
Kazm Language Reference Manual

Aapeli Vuorinen (oav2108) - Systems Architect
Katie Kim (jk4534) - Manager

Molly McNutt (mrm2234) - Tester
Zhonglin Yang (zy2496) - Language Guru

October 2021

Contents

1 Introduction 2

2 Lexical Conventions 2
2.1 Tokens . 2

2.1.1 Identifiers . 2
2.1.2 Keywords . 2
2.1.3 Operators . 2
2.1.4 Literals . 3
2.1.5 Delimiters . 3

3 Types 3
3.1 Default Types . 3
3.2 Data Structures . 4

3.2.1 Tuple . 4
3.2.2 Array . 4

3.3 A Comment on Pointers and References . 4

4 Operators 4
4.1 Arithmetic Operators . 4
4.2 Relational Operators . 5
4.3 Logical Operators . 5
4.4 Expression Operators . 5
4.5 Assignment Operators . 5

5 Declarations 6

6 Statements 6
6.1 If, Else If, Else . 6
6.2 While . 8
6.3 For . 8
6.4 Break . 9

1

7 Functions 9

8 Scope of Variables 9

9 Classes 10
9.1 String Class – Part of the Standard Library 11

10 Example Programs 12

1 Introduction

The Kazm programming language is a statically and strongly typed programming language
which extends the C programming language with lightweight classes implemented as C-style
structs that support methods and instances. General purpose programming functionality
such as input/output will be provided through built-ins and the inclusion of existing C li-
braries; however, we will not provide class inheritance or private methods.

Our motivation is to bridge the gap between C and C++.

2 Lexical Conventions

2.1 Tokens

There are 5 types of tokens: identifiers, keywords, operators, literals, and delimiters. All
white space, except for white space separating tokens or within strings, will be ignored.
Comments will also be ignored.

2.1.1 Identifiers

A Kazm identifier is a sequence of one or more case sensitive ASCII letters, digits, or
underscore ’ ’ characters. Identifiers must not begin with a digit. Identifiers are used for
class or variable types.

2.1.2 Keywords

The following are keywords in the language and cannot be used in other contexts.

int, double, void, bool, char, String, tuple, if, else, for, while, me, break,

return, true, false, class

2.1.3 Operators

Kazm supports the following operators:

• Arithmetic Operators: +, -, *, /, +=, -=, *=, /=

• Relational Operators: ==, !=, >, <, >=, <=

2

• Logical Operators: &&, ||, unary !

• Expression Operators: [], .

2.1.4 Literals

Kazm literals represent a value of a primitive type. Kazm supports the following literals:
int literal, double literal, bool literal, char literal, and string literal.

• int literals (64-bit): Sequence of digit characters 0 through 9 with an optional ”-” in
front to denote negative numbers. Ex: int x = 100; or int y = -100;

• double literals (64-bit): Sequence of digit characters 0 through 9 which contain a
decimal point and digits following the decimal point. Ex: double x = .9; or double
y = 15.73;

• bool literals (8-bit): denoted by the case sensitive constants: true and false

• char literals (8-bit): a character within single quotation marks (’). Ex: char a = ’a’

2.1.5 Delimiters

Comments: Single line comments will begin with // and multi-line comments begin with /*
and end with */

White Space: All white space, except for white space separating tokens or within strings,
will be ignored.

Delimiter Tokens: () , ; { }

• Parentheses () will be used for mathematical expressions and delimit function argu-
ments

• Curly Braces { } help with defining scope

• Semicolons (;) end statements as well as follow the right curly brace } after a class
definition

• Commas (,) will separate function arguments and array elements

3 Types

3.1 Default Types

bool, char, double, int

bool : A primitive data type that takes 1 byte of memory that takes either a true or
false value. Can exist in the program as a boolean literal or as an identifier typed as bool.
Examples: true, bool a = false;

char : A primitive data type that takes 1 byte of memory. Can exist in the program

3

as a character literal or as an identifier typed as char. Examples: ’a’ or char a = ’a’

double: A primitive data type that takes 8 bytes of memory and follows standard dou-
ble precision conventions. Can exist in the program as a double literal or as an identifier
typed as double. Examples: 3.14, double x = 3.14

int: A primitive data type that takes 8 bytes of memory. Can exist in the program as
an integer literal or as an identifier typed as int. Examples: 5, int a = 5

3.2 Data Structures

The following subsection walks through tuples and arrays. Classes will be explored later
in the manual.

3.2.1 Tuple

A tuple in Kazm is of fixed length but can have mixed type. A tuple declaration for a
tuple with n members is formatted as follows: tuple (type 1, type 2, ..., type n)

variable name;

tuple indicates that the following variable is of type tuple. (type 1, type 2, ..., type n)

indicates the types of the tuple elements, and n indicates the total length of the tuple.

3.2.2 Array

An array in Kazm is of variable size. All elements in the array must be of the same type.
An array declaration is formatted as follows:
type[] variable name[length];

type[] indicates the type of the elements in the array. variable name indicates the name of
the array in the declaration. [length] with ”length” being a required parameter indicates
once again that variable name denotes an array of length length.

The user is required to include the length of the array in the declaration unless an ar-
ray is passed as a function parameter. A global function len which returns an int is used
as follows to access the current length of any array:

i n t [] f oo [5] ;
i n t a = len (foo) ; // a == 5

3.3 A Comment on Pointers and References

We do not have pointers or references.

4 Operators

4.1 Arithmetic Operators

Arithmetic Operators: +, -, *, /

4

Arithmetic operators are binary operators and are left to right associative. Addition and
subtraction have lower precedence than multiplication and division.

4.2 Relational Operators

Relational Operators: ==, !=, >, <, >=, <=

Relational operators are left to right associative but have lower precedence than arithmetic
operators. == and != have a lower precedence than the other relational operators (who
have same precedence).

4.3 Logical Operators

Logical Operators: &&, ||, unary !

Logical operators have lower precedence than relational operators and can be binary (&&
and ||) operators or unary !.

expr && expr will return true if and only if both expressions operands are true, else
false.

expr || expr will return true if one operand is true, else false.

!expr will return true if the resulting value of the expr is false itself, else false.

4.4 Expression Operators

Expression Operators: [], . These expression operators have highest precedence and are
left associative.

The dot operator is used to access class member functions and variables.

The square bracket operator will behave differently on different types. For example, []
can be used to index on an array or on a string.

4.5 Assignment Operators

Assignment Operators: = , += , -=, *=, /=
= simply assigns an expression on the right to a variable on the left.

+=, -=, *=, /= manipulate a variable on the left to the result of an expression determined
by the assignment operator. += will add the expression on the right to the variable on the
left. This could also be written as var = var + expr, or generally as var = var operator

expr A similar form will follow for the other assignment operators, with the arithmetic oper-
ator on the right hand side substituted for the operator present in the assignment operator.
These operators are right associative.

5

5 Declarations

All variables in Kazm must be declared before use. All declarations in Kazm associate a
given identifier with a type. The type can be one of the default types or can be a user-
defined type (i.e. class). While the type declaration is absolutely required, it is left optional
for the user to initialize the identifier in the declaration. The value must be of the specified
type. Each variable declaration must be preceded by the variable type. It is not possible to
declare multiple variables in the same declaration.

Example declaration:

i n t a ;
i n t b ;
i n t c ; // t h i s i s l e g a l
char a , b , c ; // t h i s i s not

Example declarations with initialization:

i n t a = 0 ;
char a lphabet [2 6] ;
double p i = 3 . 1 4 ;
bool a = f a l s e ;

6 Statements

An expression is one or more operands and zero or more operators.

Examples: 5, int x = 5, int y = 10 + 20/4

Expressions can also be grouped with parentheses:

i n t x = (3+7) − (2∗5) // x == 0

An expression becomes a statement when it is followed by a semicolon. In Kazm, the
semicolon is a statement terminator, rather than a separator. This means that the following
is a valid – however strongly discouraged – statement:

i n t a
= 0 ;

Curly braces { and } are used to group declarations and statements together into a compound
statement, or block, such that they are syntactically equivalent to a single statement. The
braces that surround the statements of a function are one obvious example; braces around
multiple statements after an if, else if, else, while, or for are another. There is no semicolon
after a right curly brace } that ends a block. On the other hand, there is a semicolon after
a right curly brace that ends a class definition.

6.1 If, Else If, Else

The if, else if, else statement is used to express decisions. else if and else are optional. There
may be multiple chained else if blocks contained between if and else. It is required to enclose
the statements following if or else within curly braces. The syntax is as follows.

6

i f (expr e s s i on1)
{

statement1
}
e l s e i f (expre s s i on2)
{

statement2
}
e l s e
{

statement3
}

Other valid examples include the following:

Example 1.

i f (expr e s s i on1)
{

statement1
}
e l s e
{

statement2 // there i s no e l s e i f as i t i s op t i ona l
}

Example 2.

i f (expr e s s i on1)
{

statement1
}
e l s e i f (expre s s i on2)
{

statement2
}
e l s e i f (expre s s i on3)
{

statement3
}
e l s e i f (expre s s i on4)
{

statement4
}
e l s e
{

statement5 // mul t ip l e e l s e i f are chained toge the r
}

Example 3.

7

i f (expr e s s i on1)
{

statement1 // the e l s e statement i s miss ing as i t i s op t i ona l
}

6.2 While

A while expression allows a statement block to be executed multiple times while a condition
holds true. The statement block must be enclosed within curly braces. The syntax is as
follows:

whi l e (exp r e s s i on)
{

statement
}

Upon entering the while loop, the expression is evaluated. If it is non-zero, statement is
executed and expression is reevaluated. This cycle continues until expression becomes zero,
at which point execution resumes after statement.

6.3 For

The for statement allows a statement block to be executed a fixed number of times. The
statement block must be enclosed within curly braces. The syntax is as follows:

f o r (expr1 ; expr2 ; expr3)
{

statement
}

This is equivalent to the following:

expr1 ;
whi l e (expr2)
{

statement
expr3 ;

}

None of expr1, expr2, expr3 may be omitted.

Example for loop:

i n t n = 5 ;
f o r (i n t i =0; i != n ; i += 1)
{

p r i n t l n (i) ;
}

8

6.4 Break

It is sometimes convenient or necessary to exit from a for loop before the initially designated
number of executions. The break statement provides an early exit from the for and while
loops. A break causes the innermost enclosing loop to be exited immediately.

Examples:

i n t n = 5 ;
f o r (i n t i =0; i != n ; i += 1)
{

i f (i == 3)
{

break ;
// f o r loop i t e r a t i o n corre spond ing to i == 4 i s not executed

}
}
Kazm does not support continue.

7 Functions

The execution of a program in Kazm requires one main function which takes no arguments
and returns nothing:

void main ()
{

statements
}
Example functions within an example program are as follows:

// add . kazm
in t sum(i n t [] l i s t , i n t l i s t s i z e) {

i n t r e s u l t = 0 ;
f o r (i = 0 , i < l i s t s i z e , i++) {

r e s u l t += l i s t [i] ;
}
re turn r e s u l t ;

}

void main () {
i n t [] l i s t [5] = [1 , 6 , 12 , 17 , 2 5] ;
i n t sum = sum(l i s t , 5) ;

}
Arguments are always passed by value.

8 Scope of Variables

The scope of a variable is the part of the program in which the name can be used. All
variable names and functions in Kazm are assumed to be accessible globally.

9

9 Classes

A class is a user-defined structured object consisting of zero or more member variables and
zero or more methods (functions).

c l a s s−s p e c i f i e r :
c l a s s i d e n t i f i e r { c l a s s−body }

Class identifiers customarily start with an uppercase character. The class body consists
of a list of member variables and methods.

c l a s s−body :
va r i ab l e−dec l a ra t i on− l i s t ;
funct ion−dec l a ra t i on− l i s t ;

The following is an example of a valid class declaration and usage

c l a s s Book {
i n t i sbn ;
S t r ing t i t l e ;
S t r ing author ;

Book (i n t isbn , S t r ing t i t l e , S t r ing author) {
me. i sbn = isbn ;
me . t i t l e = t i t l e ;
me . author = author ;

}

St r ing a s t e x t () {
re turn me . t i t l e . concat (” by ”) . concat (me . author) ;

}
}

Book my book = Book (1234 , ”The Kazm LRM” , ”The Kazm team ”) ;
p r i n t l n (”ISBN : ” , my book . i sbn) ;
p r i n t l n (my book . a s t e x t ()) ;

Class members are referred to using the dot syntax, and they are accessible from anywhere
(there are no private or protected members). In the above example, String is a class and
me.title.concat(...) invokes the concat method of String. Similarly my book.isbn

refers to the isbn member variable of the Book class my book.

Member variables are initialized in the same way as any other variable.

Methods are similar to other functions, except that they have a symbol me available that
makes it possible to refer to member variables or methods. Incomplete types and self-
referential types are not supported.

10

9.1 String Class – Part of the Standard Library

c l a s s S t r ing {
char [] s t r ;

/∗ Constructor ∗/
St r ing (char [] s t r) {

me. s t r = s t r ;
}

/∗ member func t i on ∗/
St r ing concat (S t r ing you) {

s t r . r e s i z e (me . s t r . l en + you . s t r . l en) ;
// r e s i z e takes as argument the new length o f the array

//” h e l l o ” ” world” 5 , 6 ==> 12

i n t s t a r t = me . s t r . l en ;
f o r (i n t i = 0 ; i< you . s t r . l en ; i +=1){

s t r [s t a r t] = you [i] ;
s t a r t += 1 ;

}
// [h , e , l , l , o , , w, o , r , l , d]

}
} ;

11

10 Example Programs

Example 1.

{
i n t gcd (i n t a , i n t b) {

whi le (a != b) {
i f (a > b)
{

a −= b ;
}
e l s e
{

b −= a ;
}

}
re turn a ;

} // no t i c e how while , i f , and e l s e a l l r e qu i r e cu r l y braces
// even i f the re i s only one statement with in the braces

}
Example 2.

{
i n t f i b o n a c c i (i n t n) {
// r e tu rn s the nth Fibonacc i number
// with the f i r s t and second Fibonacc i numbers de f ined as 1 and 1

i f (n == 1)
{

re turn 1 ;
}
e l s e i f (n == 2)
{

re turn 1 ;
}
e l s e
{

i n t a = 1 ;
i n t b = 1 ;
f o r (i n t i =3; i <= n ; i += 1)
{

i n t s t o r e = b ;
b = a + b ;
a = s t o r e ;

}
re turn b ;

}
}

}

12

