
Managing Projects with the Haskell Tool Stack

Stephen A. Edwards

Columbia University

Fall 2020

The Haskell Stack: Cross-Platform Build Tool

You specify a GHC version and which packages (and versions) to use, then can
build and test your project (executables and libraries).

http://www.haskellstack.org

$ stack new my-project
$ cd my-project
$ stack setup
$ stack build
$ stack exec my-project-exe
$ stack run
$ stack install

http://www.haskellstack.org

Files generated by stack new
my-project/

.gitignore Files for git to ignore
LICENSE E.g., BSD3. Add your name
ChangeLog.md If you like
README.md E.g., for github

→ stack.yaml GHC version, non-standard package details
→ package.yaml Build instructions: packages, libraries, versions, etc.

my-project.cabal Generated from package.yaml as necessary
Setup.hs Part of Cabal build system; boilerplate
app/ Source files for executables

→ Main.hs Main function for my-project-exe
src/ Source files for libraries

Lib.hs Sample library file
test/ Unit test files

Spec.hs Sample test file

YAML Ain’t (a) Markup Language (but it’s almost JSON)
Single-line comments
key1: value1
key2: # Keys in a group should be distinct

 key1: value2 # Value here is a dictionary
 key2: 34 # Space-only indentation for grouping
key3:

 - list-element # List element here is a string
 - list-element # List elements may repeat
key4: [el1, el2] # Alternative syntax for lists

key5:
 - item: foo
 price: 42
 name: "The first name" # Double-quotes forces a string type
 - item: bar
 price: 17

stack.yaml: Global build configuration

Main thing here is the “resolver”: a combination of GHC version and versions
for many (2500+) standard packages.

Use Long-Term Support packages from Stackage: https://www.stackage.org

resolver: lts-16.23

This is GHC-8.8.4 plus containers-0.6.2.1, bytestring-0.10.10.1, etc.

See, e.g., https://www.stackage.org/lts-16.23

packages:
- .

Optional list of directories (this is the default value).

“There’s one package to be built in the current directory” (see package.yaml)

https://www.stackage.org
https://www.stackage.org/lts-16.23

stack.yaml optional fields

extra-deps: # Packages outside the resolver
- acme-missiles-0.3
- git: https://github.com/commercialhaskell/stack.git

 commit: e7b331f14bcffb8367cd58fbfc8b40ec7642100a

require-stack-version: ">=2.5"

extra-include-dirs: # Searched during builds
- /opt/include
- baz/include

extra-lib-dirs: # Searched during builds
- foo/baz/lib

package.yaml: Package-specific build rules

Translated into .cabal files by sparsely-documented hpack
https://github.com/sol/hpack

name: peng # The main name
version: 0.1.0.0
github: "sedwards-lab/peng"
license: BSD3
author: "Stephen A. Edwards"
maintainer: "sedwards@cs.columbia.edu"
copyright: "2020 Stephen A. Edwards"
extra-source-files:
- README.md
- ChangeLog.md
description: Please see the README on GitHub

https://github.com/sol/hpack

package.yaml: Common, optional directives

In executable, library, tests, or global

source-dirs: src # Directory in which to look for .hs files

ghc-options: # A list to pass to GHC while compiling
- -Wall
- -threaded

dependencies: # On which libraries to depend
- base >= 4.7 && < 5 # In resolver
- acme-missiles # or extra-deps in stack.yaml

build-tools:
- alex # Scanner generator, for .x files
- happy # Parser generator, for .y files

package.yaml: the library directive

All but the smallest projects will include this

library:
 source-dirs: src # Consider all the .hs files here

 ghc-options: # Optional
 - -Wall

 build-tools: # Optional
 - happy

package.yaml: executables

executables:
 my-exe: # Generates a my-exe executable
 main: Main.hs # Where to look for main
 source-dirs: app # Consider all .hs files here
 dependencies: # Optional
 - peng # Name of the package (library)

 another-exe: # Optional
 main: Another.hs
 source-dirs: app2 # May want to make it distinct

package.yaml: tests

tests:
 basic-test: # Name of the particular test/executable
 type: exitcode-stdio-1.0 # Interface to the test (default)
 main: test/Basic.hs # Where to find the main function
 dependencies: # We typically test the main library
 - peng

 another-test:
 type: detailed-1.0 # More complicated than exitcode-stdio-1.0
 main: test/Another.hs
 dependencies:
 - peng

$ stack test # Runs all tests
$ stack test peng:basic-test # Run a single test

Approach

Mostly editing package.yaml and source files in src/

Have app/Main.hs include the main function, command-line stuff, and calls
into the library. Don’t put other .hs files in app/

Tests are set up for unit tests. See the documentation for cabal for more
information about how to structure tests

