
C*

A Language That Could’ve Been

by Khyber Sen



Current State of the Project

 Unfortunately, I didn’t have to time finish the project, and so extremely little 

is done at this point

 I’m sorry, it was really hard this semester

 I received barely any help from my team throughout the semester, and then 

in the last week they decided to leave me as well

 I worked really hard throughout this whole semester

 But evidently, this was not supposed to be a single-person project



What C* Was Meant To Be

Instead, I’ll discuss in this presentation what the 
language C* could have been

Go over the language itself

Discuss the (intended) architecture of the 
compiler



C*: the Language

A systems programming language

Semantic simplicity of C

No hidden costs

But closer to the expressiveness of Zig and Rust

A unique fluid and postfix syntax



Major Features of C*

 Expression-oriented: everything is an expression

 Everything is postfix:

 Except for binary operators

 But method calls, unary operators, control flow keywords can all be postfix

 Helps the programmer code in a straightforward manner

 I.e., very little jumping back and forth is necessary while coding

 Means IDEs can provide better intellisense since everything is left-to-right



Major Features of C*

 Algebraic data types: struct and enum

 Pattern matching

 Monadic error handling with the try ? Operator, Option<T>, and Result<T, E>

 Simple methods that are syntactic-sugar

 Defer for resource cleanup

 Slices

 Monomorphized, unchecked (in C++ style) generics



Compiler 

Architecture

Split into separable 
and serializable 
stages

Allows you to 
develop and test 
each stage in 
isolation

Top-level driver CLI splits a 
compile command into each stage 
and runs them, similar to clang

Development 
environment:

dune

opam

esy



Compiler Stages

Source Lexer Tokens Parse AST Desugar

Desugured AST
Name 

Resolution

HIR

(high-level)
Type check

THIR

(typed high-
level)

Further 
semantic 
analysis

Lower
MIR

(mid-level)
Monomorphize

LIR

(low-level)

Codegen to 
LLVM

LLVM IR

Opt Assembly Assemble Object Link Executable



Desugaring

Many features of C* can be 

desugared into others

method call => function call

for Loop => while loop + Option + try ?

try ? => match

if, if else => match

closures => struct + method

tuples => struct

defer => closure on stack



C*


