
GVL Reference Manual

Minhe Zhang (mz2864)
Yaxin Chen (yc3995)
Aster Wei (aw3389)
Jiawen Yan (jy3088)

Oct 19 2021

Contents
1 Introduction 3

2 Lexical conventions 4
2.1 Comments . 4
2.2 Identifiers (Names) . 4
2.3 Keywords . 4
2.4 Constants . 4

2.4.1 Integer Constants . 4
2.4.2 Floating-point number Constants 4
2.4.3 Character Constants . 5
2.4.4 String Literals . 5

2.5 Separators . 5

3 Types 6
3.1 Basic Types . 6

3.1.1 Integral Number . 6
3.1.2 Floating-point Number 6
3.1.3 Boolean . 6
3.1.4 Character . 6
3.1.5 String . 6

3.2 Derived Types . 6
3.2.1 Array . 7
3.2.2 Structure . 7
3.2.3 Node . 7
3.2.4 Edge . 7
3.2.5 Graph . 8

4 Expressions 9
4.1 Primary Expressions . 9
4.2 Postfix Expressions . 9

4.2.1 Array Reference . 9
4.2.2 Function Calls . 9
4.2.3 Structure References . 9

4.3 Unary Operators . 10

1

4.3.1 Unary Plus Operator . 10
4.3.2 Unary Minus Operator . 10
4.3.3 Logical Negation Operator 10

4.4 Multiplicative Expressions . 10
4.5 Additive Expressions . 10
4.6 Relational Expressions . 10
4.7 Equality Operators . 11
4.8 Logical Expressions . 11
4.9 Assignment Expressions . 11

5 Declarations 12
5.1 Struct Declaration . 12
5.2 Node Declaration . 12
5.3 Edge Declaration . 12
5.4 Graph Declaration . 12

6 Statements 13
6.1 Expression Statement . 13
6.2 Compound Statement . 13
6.3 Control Flow . 13

6.3.1 If/Else Statement . 13
6.3.2 While Statement . 13
6.3.3 For Statement . 14
6.3.4 Break Statement . 14
6.3.5 Continue Statement . 14
6.3.6 Return Statement . 14

7 Graph Functions and Attributes 15
7.1 Node Functions . 15

7.1.1 Node Constructor . 15
7.1.2 Node Attributes . 15

7.2 Edge . 15
7.2.1 Edge Constructor . 15
7.2.2 Edge Attributes . 16

7.3 Graph . 16
7.3.1 Graph Constructor . 16
7.3.2 Graph Modification . 16
7.3.3 Get nodes of a graph . 17
7.3.4 Get adjacent nodes from a graph 17
7.3.5 Get edges of a graph . 17

8 Examples 18

1 Introduction
This reference manual aims for a comprehensive description of Graph Visual-
ization Language(GVL). GVL is an imperative, strong-typed, and indentation-
insensitive programming language which has a C-style syntax and is specialized
to visualize graph data structures and algorithms. For now, Object-Oriented
Programming features are not introduced into GVL, but programmers can use
structure to mimic.

2 Lexical conventions
There are six classes of tokens: identifiers, keywords, constants, string literals,
operators, and separators. For adjacent identifiers, keywords, and constants,
they must be separated with white space. Then white spaces and any characters
within comments are ignored by the compiler.

2.1 Comments
For single line comment, we use two backslashes //. The characters after // in
the same line will be ignored by compiler.
The characters /* introduce a multi-line comment and */ end it.
Comments do not nest and they do not occur within string or character literals.

2.2 Identifiers (Names)
An identifier is a sequence of letters and digits (the underscore _ counts as a
letter). Letters are case-sensitive and the first character of an identifier must
be a letter. Identifiers can have any length. It can represent names of variables,
functions, structures, and members of structure. A name has a scope. The same
name in different scopes should refer to different data or functions.

2.3 Keywords
Following identifiers are reserved as keywords and may not be used otherwise:

int break
float continue
char if
bool else
string for
struct while
node return
edge true
graph false

2.4 Constants
There are four kinds of constants in GVL, which are integer constant, floating-
point number constant, character constant, and string constant.

2.4.1 Integer Constants

An integer constant consisting of a sequence of digits is taken to be decimal.

2.4.2 Floating-point number Constants

A floating constant consists of an integer part, a decimal point, and a fraction
part. It should look like 123.456 or 1.23456e2.

2.4.3 Character Constants

A character constant is a sequence of one of more characters which can only
represent ASCII enclosed in single quotes. For example, a character constant
might be ’a’.

2.4.4 String Literals

String literals or string constant is a sequence of ASCII characters surrounded
by double quotes such as "Hello World".

2.5 Separators
There are four kinds of separators.

• Semicolon ; means the end of a variable declaration, an expression as a
statement. ; can also separate expressions in parentheses of for statement.

• A pair of curly braces {} surround and must surround block of statements
and expressions. It is used to determine the block of function implemen-
tation, block of statements after branch like if and else, and block of
statements after looping like for or while.

• A pair of parentheses surround and must surround the conditional checking
expression after if or while. It also surround the initialization, condition
checking, and updating statements after for and the arguments when
defining and calling functions. Parentheses also change the precedence
explicitly when evaluating an expression.

• Comma , separates arguments of function declaration or call.
For example, int fun(int a, int b) {...} or int a = fun(b, c);.

3 Types
There are two categories of type: basic type and derived type.

3.1 Basic Types
There are five basic types of which the keywords are:

int float bool char string

3.1.1 Integral Number

Integral numbers are represented by 32 bits and can contain integer from
-2147483648 to 2147483647. They are declared or initialized using keyword
int.

int a = 1;

3.1.2 Floating-point Number

Floating-point numbers are represented by 32 bits and range from -1.2E-38 to
3.4E+38. They are declared using keyword float.

float a = 1.0;

3.1.3 Boolean

Boolean type contains boolean value and are represented by 8 bits. It can be
either true or false declared using keyword bool.

bool a = true;

3.1.4 Character

Character type is able to contain a single ASCII character. The value of character
is represented by 8 bits. It is declared using keyword char.

char a = 'a';

3.1.5 String

String type is used to indicate that a variable can contain or a function can
return a sequence of ASCII characters with maximum length of 65534. We use
keyword string to declare a string type.

string a = "Hello World!";

3.2 Derived Types
There are six derived types.

array structure function
node edge graph

3.2.1 Array

The array type indicates that a variable should hold or a function should return
an array of a certain type. We define it of a fixed length(at most 2147483647)
and can access an item in an array by the index of that item.

int[5] a = {1, 2, 3, 4, 5};
int[2][2] a = {{1, 2}, {3, 4}};

3.2.2 Structure

Structure is a type of one or more variables. The types of variables it contains
need not be the same. Structure is declared using keyword struct. For example,

struct account {
string id;
float balance;
...

}

Inside the {} of struct declaration, there can only be variable declarations. The
names of members in the same structure must be different. Initialization and
assignment are not allowed.

3.2.3 Node

Node is a built-in compound type. It must has coordinate(x,y), radius(radius),
and color(r,g,b). It is declared using keyword node. For example,

node n1 = node(...);

Inside the parenthesises are the parameters of node constructor. The signature
of node constructor is

node(float x, float y, float radius, int r, int g, int b);

Also, node is able to carry extra payloads. Programmers can set attributes be-
yond the ones in the signature such as set_node_attr(n1, "visited", true).
Attributes and the corresponding values are key-value pairs. The type of key
must be string.

3.2.4 Edge

Edge is a built-in compound type. It has mandatory attributes containing
endpoints(start, end), thickness(t), and color(r, g, b). It is declared using
keyword edge:

edge e1 = edge(...);

Inside the parenthesises is the parameters of edge constructor which has a
signature

edge(node n1, node n2, float t, int r, int g, int b);

Also, edge is able to carry extra payloads. Programmers can set attributes
beyond the ones in the signature such as set_edge_attr(e1, "weight", 1.0).
Attributes and the corresponding values are key-value pairs. The type of key
must be string.

3.2.5 Graph

Graph is a built-in compound type. It has data containing nodes and edges and
is declared using keyword graph:

graph g1 = graph();

Inside the parenthesises is the parameters of graph constructor which has a
signature

graph(node[] nodes, edge[] edges);

4 Expressions
Expressions are a combination of literals, identifiers, operators, and function
calls to be evaluated. The precedence of expression operators follow the order
of the subsections in this section. Left/Right associativity is specified in each
subsection.

4.1 Primary Expressions
Primary expressions are identifier, constant or expressions in parentheses.

primary-expression:
identifier
constant
(expression)

4.2 Postfix Expressions
The operators in postfix expressions group left to right.

postfix-expression:
primary-expression
postfix-expression [expression]
postfix-expression (argument-expression-list-option)
postfix-expression . identifier

argument-expression-list-option:
empty
argument-expression-list

argument-expression-list:
assignment-expression
argument-expression-list, assignment-expression

4.2.1 Array Reference

A postfix expression followed by an expression in square brackets is a postfix
expression denoting an array reference. The first expression must be a type T[]
and the second one must be integral. The type of this reference expression is T.

4.2.2 Function Calls

A function call is a postfix expression. It is followed by parentheses containing
comma-separated list of assignment expressions(arguments of the function). The
arguments could be empty. The type of function call is the same as the return
type of that function.

4.2.3 Structure References

A postfix expression followed by a dot followed by an identifier is a postfix
expression. The first expression must be a structure and the identifier must be a
name of one of the structure members.

4.3 Unary Operators
Expression with unary operators group right-to-left.

unary-expression:
postfix-expression
unary-operator expression

unary-operator: one of
+ - !

4.3.1 Unary Plus Operator

The operand of the unary + operator must have arithmetic type, and the result
is the value of the operand.

4.3.2 Unary Minus Operator

The operand of the unary - operator must have arithmetic type, and the result
is the negative of the operand.

4.3.3 Logical Negation Operator

The operand of the unary ! operator must be bool type, and the result is the
negation boolean value of the operand.

4.4 Multiplicative Expressions
The multiplicative expressions group left-to-right.

expression * expression
expression / expression
expression % expression

The * operator denotes multiplication of arithmetic type operands.
The / operator denotes quotient of the first expression over the second expression.
The % operator denotes remainder calculation when the first expression is divided
by the second expression.

4.5 Additive Expressions
The additive expressions group left-to-right.

expression + expression
expression - expression

4.6 Relational Expressions
The relational expressions, > (greater than), < (less than), >= (greater than
or equal to), and <= (less than or equal to), group left-to-right. The result of
relational expression is true if the relation is true, and false otherwise.

expression > expression
expression < expression
expression >= expression
expression <= expression

4.7 Equality Operators
Equality Operators == (equal to) and != (not equal to) group left-to-right.The
result of equality expression is true if the relation is true, and false otherwise.

expression == expression
expression != expression

4.8 Logical Expressions
Logical expressions group left-to-right.

expression && expression
expression || expression

The && operator returns 1 if both operands are non-zero, 0 otherwise. The
|| operator returns 1 if one of the operands are non-zero, 0 otherwise. Each of
the two operands must have one of the basic types.

4.9 Assignment Expressions
Assignment expressions group right-to-left. The left operand is an lvalue and
the right operand is an expression. Two operands must have the same type.
The result of assignment expression is the value stored in the left operand after
assignment.

lvalue = expression

The above form of assignment expressions assigns the value of the expression
on the right hand side to the lvalue on the left hand side.

lvalue += expression
lvalue -= expression
lvalue *= expression
lvalue /= expression
lvalue %= expression

There are five other binary operators +=, -=, *=, /=, %= that can construct
an assignment expression. They are in a form of e1 op = e2, which is equivalent
to e1 = e1 op e2.

5 Declarations
Declarations in GVL have the following form:

declaration:
type-specifier declarator

where the type-specifier are specified type in Section 3 Types and the declarator
are defined identifiers in section 2.

5.1 Struct Declaration
Struct in GVL are declared as follow:

struct identifier { declaration-list }

where declaration-list are defined as:

declaration-list:
declaration
declaration ; declaration-list

5.2 Node Declaration
Node in GVL are declared as follow:

node identifier = node (argument-list)

where argument-list is defined as:

argument-list:
float x, float y, float radius, int r, int g, int b

Node can be extended with more data members by:

struct identifier : node { declaration-list }

5.3 Edge Declaration
Edge in GVL are declared as follow:

edge identifier = edge (argument-list)

where argument-list is defined as:

argument-list:
node n1, node n2, float t, int r, int g, int b

Edge can also be extended with more data members by:

struct identifier : edge { declaration-list }

5.4 Graph Declaration
Graph in GVL are declared as follow:

graph identifier = graph ()

6 Statements
Statements are a sequence of GVL code that usually end with semicolon ; or is
delimited by braces {}.

6.1 Expression Statement
An expression statement is formed by an expression followed by a comma. For
example, y = x + 1; and y += 5; are expression statements.

expression ;

6.2 Compound Statement
An compound statement is formed by list of statements delimited by braces.

{ statement-list }

where

statement-list:
statement
statement statement-list

6.3 Control Flow
For simplicity, usually, statement inside the control-flow statement can only be
compound statement in GVL.

6.3.1 If/Else Statement

If/Else statement executes statements conditionally. It follows the following
forms

if (expression) statement
if (expression) statement else statement

For the first form, statement is executed if expression is evaluated as true. For
the second form, if expression is evaluated as true, the first statement is executed;
otherwise, the second statement is executed. An exception here is that the
second statement in the second form can not only be compound statement but
also if/else statement.

6.3.2 While Statement

While statement is a looping statement; it repetitively executes statement as
long as the expression is evaluated as true.

while (expression) statement

6.3.3 For Statement

For statement is also a looping statement.

for (expression1 ; expression2 ; expression3) statement

All of the expressions are optional. Before looping, expression1 is evaluated.
Statement followed by expression3 are repetitively executed as long as expression2
is evaluated as true.

6.3.4 Break Statement

Break statement jumps out of the loop of for/while.

break ;

6.3.5 Continue Statement

Continue statement skips execution of remaining statements in the current
iteration of a for/while loop and continues to execute the next iteration if
condition is satisfied.

continue ;

6.3.6 Return Statement

A function uses return statement to return to its caller, which has the following
form:

return expression ;

An expression is evaluated and the result value is returned to the caller. GVL
does not accept the form that no value is returned.

7 Graph Functions and Attributes

7.1 Node Functions
7.1.1 Node Constructor

Construct a node with built-in constructor:

node node(float x, float y);
node node(float x, float y, float radius, int r, int g, int b);

x and y are the x-coordinate and y-coordinate of the node when visualization.
radius is a float type number larger than 0, which decides the radius of the
node.
r, g, b are int type numbers in range [0, 255] used to decide the node’s color.
The arguments in the constructors are all mandatory. If programmer uses the
first constructor, the default radius will be set to 1 and r, g, and g will all be
set to 255.

7.1.2 Node Attributes

Use set_{attribute} to change a node’s built-in attribute in x, y, radius, r, g,
b. These attributes cannot be removed by users.

set_node_attr(n1, "x", xval);
set_node_attr(n1, "y", yval);
set_node_attr(n1, "radius", rval);
set_node_attr(n1, "r", rval);
set_node_attr(n1, "g", gval);
set_node_attr(n1, "b", bval);

use set_node_attr(node, "{user-defined attribute}", value) to set a
user-defined attribute.

set_node_attr(node, "key", val);

Use node.{attribute} to get a node’s built-in attribute.

float x_value = n1.x;
float y_value = n1.y;
int radius_value = n1.radius;
int red = n1.r;
int green = n1.g;
int blue= n1.b;

7.2 Edge
7.2.1 Edge Constructor

Construct a node with edge() start and end are node type, indicate the start
and the end in the directed edge.
bold is int type in range [1, 100], indicate the thickness of the edge.r, g, b are
int type numbers in range [0,255] used to decide the edge’s color.

edge e1 = edge(node start, node end);
edge e1 = edge(node start, node end, int bold, int r, int g , int b);

7.2.2 Edge Attributes

Use set_{attribute} to change a edge’s built-in attribute in start, end, bold,
r, g, b. These attributes cannot be removed by users.

set_edge_attr(n1, "start", startnode);
set_edge_attr(n1, "end", endnode);
set_edge_attr(n1, "bold", thickness);
set_edge_attr(n1, "r", rval);
set_edge_attr(n1, "g", gval);
set_edge_attr(n1, "b", bval);

use set_edge_attr(edge, "{user-defined attribute}", value) to set a
user-defined attribute.

set_edge_attr(e1, "key", val);

Use node.{attribute} to get a node’s built-in attribute.

node start_node = e1.start;
node end_node = e1.end;
int bold_val = e1.bold;
int red_val = e1.r;
int blue_val = e1.b;
int green_val = e1.g;

Use edge.get("{user-defined attribute}") to get a user-defined attribute.

7.3 Graph
Use "graph()" to build a new graph.

7.3.1 Graph Constructor

graph g1 = graph();

7.3.2 Graph Modification

A node or an edge can be added to a graph using "++" operator

add_node(g1, n1);
g1 ++ n1;
add_edge(g1, e1);
g1 ++ e1;

A node or an edge can be deleted from a graph using "--" operator

remove_node(g1, n1);
g1 -- n1;
remove_edge(g1, e1);
g1 -- e1;

7.3.3 Get nodes of a graph

Use graph.nodes() to get the node set in a graph.

node[] nodes = g1.nodes();

7.3.4 Get adjacent nodes from a graph

Use get_adj_nodes(graph g, node n) to get the adjacent nodes in a graph.

node[] nodes = get_adj_nodes(g1, n1);

7.3.5 Get edges of a graph

Use graph.edges() to get the edge set in a graph.

edge[] edges = g1.edges();

8 Examples
int N = 1000;

struct person {
string id;
int age;
string major;

};

int add_int(int x, int y) {
return x + y;

}

int bfs(graph g, node s, node t) {

set visited = set();
queue q = queue();
q.add(s);
int count = 0;

while (q.size() > 0) {

node curr = queue.pop();
count += 1;
visited.add(curr);
set_node_attr(curr, "r", 127);
set_node_attr(curr, "g", 127);
set_node_attr(curr, "b", 127);
if (curr == t) {

return count;
}
node[] adj = get_adj_nodes(g, curr);
for (int i = 0; i < adj.length; i += 1) {

if (! visited.has(adj[i] && queue.has(adj[i]) {
queue.add(adj[i]);

}
}

}
return -1;

}

int main() {

graph g1 = graph();

// Node initialization.
node[N] nodes;
for (int i = 0; i < N; i += 1) {

nodes[i] = node(i, i);

add_node(g1, nodes[i]);
}

// Edge initialization.
edge[N - 1] edges;
for (int i = 0; i < N - 1; i += 1) {

edges[i] = edge(nodes[i], nodes[i + 1]);
add_edge(g1, edges[i]);

}

bfs(g1, node[0], node[N - 1]);

show(g1);

return 0;
}

	Introduction
	Lexical conventions
	Comments
	Identifiers (Names)
	Keywords
	Constants
	Integer Constants
	Floating-point number Constants
	Character Constants
	String Literals

	Separators

	Types
	Basic Types
	Integral Number
	Floating-point Number
	Boolean
	Character
	String

	Derived Types
	Array
	Structure
	Node
	Edge
	Graph

	Expressions
	Primary Expressions
	Postfix Expressions
	Array Reference
	Function Calls
	Structure References

	Unary Operators
	Unary Plus Operator
	Unary Minus Operator
	Logical Negation Operator

	Multiplicative Expressions
	Additive Expressions
	Relational Expressions
	Equality Operators
	Logical Expressions
	Assignment Expressions

	Declarations
	Struct Declaration
	Node Declaration
	Edge Declaration
	Graph Declaration

	Statements
	Expression Statement
	Compound Statement
	Control Flow
	If/Else Statement
	While Statement
	For Statement
	Break Statement
	Continue Statement
	Return Statement

	Graph Functions and Attributes
	Node Functions
	Node Constructor
	Node Attributes

	Edge
	Edge Constructor
	Edge Attributes

	Graph
	Graph Constructor
	Graph Modification
	Get nodes of a graph
	Get adjacent nodes from a graph
	Get edges of a graph

	Examples

