
PFP Final Project Report: Othello and Minimax

Bryanna Geiger: bg2603

December 24, 2020

Abstract

My final project for Parallel Functional Programming is to implement
the board game, Othello, with the Minimax algorithm, focusing on incor-
porating different board states in Haskell. Othello is a modern day board
game involving two players trying to optimize their ”points” or the num-
ber of tiles of their color by the end of the game. The Minimax algorithm
utilizes a tree structure and is a backtracking algorithm commonly used in
games such as Othello, 2048, Chess, Checkers, and others. I largely drew
from my previously implemented minimax with alpha beta pruning on a
game in Python and largely started on a smaller scale tic-tac-toe game
to translate that into Haskell. Additionally, due to technical difficulties,
I had started the project in advance to account for the added time and
included a full list of the references I used at the end of my report.

Figure 1: An example of the Othello board game

1 What is Othello?

Othello is a board game derived from the original game Reversi. The game
board itself is an 8x8 square grid. Each player has 32 disk-like black and white
pieces - each playing choosing a color to start the game. The initial starting
position includes 4 pieces in the middle 4 squares of the board - 2 black and 2
white pieces.

1

Figure 2: Standard Initial Board State

The aim of the game is to end with more pieces of your color on the board
than the opposing player. Player alternate turns and when a valid move is not
possible, that player’s turn is skipped for the current round. A player may not
voluntarily skip their turn when a valid move exists. When a single disk or a
row of disks is surrounded at the ends by the opposing color, the surrounded
disks will be ”flipped” to the opposite color, which is how each player earns
points.

The game ends when there are no valid moves remaining for either player or
both players are out of disks, thus not being able to make a valid move. The
player with more disks of their color wins. If there is an even amount of both
color, the game will end in a tie.

2 How Does My Implementation Differ?

The standard rules for ending the game in Othello, is when there are no valid
moves remaining for either player. So, if player one can not go, player one’s turn
would be skipped and player two would go and vice versa. This rule ensures
that all pieces will be played and the board will end up being completely filled.

For the sake of my implementation, I did not account for the skipping of
turns. My implementation differs in that it does not account for skipping a
turn and instead, the game will end when either player does not have a valid
move remaining. This alteration to the rules explains why, when running board
1, board 2, and board 3, the end state of the board might not be completely
filled.

3 What is Minimax?

The general idea is that minimax is a backtracking algorithm which is a recursive
algorithm. As a searching algorithm, minimax is commonly used in games such

2

as 2048, chess, othello, checkers, and others. It utilizes a tree structure in order
to determine the optimal move for each player to make.

In this case, there are two players: ”maximizer” and the ”minimizer” where
each player will either try to maximize the value of a move while the other will
minimize the value of a move. It is important, however, to keep in mind that
with the tree structure and with a game that has a large number of potential
moves and game states, to limit the depth. The default depth I limited my
program to was 4, although I also tested at a depth of 2.

My approach to the minimax algorithm was to 1. draw from my previously
implemented minimax in Python and 2. draw from the tic-tac-toe game I wrote
in Haskell as a starting point. Following a similar format from the tic-tac-toe
game is how I arrived at the approach to minimax that I did. Below is an image
of what the minimax algorithm might look like on a tic-tac-toe board.

Figure 3: Minimax: Tix-Tac-Toe Example

Different sorts of heuristics can be implemented in order to adjust the values
of the board. Some examples of heuristics could be in the game 2048 where it
might be ideal to keep the highest valued tile in the corner even at the cost of
minimizing the total value on a single tile. In Othello, for instance, a potential
heuristic could be giving the corner pieces a significantly higher value. For in-
stance, in an ideal game, the corner pieces should be prioritized over flipping
over more your opponents pieces, as the corners are well protected. This heuris-
tic is not one that I had time to implement, however, it is a potential expansion
of Othello going forwards. Region 5 in the image below shows the corner pieces
which are the ideal spots. There is also a further breakdown of board regions
which could be accounted for with heuristics.

3

Figure 4: Othello: Region Breakdown

4 Parallelization of Minimax

The part of my final project that I parallelized was the minimax algorithm. The
way that I parallelized the minimax algorithm was by using: ’using’ parList rseq.
The idea was derived from a Sudoku implementation I was reading about. Given
that I was using lists, it made sense to implement parList. parList allows us
to evaluate eacch element in a list in parallel as sparks according to a given
strategy. The overall result is that it did seem to improve the runtime, however,
it is just one part of the code that is parallelized. I think if I implemented and
parallelized alpha beta pruning, that might decrease the overall runtime of the
program, especially given that it takes anywhere from about 20 to 40 seconds
to run on 4 cores.

My approach to the minimax algorithm and how to parallelize it, in addition
to being derived from Sudoku, I had first applied it to my Tic-tac-toe game in
Haskell. A large part of my approach to Othello was derived from 1. my
minimax algorithm with alpha beta pruning I previously implemented in Python
and 2. the smaller scale version of tic-tac-toe I made in Haskell which I then
translated to Othello.

Figure 5: Minimax Pseudocode Example

4

Figure 6: My Minimax Implementation

5 Implementation of Different Boards

In terms of my board output. I used a text output for the 8x8 grid labeled with
numbers 0 thought 7. The underscore indicates a blank space where a player
could place a piece. The ’b’ indicates where a black piece is. The ’w’ indicates
where a white piece is. When running this program, we can see where each piece
is played and which pieces are flipped over, thus earning points for the player,
by looking at the text output.

5.1 Board 1: Default Board

Board 1 is the default board. If no board argument is entered in the command
line, it will default to running board 1. Board 1 is the standard board that
would be used in an actual Othello game. It starts with an even number of
both black and white pieces centered on the board.

Figure 7: Board 1: Start and End States

5.2 Board 2: Mid-game

Board 2 has a start state that is midway through the game, as opposed to just
starting at the initial board state. Board 2 is dominated by black pieces with
10 black pieces and 6 white pieces.

Figure 8: Board 2: Start and End States

5

5.3 Board 3: Mid-game

Board 3 is similar to board 2 in that it is also midway through the game.
They are also at a similar point in the game with a similar number of pieces.
Board 3, however, is dominated by white pieces, as opposed to board 2 which
is dominated by black pieces. Board 3 starts with 7 black pieces and 11 white
pieces. It is a slightly different board configuration than that of board 2.

Figure 9: Board 3: Start and End States

6 Threadscope Comparison

I ran threadscope on board 1, board 2, and board 3 testing at 1 core versus 4
cores and a depth of 2 versus a depth of 4. For analysis purposes, the threadscope
comparison we will be looking at is of Board 1. I chose to analyze board 1 here
using the threadscope visual as it is the standard start state for an actual game
of Othello.

The test that is show below was run on board 1 at a depth of 4. The
comparison here is between running this program on 1 core versus running on
4 cores. The time for 1 core was given as 38.47 seconds, while the time for
4 cores was given at 18.29 seconds. This difference is about a 47.57 percent
decrease in runtime which is better than 1 core, but it is not yet near the ideal
75 percent. Another interesting note is that there was also a large amount of
garbage collection occurring during each run.

Figure 10: Board 1: 1 Core, Depth of 4

6

Figure 11: Board 1: 4 Cores, Depth of 4

7 Further Results and Analysis

In addition to the threadscope comparison, I analyzed each of 3 boards on 1
core versus 4 cores in addition to testing at depths of 2 and depths of 4. Please
note that the default depth is 4, but this variable is labeled in my code and
can be manually adjusted. I would like to incorporate the depth as a command
line argument to test rather than needing to update it manually and recompile
accordingly.

7.1 Testing at Different Depths

The depths I chose to focus on were 2 and 4. I tested board 1, board 2, and
board 3 at a depth of 2 and at a depth of 4 on 4 cores. I also tested on 2 cores,
but for the purpose of the analysis, the below results were run on 4 cores.

Figure 12: Runtime: Depth Comparison

7.2 Testing with a Different Number of Cores

I also compared the runtime of board 1, board 2, and board 3 on 1 core versus
4 cores. The first two columns (With 1 Core and With 4 Cores) give the total
runtime in seconds on each board. The last column, difference, give the total
difference in time in seconds. While the total time difference is important to
note, I think it is more relevant to look at the percentage change which is why
it is included.

I believe the ideal percentage decrease in time from 1 to 4 cores would be
about 75 percent, my results ranged from 39.21 percent to 47.54 percent. A
few interesting notes is that despite board 3 starting midway through the game,

7

it takes about 90 seconds on 1 core and 40 seconds on 4 cores, while board 1
only takes about 40 seconds on 1 core and 20 on 4 cores. Despite the large
time difference in running board 3, the percentage change demonstrated that
the runtime decreased by about 40 percent which tracks with the 40 percent
decrease in runtime for board 2 and the 47 percent decrease in runtime for board
1.

Figure 13: Runtime: Core Comparison

8 Going Forward

Going forward, I would like to improve upon the current implementation of
Othello on different boards and potentially expand it.

8.1 Alpha Beta Pruning

Similar to my implementation of minimax with alpha beta pruning in Python,
it would be interesting to explore further implementing this strategy for the
Othello game.

8.2 User Interaction

I would like to keep the option to run Othello on different board states. A
potential expansion on that could be to allow the user to create their own
initial board state rather than the given one.

Adding user interaction such that instead of selecting a board, the user would
be able to make their own moves and play through the full Othello game would
be interesting. From what I currently have, I do not think it is too large a leap
to make and would add user further user engagement.

I currently have the depth of the search tree set to 4 and had tested it
at a depth of 2 by manually changing this variable in my code, recompiling,
and testing. I think adding the depth set variable to be a potential command
line argument for testing purposes would work better than having to manually
adjust and recompile just to experiment with the program itself.

8

8.3 Parallelization

My current parallelization implementation only decreases the runtime from
about 40 to 50 percent total, which is not near the ideal optimization yet.
I would like to explore further parts of the program that I can optimize as well
as experiment with different parallelization strategies that might prove to be
more effective.

8.4 Heuristics

I would also like to explore implementing more heuristics which might help
the accuracy and efficiency of the game. For instance, in an actual game of
Othello, if a player has the opportunity to take a corner piece even at the
cost of flipping over more of their opponents’ pieces, the player will make that
decision to take the corner piece. The reasoning being that the corner spot is
completely protected once there. Additionally, ensuring not to move in a spot
if it would give your opponent the opportunity to take the corner piece would
be an interesting heuristic to explore. This idea refers back to the regions of the
board.

8.5 Troubleshooting

As the program is not near the optimal percentage decrease in runtime yet, I
would like to explore how to further optimize the program as well as explore
parallelization strategies. For instance, the starting board state of board 3 takes
significantly longer than board 1 and board 2, even though board 1 starts with
less pieces and board 2 is at about the same way through the game as board 3.
Exploring further how to minimize the runtime in this particular case would be
a solid step forward

9

9 References

References can also be seen here:
https://docs.google.com/document/d/1KhxJaxueMmcWSAnAHaaKYi5vADCF26gKcKw65
5Q4KOs/edit?usp=sharing

10

10 Full Code Listing

import Data . L i s t
import Data . Maybe
import q u a l i f i e d Data .Map as Map
import Control . P a r a l l e l . S t r a t e g i e s (using , parList , r s eq)
import System . Environment as System

data Othe l lo = White | Black | Empty d e r i v i n g (Eq , Show)
type P = (Int , Int)
type Board = Map.Map P Othe l lo

−−t e s t e d at depths o f 2 and 4
−−can ad jus t the depth used here manually :
depth se t = 4

co lo rToSt r ing : : Othe l lo −> St r ing
co lo rToSt r ing p i e c e =

case p i e c e o f
Empty −> ” ”
White −> ”w”
Black −> ”b”

setBoard : : Board −> St r ing
setBoard b = ”\n 0 1 2 3 4 5 6 7 \n” ++ (i n t e r c a l a t e ”\n”
(map (setRow b) [0 . . 7])) ++ ”\n 0 1 2 3 4 5 6 7 \n \n”

where
setRow b r = show r ++ ” ” ++ (i n t e r c a l a t e ” ” (map (\p −>

co lo rToSt r ing (fromMaybe Empty (Map. lookup p b)))
([(r , x) | x <− [0 . . 7]]))) ++ ” ” ++ show r

changeColor : : Othe l lo −> Othe l lo
changeColor White = Black
changeColor Black = White
changeColor = Empty

moves : : Othe l lo −> Board −> [P]
moves c o l b = f i l t e r (i s V a l i d c o l b) p o s s i b i l i t i e s

where
p o s s i b i l i t i e s = [(x , y) | x <− [0 . . 7] , y <− [0 . . 7]]

i s V a l i d : : Othe l lo −> Board −> P −> Bool
i s V a l i d c o l b p = f l i p C e l l c o l b p /= [] && isNoth ing (Map. lookup p b)

move : : Othe l lo −> Board −> P −> Board

11

move c o l b p = Map. union he lpe r b
where

he lpe r = (Map. f romList (z ip (f l i p C e l l c o l b p) (repeat c o l)))

adv : : Othe l lo −> Board −> Int
adv c o l b = sum (map (\ (, x) −> pt x) (Map. t o L i s t b))

where
pt x

| x == c o l = 1
| x == Empty = 0
| otherwi s e = −1

d i r = [(0 , 1) , (1 , 0) , (1 , 1) , (0 , −1) , (−1 , 0) ,
(−1 , −1) , (−1 , 1) , (1 , −1)]

f l i p C e l l : : Othe l lo −> Board −> P −> [P]
f l i p C e l l c o l b p

| n u l l f l i p = []
| otherwi s e = p : f l i p
where

f l i p = concat (map(f l i p C e l l H e l p e r True c o l b p) d i r)

f l i p C e l l H e l p e r : : Bool −> Othe l lo −> Board −> P −> P −> [P]
f l i p C e l l H e l p e r i c o l b p d

| nxtCol == changeColor c o l = i f r /= [] then
i f not i then

p : r
e l s e r

e l s e []
| nxtCol == c o l = i f not i then [p]
e l s e []
| otherwi s e = []
where

nxtP = (\(x1 , y1) (x2 , y2) −> (x1+x2 , y1+y2)) p d
nxtCol = fromMaybe Empty (Map. lookup nxtP b)
r = f l i p C e l l H e l p e r Fa l se c o l b nxtP d

endGame : : Othe l lo −> Int −> IO ()
endGame c o l adv

| adv == 0 = putStr ” Tie !\n”
| adv > 0 = putStr (co lo rToStr ing c o l ++ ” Won!\n”)
| otherwi se = putStr (co lo rToStr ing (changeColor c o l) ++ ” Won!\n”)

minimax : : Int −> Othe l lo −> Board −> Int
minimax dpth c o l b

12

| endGame = i f (adv c o l b) > 0
then 100000
e l s e −100000

| dpth <= 0 = adv c o l b
| otherwi s e = i f (moves (changeColor c o l) b) /= []

then −maxPt
e l s e maxPt

where
endGame = n u l l (moves c o l b) && n u l l (moves (changeColor c o l) b)
clrUp = i f (moves (changeColor c o l) b) /= []

then changeColor c o l
e l s e c o l

nm = i f clrUp /= c o l
then (moves (changeColor c o l) b)
e l s e (moves c o l b)

maxPt = maximum (map (minimax (dpth − 1) clrUp . move clrUp b)
nm ‘ using ‘ pa rL i s t r s eq)

−−computerMove i s where depth i s s e t : d e f a u l t i s 4
play : : Othe l lo −> Board −> IO ()
play c o l b =

i f n u l l (moves c o l b) && n u l l (moves (changeColor c o l) b)
then endGame c o l $ adv c o l b
e l s e do

l e t
brd = move c o l b (computerMove c o l b)
clrUp = i f moves (changeColor c o l) brd /= []

then (changeColor c o l)
e l s e c o l

putStr (setBoard b)
play clrUp brd
where computerMove c o l b = f s t $ maximumBy (\ (, x) (, y) −>
compare x y) (map (\p −> (p , minimax depth se t c o l
(move c o l b p))) (moves c o l b))

−−board1 i s the d e f a u l t s t a r t s t a t e : 4 p i e c e s in the center , 2 white , 2 black
board1 = Map. f romList [((3 , 3) , White) , ((4 , 4) , White) ,
((3 , 4) , Black) , ((4 , 3) , Black)]

−−board2 i s a p o t e n t i a l mid−game s c e n a r i o which i s black−p i e c e dominated
−−having 12 black p i e c e s and 6 white p i e c e s
board2 = Map. f romList [((2 , 2) , Black) , ((2 , 3) , Black) , ((2 , 4) , Black) ,
((3 , 2) , Black) , ((3 , 3) , Black) , ((3 , 4) , Black) , ((4 , 1) , Black) ,
((4 , 3) , Black) , ((4 , 4) , Black) , ((4 , 6) , Black) , ((6 , 3) , Black) ,
((3 , 1) , White) , ((4 , 2) , White) , ((4 , 5) , White) , ((5 , 3) , White) ,
((5 , 6) , White) , ((6 , 4) , White)]

13

−−board3 i s a p o t e n t i a l mid−game scenar io , l a r g e l y white−p i e c e dominant
−−t o t a l i n g 11 white p i e ce s , and 7 black p i e c e s
board3 = Map. f romList [((1 , 2) , Black) , ((2 , 2) , Black) , ((2 , 3) , Black) ,
((3 , 4) , Black) , ((4 , 2) , Black) , ((4 , 5) , Black) , ((5 , 5) , Black) ,
((1 , 3) , White) , ((2 , 4) , White) , ((2 , 5) , White) , ((2 , 6) , White) ,
((3 , 2) , White) , ((3 , 3) , White) , ((3 , 5) , White) , ((3 , 6) , White) ,
((4 , 3) , White) , ((4 , 4) , White) , ((5 , 3) , White)]

main : : IO ()
main = do

args <− System . getArgs
i f l ength args == 0

then play White board1
e l s e do

i f head args == ”board1”
then play White board1
e l s e do

i f head args == ”board2”
then play White board2
e l s e do

i f head args == ”board3”
then play White board3
e l s e do putStr ” i n v a l i d usage ”

14

	What is Othello?
	How Does My Implementation Differ?
	What is Minimax?
	Parallelization of Minimax
	Implementation of Different Boards
	Board 1: Default Board
	Board 2: Mid-game
	Board 3: Mid-game

	Threadscope Comparison
	Further Results and Analysis
	Testing at Different Depths
	Testing with a Different Number of Cores

	Going Forward
	Alpha Beta Pruning
	User Interaction
	Parallelization
	Heuristics
	Troubleshooting

	References
	Full Code Listing

