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Storage Classes and Memory Layout

Code

StaticStatic: objects allocated at compile
time; persist throughout run

Heap
Heap: objects created/destroyed in
any order; automatic garbage
collection optional

Program
break

Stack
Stack: objects created/destroyed in
last-in, first-out order

Stack
pointer

Low
memory

High
memory



Static Objects

class Example {
public static final int a = 3;

public void hello() {
System.out.println("Hello");

}
}

Examples

Static class variable

Code for hello method

String constant “Hello”

Information about the
Example class

Advantages

Zero-cost memory
management

Often faster access (address a
constant)

No out-of-memory danger

Disadvantages

Size and number must be
known beforehand

Wasteful if sharing is possible



The Stack and Activation
Records



Stack-Allocated Objects

Natural for supporting recursion.

Idea: some objects persist from when a procedure is called
to when it returns.

Naturally implemented with a stack: linear array of memory
that grows and shrinks at only one boundary.

Each invocation of a procedure gets its own frame
(activation record) where it stores its own local variables
and bookkeeping information.



An Activation Record: The State Before Calling bar

int foo(int a, int b) {
int c, d;
bar(1, 2, 3);

}

From Callerb
a

Return addr.
Old frame ptr.

Registers

c
d
3
2
1

Frame Ptr.

Stack Ptr.



Recursive Fibonacci
(Real C)
int fib(int n) {

if (n<2)

return 1;
else
return

fib(n-1)
+
fib(n-2);

}

(Assembly-like C)
int fib(int n) {

int tmp1, tmp2, tmp3;
tmp1 = n < 2;
if (!tmp1) goto L1;
return 1;

L1: tmp1 = n - 1;
tmp2 = fib(tmp1);

L2: tmp1 = n - 2;
tmp3 = fib(tmp1);

L3: tmp1 = tmp2 + tmp3;
return tmp1;

}

fib(3)

fib(2)

fib(1) fib(0)

fib(1)



Executing fib(3)

int fib(int n) {
int tmp1, tmp2, tmp3;
tmp1 = n < 2;
if (!tmp1) goto L1;
return 1;

L1: tmp1 = n - 1;
tmp2 = fib(tmp1);

L2: tmp1 = n - 2;
tmp3 = fib(tmp1);

L3: tmp1 = tmp2 + tmp3;
return tmp1;

}

n = 3
SP
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Executing fib(3)

int fib(int n) {
int tmp1, tmp2, tmp3;
tmp1 = n < 2;
if (!tmp1) goto L1;
return 1;
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tmp2 = fib(tmp1);

L2: tmp1 = n - 2;
tmp3 = fib(tmp1);
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}

n = 3

return address
last frame pointer
tmp1 = 3← result
tmp2 = 2
tmp3 = 1

FP

SP



Allocating Fixed-Size Arrays

Local arrays with fixed size are easy to stack.

void foo()
{
int a;
int b[10];
int c;

}

return address ← FP
a

b[9]
...

b[0]
c ← FP − 48



Allocating Variable-Sized Arrays

Variable-sized local arrays aren’t as easy.

void foo(int n)
{
int a;
int b[n];
int c;

}

return address ← FP
a

b[n-1]
...

b[0]
c ← FP − ?

Doesn’t work: generated code expects a fixed offset for c.
Even worse for multi-dimensional arrays.



Allocating Variable-Sized Arrays

As always:
add a level of indirection

void foo(int n)
{
int a;
int b[n];
int c;

}

return address ← FP
a

b-ptr

c
b[n-1]

...
b[0]

Variables remain constant offset from frame pointer.



Nesting Function Definitions

let articles words =

let report w =

let count = List.length
(List.filter ((=) w) words)

in w ^ ": " ^
string_of_int count

in String.concat ", "
(List.map report ["a"; "the"])

in articles
["the"; "plt"; "class"; "is";
"a"; "pain"; "in";
"the"; "butt"]

let count words w = List.length
(List.filter ((=) w) words) in

let report words w = w ^ ": " ^
string_of_int (count words w) in

let articles words =
String.concat ", "
(List.map (report words)
["a"; "the"]) in

articles
["the"; "plt"; "class"; "is";
"a"; "pain"; "in";
"the"; "butt"]

Produces “a: 1, the: 2”



Implementing Nested Functions with Access Links

let a x s =

let b y =

let c z = z + s in

let d w = c (w+1) in

d (y+1) in (* b *)

let e q = b (q+1) in

e (x+1) (* a *)

What does “a 5 42” give?

(access link)
x = 5
s = 42

a:
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let b y =

let c z = z + s in

let d w = c (w+1) in

d (y+1) in (* b *)
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Implementing Nested Functions with Access Links

let a x s =

let b y =

let c z = z + s in

let d w = c (w+1) in

d (y+1) in (* b *)

let e q = b (q+1) in

e (x+1) (* a *)

What does “a 5 42” give?

(access link)
x = 5
s = 42

a:

(access link)
q = 6

e:

(access link)
y = 7b:

(access link)
w = 8

d:

(access link)
z = 9

c:



In-Memory Layout Issues



Layout of Records and Unions

Modern processors have byte-addressable memory.

0

1

2

3

The IBM 360 (c. 1964)
helped to popularize
byte-addressable memory.

Many data types (integers, addresses, floating-point
numbers) are wider than a byte.

16-bit integer: 1 0

32-bit integer: 3 2 1 0



Layout of Records and Unions

Modern memory systems read
data in 32-, 64-, or 128-bit
chunks:

3 2 1 0

7 6 5 4

11 10 9 8

Reading an aligned 32-bit
value is fast: a single
operation.

3 2 1 0

7 6 5 4

11 10 9 8

It is harder to read an
unaligned value: two reads
plus shifting

3 2 1 0

7 6 5 4

11 10 9 8

6 5 4 3

SPARC and ARM prohibit
unaligned accesses

MIPS has special unaligned
load/store instructions

x86, 68k run more slowly with
unaligned accesses



Padding
To avoid unaligned accesses, the C compiler pads the layout
of unions and records.

Rules:

Ï Each n-byte object must start on a multiple of n bytes
(no unaligned accesses).

Ï Any object containing an n-byte object must be of size
mn for some integer m (aligned even when arrayed).

struct padded {
int x; /* 4 bytes */
char z; /* 1 byte */
short y; /* 2 bytes */
char w; /* 1 byte */

};

x x x x

y y z

w

struct padded {
char a; /* 1 byte */
short b; /* 2 bytes */
short c; /* 2 bytes */

};

b b a

c c



Unions

A C struct has a separate space for each field; a C union
shares one space among all fields

union intchar {
int i; /* 4 bytes */
char c; /* 1 byte */

};

i i i i/c

union twostructs {
struct {

char c; /* 1 byte */
int i; /* 4 bytes */

} a;
struct {

short s1; /* 2 bytes */
short s2; /* 2 bytes */

} b;
};

c

i i i i
or

s2 s2 s1 s1



Arrays

Basic policy in C: an array is
just one object after another
in memory.

int a[10];

a[0] a[0] a[0] a[0]

a[1] a[1] a[1] a[1]

a[9] a[9] a[9] a[9]

...

This is why you need padding
at the end of structs.

struct {
int a;
char c;

} b[2];

a a a a

c

a a a a

c

b[0]

b[1]



Arrays and Aggregate types

The largest primitive type
dictates the alignment

struct {
short a;
short b;
char c;

} d[4];

b b a a

a a c

c b b

b b a a

a a c

c b b

d[0]

d[1]

d[2]

d[3]



Arrays of Arrays

char a[4]; a[3] a[2] a[1] a[0]

char a[3][4];

a[0][3] a[0][2] a[0][1] a[0][0]

a[1][3] a[1][2] a[1][1] a[1][0]

a[2][3] a[2][2] a[2][1] a[2][0]

a[0]

a[1]

a[2]



The Heap



Heap-Allocated Storage

Static works when you know everything beforehand and
always need it.

Stack enables, but also requires, recursive behavior.

A heap is a region of memory where blocks can be allocated
and deallocated in any order.

(These heaps are different than those in, e.g., heapsort)



Dynamic Storage Allocation in C

struct point {
int x, y;

};

int play_with_points(int n)
{
int i;
struct point *points;

points = malloc(n * sizeof(struct point));

for ( i = 0 ; i < n ; i++ ) {
points[i].x = random();
points[i].y = random();

}

/* do something with the array */

free(points);
}



Dynamic Storage Allocation

↓ free( )

↓ malloc( )
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Dynamic Storage Allocation

↓ free( )

↓ malloc( )



Dynamic Storage Allocation

Rules:

Each allocated block contiguous (no holes)

Blocks stay fixed once allocated

malloc()

Find an area large enough for requested block

Mark memory as allocated

free()

Mark the block as unallocated



Simple Dynamic Storage Allocation

Maintaining information about free memory

Simplest: Linked list

The algorithm for locating a suitable block

Simplest: First-fit

The algorithm for freeing an allocated block

Simplest: Coalesce adjacent free blocks



Simple Dynamic Storage Allocation

S N S S N

malloc( )

S S N S S N

free( )

S S N
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Simple Dynamic Storage Allocation

S N S S N

malloc( )

S S N S S N

free( )

S S N



Dynamic Storage Allocation

Many, many other approaches.

Other “fit” algorithms

Segregation of objects by size

More clever data structures



Heap Variants

Memory pools: Differently-managed heap areas

Stack-based pool: only free whole pool at once

Nice for build-once data structures

Single-size-object pool:

Fit, allocation, etc. much faster

Good for object-oriented programs



Fragmentation

malloc( ) seven times give

free() four times gives

malloc( ) ?

Need more memory; can’t use fragmented memory.

Zebra Tapir



Fragmentation and Handles

Standard CS solution: Add another layer of indirection.

Always reference memory through “handles.”

*a *b *c Pointers

**a **b **c Handles

The original
Macintosh did
this to save
memory.
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Automatic Garbage
Collection



Automatic Garbage Collection

Entrust the runtime system with freeing heap objects

Now common: Java, C#, Javascript, Python, Ruby, OCaml
and most functional languages

Advantages

Much easier for the
programmer

Greatly improves reliability:
no memory leaks,
double-freeing, or other
memory management errors

Disadvantages

Slower, sometimes
unpredictably so

May consume more memory



Reference Counting
What and when to free?

Ï Maintain count of references to each object
Ï Free when count reaches zero

let a = (42, 17) in
let b = [a;a] in
let c = (1,2)::b in
b

0 42, 17



Reference Counting
What and when to free?

Ï Maintain count of references to each object
Ï Free when count reaches zero

let a = (42, 17) in
let b = [a;a] in
let c = (1,2)::b in
b

1 42, 17

a



Reference Counting
What and when to free?

Ï Maintain count of references to each object
Ï Free when count reaches zero

let a = (42, 17) in
let b = [a;a] in
let c = (1,2)::b in
b

3 42, 17

a

0 1



Reference Counting
What and when to free?

Ï Maintain count of references to each object
Ï Free when count reaches zero

let a = (42, 17) in
let b = [a;a] in
let c = (1,2)::b in
b

3 42, 17

a

1 1

b



Reference Counting
What and when to free?

Ï Maintain count of references to each object
Ï Free when count reaches zero

let a = (42, 17) in
let b = [a;a] in
let c = (1,2)::b in
b

3 42, 17

a

2 1

b

1 1, 2

0



Reference Counting
What and when to free?

Ï Maintain count of references to each object
Ï Free when count reaches zero

let a = (42, 17) in
let b = [a;a] in
let c = (1,2)::b in
b

3 42, 17

a

2 1

b

1 1, 2

1

c



Reference Counting
What and when to free?

Ï Maintain count of references to each object
Ï Free when count reaches zero

let a = (42, 17) in
let b = [a;a] in
let c = (1,2)::b in
b

2 42, 17

2 1

b

1 1, 2

1

c



Reference Counting
What and when to free?

Ï Maintain count of references to each object
Ï Free when count reaches zero

let a = (42, 17) in
let b = [a;a] in
let c = (1,2)::b in
b

2 42, 17

2 1

b

1 1, 2

0



Reference Counting
What and when to free?

Ï Maintain count of references to each object
Ï Free when count reaches zero

let a = (42, 17) in
let b = [a;a] in
let c = (1,2)::b in
b

2 42, 17

1 1

b

0 1, 2



Reference Counting
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Issues with Reference Counting

Circular structures defy reference counting:

a b

Neither is reachable, yet both have non-zero reference
counts.

High overhead (must update counts constantly), although
incremental



Mark-and-Sweep
What and when to free?

Ï Stop-the-world algorithm invoked when memory full
Ï Breadth-first-search marks all reachable memory
Ï All unmarked items freed

let a = (42, 17) in
let b = [a;a] in
let c = (1,2)::b in
b
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Mark-and-Sweep
What and when to free?
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Mark-and-Sweep

Mark-and-sweep is faster overall; may induce big pauses

Mark-and-compact variant also moves or copies reachable
objects to eliminate fragmentation

Incremental garbage collectors try to avoid doing
everything at once

Most objects die young; generational garbage collectors
segregate heap objects by age

Parallel garbage collection tricky

Real-time garbage collection tricky



Shared Libraries and
Dynamic Linking



Shared Libraries and Dynamic Linking

The 1980s GUI/WIMP revolution required many large
libraries (the Athena widgets, Motif, etc.)

Under a static linking model, each executable using a library
gets a copy of that library’s code.

Address 0:

libXaw.a
libX11.a

xeyes

libXaw.a
libX11.a
xterm libXaw.a

libX11.a
xclock

Wasteful: running many GUI programs at once fills memory
with nearly identical copies of each library.

Something had to be done: another level of indirection.
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Shared Libraries: First Attempt

Most code makes assumptions about its location.

First solution (early Unix System V R3) required each shared
library to be located at a unique address:

Address 0:

libXm.so

libXaw.so libXaw.so
libX11.so libX11.so libX11.so

netscape
xterm

xeyes

Obvious disadvantage: must ensure each new shared library
located at a new address.

Works fine if there are only a few libraries; tended to
discourage their use.



Shared Libraries: First Attempt

Most code makes assumptions about its location.

First solution (early Unix System V R3) required each shared
library to be located at a unique address:

Address 0:

libXm.so

libXaw.so libXaw.so
libX11.so libX11.so libX11.so

netscape
xterm

xeyes

Obvious disadvantage: must ensure each new shared library
located at a new address.

Works fine if there are only a few libraries; tended to
discourage their use.



Shared Libraries

Problem fundamentally is that each program may need to
see different libraries each at a different address.

libXaw.so
libX11.so

xeyes

libXaw.so
libX11.so

xterm

libXm.so

libX11.so

netscape



Position-Independent Code

Solution: Require the code for libraries to be
position-independent. Make it so they can run anywhere in
memory.

As always, add another level of indirection:

Ï All branching is PC-relative
Ï All data must be addressed relative to a base register.
Ï All branching to and from this code must go through a

jump table.



Position-Independent Code for bar()

Normal unlinked
code

save %sp, -112, %sp
sethi %hi(0), %o0
R_SPARC_HI22 .bss

mov %o0, %o0
R_SPARC_LO10 .bss

sethi %hi(0), %o1
R_SPARC_HI22 a

mov %o1, %o1
R_SPARC_LO10 a

call 14
R_SPARC_WDISP30 strcpy

nop
sethi %hi(0), %o0
R_SPARC_HI22 .bss

mov %o0, %o0
R_SPARC_LO10 .bss

call 24
R_SPARC_WDISP30 baz

nop
ret
restore

gcc -fpic -shared

save %sp, -112, %sp
sethi %hi(0x10000), %l7
call 8e0 ! add PC to %l7
add %l7, 0x198, %l7
ld [ %l7 + 0x20 ], %o0
ld [ %l7 + 0x24 ], %o1

call 10a24

Actually just a stub

! strcpy

nop
ld [ %l7 + 0x20 ], %o0

call

call is PC-relative

10a3c ! baz

nop
ret
restore



Objects and Inheritance



Single Inheritance
Simple: Add new fields to end of the object

Fields in base class always at same offset in derived class
(compiler never reorders)

Consequence: Derived classes can never remove fields

C++
class Shape {
double x, y;

};

class Box : Shape {
double h, w;

};

class Circle : Shape {
double r;

};

Equivalent C
struct Shape {

double x, y;
};

struct Box {
double x, y;
double h, w;

};

struct Circle {
double x, y;
double r;

};



Virtual Functions

class Shape {
virtual void draw(); // Invoked by object’s run-time class

}; // not its compile-time type.

class Line : public Shape {
void draw();

}

class Arc : public Shape {
void draw();

};

Shape *s[10];
s[0] = new Line;
s[1] = new Arc;
s[0]->draw(); // Invoke Line::draw()
s[1]->draw(); // Invoke Arc::draw()



Virtual Functions
Trick: add to each object a pointer to the virtual table for its
type, filled with pointers to the virtual functions.

Like the objects themselves, the virtual table for each
derived type begins identically.

struct A {
int x;
virtual void Foo();
virtual void Bar();

};

struct B : A {
int y;
virtual void Foo();
virtual void Baz();

};

A a1;
A a2;
B b1;

A::Foo
A::Bar

A’s Vtbl
B::Foo
A::Bar
B::Baz

B’s Vtbl

vptr
x

a1

vptr
x

a2

vptr
x
y

b1



Exceptions



C++’s Exceptions

struct Except {} ex; // This struct functions as an exception

void top(void) {
try {
child();

} catch (Except e) { // throw sends control here
printf("oops\n");

}
}

void child() {
child2();

}

void child2() {
throw ex; // Pass control up to the catch block

}

1

2 3



C’s setjmp/longjmp: Idiosyncratic Exceptions
#include <setjmp.h>

jmp_buf closure; /* return address, stack & frame ptrs. */

void top(void) {
switch ( setjmp(closure) ) { /* normal: store closure, return 0 */

/* longjmp jumps here, returns 1 */

case 0: child(); /* unexceptional case */
break;

case 1: break; /* longjmp( ,1) called */
}

}

void child() {
child2();

}

void child2() {
longjmp(closure, 1);

}

1

2

3

4

5



Implementing Exceptions

One way: maintain a stack of exception handlers
try {

child();

} catch (Ex e) {
foo();

}

void child() {
child2();

}

void child2() {
throw ex;

}

push(Ex, Handler); // Push handler on stack

child();
pop(); // Normal termination
goto Exit; // Jump over "catch"

Handler:
foo(); // Body of "catch"

Exit:

void child() {
child2();

}

void child2() {
throw(ex); // Unroll stack; find handler

}

Incurs overhead, even when no exceptions thrown



Implementing Exceptions with Tables
Q: When an exception is thrown, where was the last try?

A: Consult a table: relevant handler or “pop” for every PC
1 void foo() {
2
3 try {
4 bar();
5 } catch (Ex1 e) {
6 a();
7 }
8 }
9

10 void bar() {
11 baz();
12 }
13
14 void baz() {
15
16 try {
17 throw ex1;
18 } catch (Ex2 e) {
19 b();
20 }
21 }

Lines Action

1–2 Pop stack
3–5 Handler @ 5 for Ex1

6–15 Pop stack

16–18 Handler @ 18 for Ex2

19–21 Pop stack

1: query

2: pop stack

3: query

4: pop stack

5: query

6: handle
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