CSEE W3827: Fundamentals of Computer Systems

Homework Assignment 4. Stephen Edwards. Columbia University

Due Sunday, Jun 13 at 11:59 PM EDT via Courseworks

Put your answers in the dashed boxes provided and upload a PDF file to Courseworks. E.g., by editing it in Inkscape (https://inkscape.org) or printing and scanning.

Name: Uni:

1. (25 pts.) Extend the single-cycle MIPS processor to support the jal instruction (j-type, OP=000011, "jal *immediate*") You may modify the datapath, ALU, ALU decoder, and Main Decoder any way you want, but make your modifications clear. In particular, complete the "jal" row for the Main Decoder.

Main Decoder								
Inst.	OP	RegWrit	e RegDst	ALUSro	Branch	MemWrite	MemToRe	g ALUOp
R-type	000000	1	1	0	0	0	0	1-
lw	100011	1	0	1	0	0	1	00
SW	101011	0	-	1	0	1	-	00
beq	000100	0	-	0	1	0	-	01

- 2. Assuming the following dynamic instruction
frequency for a program running on the single-
cycle MIPS processor discussed in class,addu
addu30%
20%addiu15%
beq15%
 - (a) (5 pts.) In what fraction of cycles is data memory written?

15%

5%

sw j

- (b) (5 pts.) In what fraction of cycles is the ALU used?
- (c) (5 pts.) In what fraction of cycles must ALUSrc = 1?

- 3. Consider running the fol- again: lowing loop on the five-stage i1: lw \$t1, 4(\$t0) MIPS pipeline with full by- i2: lw \$t2, 8(\$t1) passing (i.e., M-to-E, W- i3: addu \$t3, \$t3, \$t2 to-E, and M-to-D bypasses) i4: addiu \$t4, \$t4, 1 and stall logic as described i5: addiu \$t0, \$t0, -8 \$t0, \$t5, again in class. i6: bne (a) (10 pts.) List all control and data dependencies that cause pipeline stalls (e.g., $i1 \rightarrow i2$) (b) (15 pts.) Below, rewrite the above code by reordering instructions (keep the instruction labels) to eliminate as many stalls as possible. List any remaining stalls. 4. For the caches below with 32-bit addresses, list the number of bits
- 4. For the caches below with 32-bit addresses, list the number of bits in each field:
 - (a) (5 pts.) 65536B total, 4-way set-associative, 64B blocks

	Tag:		Set Index:	1	Byte Offset:	1
(b)	(5 pts.)	26214	4B total, 4-v	way set-a	ssociative, 64	B blocks
	Tag:	 	Set Index:		Byte Offset:	

- 5. Consider a computer with a *direct mapped* cache of 32 64-byte blocks backed by 1 megabyte of main memory.
 - (a) (5 pts.) How many blocks in main memory?
 - (b) (5 pts.) What is the cache set for address $0 \times DECADE?^{+}$
 - (c) (15 pts.) Assuming the cache starts empty, what sequence of events would be produced by reading bytes in the following sequences of addresses? Classify each as a compulsory miss, a conflict miss, a spatial locality hit, or a temporal locality hit.

Address	Event
0xDECADE	
0xDECAD8	
0xDECA08	
0xBECADE	
OxDECADE	