Fundamentals of Computer Systems Thinking Digitally

Stephen A. Edwards

Columbia University
Summer 2021

The Subject of this Class

0

The Subjects of this Class

1

But let your communication be, Yea, yea; Nay, nay: for whatsoever is more than these cometh of evil.
— Matthew 5:37

|IIIIIII
 SUPERCODER 2000
 Ar cooled coding keyboard for prolessional use.

Done

Engineering Works Because of Abstraction

Application Software
Operating Systems
Architecture
Micro-Architecture
Logic
Digital Circuits
Analog Circuits
Devices \square
Physics

Engineering Works Because of Abstraction

Boring Stuff

http://www.cs.columbia.edu/~sedwards/classes/2021/3827-summer/

Prof. Stephen A. Edwards
sedwards@cs.columbia.edu

Lectures 4:10-6:40 PM, Mondays and Wednesdays
May 3-June 14

Weight What When

40\% Homeworks See Webpage
60\% Final exam June 18th

Submit homework online via Courseworks

Software You Need

Digital Simulator github.com/hneemann/Digital

Circuit design problems: download (class website) .zip file with .dig files, edit with Digital, upload to Courseworks

SPIM: A MIPS32 Simulator spimsimulator.sourceforge.net MIPS assembly coding:, download .zip file with .s files, edit in favorite text editor, test and debug in SPIM, upload to Courseworks

The Inkscape SVG File Editor inkscape.org

You can do homework by downloading an SVG file from the class website, editing it in Inkscape, and uploading it to Courseworks

Rules and Regulations

Each assignment turned in must be unique; work must ultimately be your own.

Don't cheat: Columbia Students Aren't Cheaters

Test will be closed-book; you may use a single sheet of your own notes

Optional Texts: Alternative 1

No required text. One option:

- David Harris and Sarah Harris. Digital Design and Computer Architecture. Either 1st or 2nd ed.

Almost precisely right for the scope of this class: digital logic and computer architecture.

Optional Texts: Alternative 2

- M. Morris Mano and Charles Kime. Logic and Computer Design Fundamentals. 4th ed.
- David A. Patterson and John L. Hennessy. Computer Organization and Design, The Hardware/Software Interface. 4th ed.

There are only 10 types of people in the world: Those who understand binary and those who don't.

Which Numbering System Should We Use?

Roman: I II III IV V VI VII VIII IX X

Mayan: base 20, Shell = 0

Babylonian: base 60

$$
\begin{aligned}
& 2345610 \\
& 12 \ldots
\end{aligned}
$$

The Decimal Positional Numbering System

 10 F730
990

Ten figures: 0123456789

$730_{10}=7 \times 10^{2}+3 \times 10^{1}+0 \times 10^{0}$
$990_{10}=9 \times 10^{2}+9 \times 10^{1}+0 \times 10^{0}$

Why base ten?

Hexadecimal, Decimal, Octal, and Binary

Binary and Octal: Electronics Likes Powers of Two

Oct	Bin
0	0
1	1
2	10
3	11
4	100
5	101
6	110
7	111

$$
\begin{aligned}
P C & =06 \\
& =0 \times 2^{11}+1 \times 2^{10}+0 \times 2^{9}+1 \times 2^{8}+1 \times 2^{7}+0 \times 2^{6}+ \\
& 1 \times 2^{5}+1 \times 2^{4}+1 \times 2^{3}+1 \times 2^{2}+0 \times 2^{1}+1 \times 2^{0} \\
& =2675_{8} \\
& =2 \times 8^{3}+6 \times 8^{2}+7 \times 8^{1}+5 \times 8^{0} \\
& =1469_{10}
\end{aligned}
$$

Hexadecimal Numbers

Base 16: 0123456789 A BCDEF
Instead of groups of 3 bits (octal), Hex uses groups of 4 .

$$
\begin{aligned}
& \quad \text { zeros } \\
& \text { CAFEF00D }_{16}= 12 \times 16^{7}+10 \times 16^{6}+15 \times 16^{5}+14 \times 16^{4}+ \\
& 15 \times 16^{3}+0 \times 16^{2}+0 \times 16^{1}+13 \times 16^{0} \\
&= 3,405,705,229_{10}
\end{aligned}
$$

	C	A	F	E	F	0	0	D	Hex
011001010111111101111000000001101		Binary							
$\|$\begin{tabular}{l\|l	l	l	l	l	l	l	l	}	
\end{tabular} | | | | | | | | | |

Computers Rarely Manipulate True Numbers

Infinite memory still very expensive

Finite-precision numbers typical
32-bit processor: naturally manipulates 32 -bit numbers
64-bit processor: naturally manipulates 64 -bit numbers
How many different numbers can you

Jargon

Bit Binary digit: 0 or 1

Byte Eight bits

Word Natural number of bits for the processor, e.g., 16, 32, 64

LSD
LSB

MSG
MSB Most Significant Bit ("leftmost")

Decimal Addition Algorithm

> 434 +628
> $4+8=12$

Decimal Addition Algorithm

> 1
> 434 +628
> $4+8=12$
> $1+3+2=6$

Decimal Addition Algorithm

$$
\begin{aligned}
& 1 \\
& 434 \\
& \text { +628 } \\
& 62 \\
& 4+8=12 \\
& 1+3+2=6 \\
& 4+6=10
\end{aligned}
$$

Decimal Addition Algorithm

$$
\begin{aligned}
& 11 \\
& 434 \\
& \text { +628 } \\
& 062 \\
& 4+8=12 \\
& 1+3+2=6 \\
& 4+6=10
\end{aligned}
$$

Decimal Addition Algorithm

$$
\begin{aligned}
& 11 \\
& 434 \\
& +628 \\
& 1062 \\
& 4+6=10
\end{aligned}
$$

Binary Addition Algorithm

10011
 +11001

$$
1+1=10
$$

+	0	1
0	00	01
1	01	10
10	10	11

Binary Addition Algorithm

Binary Addition Algorithm

$$
\begin{aligned}
& 11 \\
& 10011 \\
& 1+1+0=10 \\
& 1+0+0=01
\end{aligned}
$$

Binary Addition Algorithm

$$
\begin{aligned}
& 011 \\
& 10011 \\
& \text { +11001 } \\
& 100 \\
& 1+1=10 \\
& 1+1+0=10 \\
& 1+0+0=01 \\
& 0+0+1=01
\end{aligned}
$$

Binary Addition Algorithm

$$
\begin{aligned}
& 0011 \\
& 10011 \\
& \text { +11001 } \\
& 1100 \\
& 1+1=10 \\
& 1+1+0=10 \\
& 1+0+0=01 \\
& 0+0+1=01 \\
& 0+1+1=10
\end{aligned}
$$

Binary Addition Algorithm

$$
\begin{aligned}
& 10011 \\
& 10011 \\
& \text { +11001 } \\
& 101100 \\
& 1+1=10 \\
& 1+1+0=10 \\
& 1+0+0=01 \\
& 0+0+1=01 \\
& 0+1+1=10
\end{aligned}
$$

Signed Numbers: Dealing with Negativity

How should we represent negative numbers?

Binary Signed Magnitude Numbers

The familiar notation: negative numbers have a leading Binary signed-magnitude encoding: leading 1 indicates negative; remaining bits treated as binary.

One's Complement Numbers
 $$
\begin{array}{r} 2 \\ +\begin{array}{r} 0010 \\ \hline \end{array} \frac{-1101}{1111}=-0=0 \end{array}
$$

Like Signed Magnitude, a leading 1 indicates a negative One's Complement number. However, number magnitude is complement of remaining bits interpreted as binary.

To negate a number, complement (flip) each bit.
$0000_{2}=0$
$0010_{2}=2$
$1101_{2}=-2-010$
$1000_{2}=-7$

Addition is nicer: just add the one's complement numbers as if they were normal binary.

Really annoying having a -0 : two numbers are equal if their bits are the same or if one is 0 and the other is -0 .

> one's comp
$0000=1111$

Norall ARE CREATED EQUAL

ZERO CALORIES. MAXIMUM PEPSI'TASTE.

Two's Complement Numbers

Really neat trick: just make only the most significant bit represent a negative number instead of positive; treat the rest as binary.

Easy addition: just add in binary and discard any carry.
Negation: complement each bit (as in one's complement) then add 1. Not as good as I's complement
Subtraction done with negation and addition.
Very good property: no -0
Two's complement numbers are equal if and only if all their bits are the same.

Number Representations Compared

$$
32,767,-32,768,
$$

https://xkcd.com/571/

How many bits in his brain?

16 bitch, two's complement

Fixed-point Numbers

How to represent fractional
numbers? In decimal, we continue with negative powers of 10 :

$$
\begin{aligned}
& 31.4159=\begin{array}{l}
3 \times 10^{1}+1 \times 10^{0}+ \\
4 \times 10^{-1}+1 \times 10^{-2}+5 \times 10^{-3}+9 \times 10^{-4}
\end{array} \\
& \text { tent 15 |uwndraiths }
\end{aligned}
$$

Also works in binary:

$$
\begin{aligned}
1011.0110_{2}= & 1 \times 2^{3}+0 \times 2^{2}+1 \times 2^{1}+1 \times 2^{0}+ \\
& 0 \times 2^{-1}+1 \times 2^{-2}+1 \times 2^{-3}+0 \times 2^{-4} \\
\text { halves }= & 8+2+1+0.25+0.125 \\
\text { quarters }= & 11.375
\end{aligned}
$$

Addition and subtraction algorithms the same.

$\begin{array}{ll} & F \\ \text { F } & \text { a } \\ \text { u } & c\end{array}$
 Interesting

The ancient Egyptians used binary fractions:

The Eye of Horus

Binary-Coded Decimal

BCD Addition

Binary addition
followed by a possible correction.

Any four-bit group greater than 9 must have 6 added to it.

Example:

$$
\begin{array}{r}
158_{10} \\
+242_{16} \\
\hline
\end{array}
$$

$$
\begin{array}{r}
\text { । } \\
000101011000 \\
+001001000010 \\
\hline
\end{array}
$$

1010 First group
\qquad
\qquad

BCD Addition

Binary addition
followed by a possible correction.

Any four-bit group greater than 9 must have 6 added to it.

Example:

158
$+242$

BCD Addition

Binary addition
followed by a possible correction.

Any four-bit group greater than 9 must have 6 added to it.

Example:

1
 000101011000
 +001001000010

1010 First group
+0110 Correction
10100000 Second group
$\begin{array}{r}1 \\ 158 \\ +242 \\ \hline 0\end{array}$

BCD Addition

Binary addition
followed by a possible correction.

Any four-bit group greater than 9 must have 6 added to it.

Example:

1
 000101011000
 +001001000010

1010 First group
+0110 Correction
$\begin{array}{ll}10100000 & \text { Second group } \\ +0110 & \text { Correction }\end{array}$

158
$+242$
0

BCD Addition

Binary addition followed by a possible correction.

Any four-bit group greater than 9 must have 6 added to it.

Example:

1010 First group
+0110 Correction
10100000 Second group

+ 0110 Correction
01000000 Third group

BCD Addition

Binary addition followed by a possible correction.

Any four-bit group greater than 9 must have 6 added to it.

Example:

158
$+242$ 400

$$
10+6=16
$$

$$
11+6=17-10 \text { symbols }
$$

$$
C \text { correction }
$$

+001001000010
1010

+ 0110
10100000
+ 0110
01000000

010000000000 Result

Floating-Point Numbers: "Scientific Notation"

Greater dynamic range at the expense of precision Excellent for real-world measurements

IEEE 754 Single-Precision (32-bit) mantissa
Sign 8-bit Exponent
23-bit Fraction

ASCII For Representing Characters and Strings

	0	1	2	3	4	5	6	7
0	NUL	DLE	SP	0	@	P	-	p
1	SOH	DC1	!	1	A	Q	a	q
2	STX	DC2	"	2	B	R	b	r
3	ETX	DC3	\#	3	C	S	c	S
4	EOT	DC4	\$	4	D	T	d	t
5	ENQ	NAK	\%	5	E	U	e	u
6	ACK	SYN	\&	6	F	V	f	v
7	BEL	ETB	,	7	G	W	g	w
8	BS	CAN	(8	H	X	h	x
9	HT	EM)	9	I	Y	i	y
A	LF	SUB	*	:	J	Z	j	z
B	VT	ESC	+	;	K	[k	\{
C	FF	FS	,	<	L	\backslash	1	\|
D	CR	GS	-	=	M]	m	\}
E	SO	RS	.	>	N	\wedge	n	~
F	SI	US	/	?	0	-	0	DEL

