the-world algorithm invoked when memory full
Ï Breadth-first-search marks all reachable memory
Ï All unmarked items freed
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Mark-and-Sweep
What and when to free?

Ï Stop-the-world algorithm invoked when memory full
Ï Breadth-first-search marks all reachable memory
Ï All unmarked items freed

let a = (42, 17) in
let b = [a;a] in
let c = (1,2)::b in
b
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Mark-and-Sweep

Mark-and-sweep is faster overall; may induce big pauses

Mark-and-compact variant also moves or copies reachable
objects to eliminate fragmentation

Incremental garbage collectors try to avoid doing
everything at once

Most objects die young; generational garbage collectors
segregate heap objects by age

Parallel garbage collection tricky

Real-time garbage collection tricky



Single Inheritance
Simple: Add new fields to end of the object

Fields in base class always at same offset in derived class
(compiler never reorders)

Consequence: Derived classes can never remove fields

C++
class Shape {
double x, y;

};

class Box : Shape {
double h, w;

};

class Circle : Shape {
double r;

};

Equivalent C
struct Shape {

double x, y;
};

struct Box {
double x, y;
double h, w;

};

struct Circle {
double x, y;
double r;

};



Virtual Functions

class Shape {
virtual void draw(); // Invoked by object’s run-time class

}; // not its compile-time type.

class Line : public Shape {
void draw();

}

class Arc : public Shape {
void draw();

};

Shape *s[10];
s[0] = new Line;
s[1] = new Arc;
s[0]->draw(); // Invoke Line::draw()
s[1]->draw(); // Invoke Arc::draw()



Virtual Functions
Trick: add to each object a pointer to the virtual table for its
type, filled with pointers to the virtual functions.

Like the objects themselves, the virtual table for each
derived type begins identically.

struct A {
int x;
virtual void Foo();
virtual void Bar();

};

struct B : A {
int y;
virtual void Foo();
virtual void Baz();

};

A a1;
A a2;
B b1;

A::Foo
A::Bar

A’s Vtbl
B::Foo
A::Bar
B::Baz

B’s Vtbl

vptr
x

a1

vptr
x

a2

vptr
x
y

b1



Stack-Based IR: Java Bytecode

int gcd(int a, int b) {
while (a != b) {

if (a > b)
a -= b;

else
b -= a;

}
return a;

}

# javap -c Gcd

Method int gcd(int, int)
0 goto 19

3 iload_1 // Push a
4 iload_2 // Push b
5 if_icmple 15 // if a <= b goto 15

8 iload_1 // Push a
9 iload_2 // Push b
10 isub // a - b
11 istore_1 // Store new a
12 goto 19

15 iload_2 // Push b
16 iload_1 // Push a
17 isub // b - a
18 istore_2 // Store new b

19 iload_1 // Push a
20 iload_2 // Push b
21 if_icmpne 3 // if a != b goto 3

24 iload_1 // Push a
25 ireturn // Return a



Stack-Based IRs

Advantages:

Ï Trivial translation of expressions
Ï Trivial interpreters
Ï No problems with exhausting registers
Ï Often compact

Disadvantages:

Ï Semantic gap between stack operations and modern
register machines

Ï Hard to see what communicates with what
Ï Difficult representation for optimization



Register-Based IR: Mach SUIF

int gcd(int a, int b) {
while (a != b) {

if (a > b)
a -= b;

else
b -= a;

}
return a;

}

gcd:
gcd._gcdTmp0:
sne $vr1.s32 <- gcd.a,gcd.b
seq $vr0.s32 <- $vr1.s32,0
btrue $vr0.s32,gcd._gcdTmp1 // if !(a != b) goto Tmp1

sl $vr3.s32 <- gcd.b,gcd.a
seq $vr2.s32 <- $vr3.s32,0
btrue $vr2.s32,gcd._gcdTmp4 // if !(a<b) goto Tmp4

mrk 2, 4 // Line number 4
sub $vr4.s32 <- gcd.a,gcd.b
mov gcd._gcdTmp2 <- $vr4.s32
mov gcd.a <- gcd._gcdTmp2 // a = a - b
jmp gcd._gcdTmp5

gcd._gcdTmp4:
mrk 2, 6
sub $vr5.s32 <- gcd.b,gcd.a
mov gcd._gcdTmp3 <- $vr5.s32
mov gcd.b <- gcd._gcdTmp3 // b = b - a

gcd._gcdTmp5:
jmp gcd._gcdTmp0

gcd._gcdTmp1:
mrk 2, 8
ret gcd.a // Return a



Register-Based IRs

Most common type of IR

Advantages:

Ï Better representation for register machines
Ï Dataflow is usually clear

Disadvantages:

Ï Slightly harder to synthesize from code
Ï Less compact
Ï More complicated to interpret



Optimization In Action

int gcd(int a, int b) {
while (a != b) {
if (a < b) b -= a;
else a -= b;

}
return a;

}

GCC on SPARC

gcd: save %sp, -112, %sp
st %i0, [%fp+68]
st %i1, [%fp+72]

.LL2: ld [%fp+68], %i1
ld [%fp+72], %i0
cmp %i1, %i0
bne .LL4
nop
b .LL3
nop

.LL4: ld [%fp+68], %i1
ld [%fp+72], %i0
cmp %i1, %i0
bge .LL5
nop
ld [%fp+72], %i0
ld [%fp+68], %i1
sub %i0, %i1, %i0
st %i0, [%fp+72]
b .LL2
nop

.LL5: ld [%fp+68], %i0
ld [%fp+72], %i1
sub %i0, %i1, %i0
st %i0, [%fp+68]
b .LL2
nop

.LL3: ld [%fp+68], %i0
ret
restore

GCC -O7 on SPARC

gcd: cmp %o0, %o1
be .LL8
nop

.LL9: bge,a .LL2
sub %o0, %o1, %o0
sub %o1, %o0, %o1

.LL2: cmp %o0, %o1
bne .LL9
nop

.LL8: retl
nop



Typical Optimizations

Ï Folding constant expressions
1+3 → 4

Ï Removing dead code
if (0) { . . . } → nothing

Ï Moving variables from memory to registers

ld [%fp+68], %i1
sub %i0, %i1, %i0
st %i0, [%fp+72]

→ sub %o1, %o0, %o1

Ï Removing unnecessary data movement
Ï Filling branch delay slots (Pipelined RISC processors)
Ï Common subexpression elimination



Machine-Dependent vs. -Independent Optimization

No matter what the machine is, folding constants and
eliminating dead code is always a good idea.

a = c + 5 + 3;
if (0 + 3) {
b = c + 8;

}

→ b = a = c + 8;

However, many optimizations are processor-specific:

Ï Register allocation depends on how many registers the
machine has

Ï Not all processors have branch delay slots to fill
Ï Each processor’s pipeline is a little different



Basic Blocks

int gcd(int a, int b) {
while (a != b) {
if (a < b) b -= a;
else a -= b;

}
return a;

}

lower→

A: sne t, a, b
bz E, t
slt t, a, b
bnz B, t
sub b, b, a
jmp C

B: sub a, a, b
C: jmp A
E: ret a

split→

A: sne t, a, b
bz E, t

slt t, a, b
bnz B, t

sub b, b, a
jmp C

B: sub a, a, b

C: jmp A

E: ret a

The statements in a basic block all run if the first one does.

Starts with a statement following a conditional branch or is
a branch target.

Usually ends with a control-transfer statement.



Control-Flow Graphs

A CFG illustrates the flow of control among basic blocks.

A:
sne t, a, b
bz E, t

slt t, a, b
bnz B, t

sub b, b, a
jmp C

B:
sub a, a, b

C:
jmp A

E:
ret a

A:
sne t, a,
b
bz E, t

slt t, a,
b
bnz B, t

sub b, b,
a
jmp C

B:
sub a, a,
b

E:
ret a

C:
jmp A



Lambda Expressions
Function application written in prefix form. “Add four and
five” is

(+ 4 5)

Evaluation: select a redex and evaluate it:

(+ (∗ 5 6) (∗ 8 3)) → (+ 30 (∗ 8 3))
→ (+ 30 24)
→ 54

Often more than one way to proceed:

(+ (∗ 5 6) (∗ 8 3)) → (+ (∗ 5 6) 24)
→ (+ 30 24)
→ 54

Simon Peyton Jones, The Implementation of Functional Programming
Languages, Prentice-Hall, 1987.



Function Application and Currying

Function application is written as juxtaposition:

f x

Every function has exactly one argument.
Multiple-argument functions, e.g., +, are represented by
currying, named after Haskell Brooks Curry (1900–1982). So,

(+ x)

is the function that adds x to its argument.

Function application associates left-to-right:

(+ 3 4) = ((+ 3) 4)
→ 7



Lambda Abstraction

The only other thing in the lambda calculus is lambda
abstraction: a notation for defining unnamed functions.

(λx . + x 1)

( λ x . + x 1 )
↑ ↑ ↑ ↑ ↑ ↑

That function of x that adds x to 1



The Syntax of the Lambda Calculus

expr ::= expr expr
| λ variable . expr
| constant
| variable
| (expr)

Constants are numbers and built-in functions;
variables are identifiers.



Beta-Reduction

Evaluation of a lambda abstraction—beta-reduction—is just
substitution:

(λx . + x 1) 4 → (+ 4 1)
→ 5

The argument may appear more than once

(λx . + x x) 4 → (+ 4 4)
→ 8

or not at all

(λx . 3) 5 → 3



Free and Bound Variables

(λx . + x y) 4

Here, x is like a function argument but y is like a global
variable.

Technically, x occurs bound and y occurs free in

(λx . + x y)

However, both x and y occur free in

(+ x y)



Beta-Reduction More Formally

(λx . E) F →β E ′

where E ′ is obtained from E by replacing every instance of x
that appears free in E with F .

The definition of free and bound mean variables have
scopes. Only the rightmost x appears free in

(λx . + (− x 1)) x 3

so

(λx . (λx . + (− x 1)) x 3) 9 → (λ x . + (− x 1)) 9 3
→ + (− 9 1) 3
→ + 8 3
→ 11



Alpha-Conversion

One way to confuse yourself less is to do α-conversion:
renaming a λ argument and its bound variables.

Formal parameters are only names: they are correct if they
are consistent.

(λx . (λx . + (− x 1)) x 3) 9 ↔ (λx . (λy . + (− y 1)) x 3) 9
→ ((λy . + (− y 1)) 9 3)
→ (+ (− 9 1) 3)
→ (+ 8 3)
→ 11



Beta-Abstraction and Eta-Conversion

Running β-reduction in reverse, leaving the “meaning” of a
lambda expression unchanged, is called beta abstraction:

+ 4 1 ← (λx . + x 1) 4

Eta-conversion is another type of conversion that leaves
“meaning” unchanged:

(λx . + 1 x) ↔η (+ 1)

Formally, if F is a function in which x does not occur free,

(λx . F x) ↔η F



Reduction Order

The order in which you reduce things can matter.

(λx . λy . y)
(
(λz . z z) (λz . z z)

)
Two things can be reduced:

(λz . z z) (λz . z z)

(λx . λy . y) ( · · · )

However,

(λz . z z) (λz . z z) → (λz . z z) (λz . z z)

(λx . λy . y) ( · · · ) → (λy . y)



Normal Form

A lambda expression that cannot be β-reduced is in normal
form. Thus,

λy . y

is the normal form of

(λx . λy . y)
(
(λz . z z) (λz . z z)

)
Not everything has a normal form. E.g.,

(λz . z z) (λz . z z)

can only be reduced to itself, so it never produces an
non-reducible expression.



Normal Form

Can a lambda expression have more than one normal form?

Church-Rosser Theorem I: If E1 ↔ E2, then there exists
an expression E such that E1 → E and E2 → E .

Corollary. No expression may have two distinct normal forms.

Proof. Assume E1 and E2 are distinct normal forms for E :
E ↔ E1 and E ↔ E2. So E1 ↔ E2 and by the Church-Rosser
Theorem I, there must exist an F such that E1 → F and
E2 → F . However, since E1 and E2 are in normal form,
E1 = F = E2, a contradiction.



Normal-Order Reduction

Not all expressions have normal forms, but is there a
reliable way to find the normal form if it exists?

Church-Rosser Theorem II: If E1 → E2 and E2 is in normal form,
then there exists a normal order reduction sequence from E1

to E2.

Normal order reduction: reduce the leftmost outermost
redex.



Normal-Order Reduction

((
λx .

(
(λw . λz . + w z) 1

)) (
(λx . x x) (λx . x x)

)) (
(λy . + y 1) (+ 2 3)

)

leftmost outermost

leftmost innermost
λx

λw

λz

+ w
z

1

λx

x x

λx

x x

λy

+ y

1 + 2

3



Recursion

Where is recursion in the lambda calculus?

F AC =
(
λn . I F (= n 0) 1

(
∗ n

(
F AC (− n 1)

)))

This does not work: functions are unnamed in the lambda
calculus. But it is possible to express recursion as a function.

F AC = (λn . . . . F AC . . .)
←β (λ f . (λn . . . . f . . .)) F AC
= H F AC

That is, the factorial function, F AC , is a fixed point of the
(non-recursive) function H :

H = λ f . λn . I F (= n 0) 1 (∗ n ( f (− n 1)))



Recursion
Let’s invent a function Y that computes F AC from H , i.e.,
F AC = Y H :

F AC = H F AC
Y H = H (Y H)

F AC 1 = Y H 1
= H (Y H) 1
= (λ f . λn . I F (= n 0) 1 (∗ n ( f (− n 1)))) (Y H) 1
→ (λn . I F (= n 0) 1 (∗ n ((Y H) (− n 1)))) 1
→ I F (= 1 0) 1 (∗ 1 ((Y H) (− 1 1)))
→ ∗ 1 (Y H 0)
= ∗ 1 (H (Y H) 0)
= ∗ 1 ((λ f . λn . I F (= n 0) 1 (∗ n ( f (− n 1)))) (Y H) 0)
→ ∗ 1 ((λn . I F (= n 0) 1 (∗ n (Y H (− n 1)))) 0)
→ ∗ 1 (I F (= 0 0) 1 (∗ 0 (Y H (− 0 1))))
→ ∗ 1 1
→ 1



The Y Combinator
Here’s the eye-popping part: Y can be a simple lambda
expression.

Y =

= λ f .
(
λx . f (x x)

) (
λx . f (x x)

)
Y H =

(
λ f .

(
λx . f (x x)

) (
λx . f (x x)

))
H

→ (
λx . H (x x)

) (
λx . H (x x)

)
→ H

((
λx . H (x x)

) (
λx . H (x x)

))
↔ H

( (
λ f .

(
λx . f (x x)

) (
λx . f (x x)

))
H

)
= H (Y H)

“Y: The function that takes a function f and returns
f ( f ( f ( f (· · · ))))”
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