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Parallelized Haskell Mandelbrot Set Generation 
Declan O’Reilly   

 
Parallel Functional Programming 

 
Abstract- This paper documents the Mandelbrot set 
generation procedures, codes and results when created 
using both the sequential and parallel facilities provided 
by the Haskell runtime system and its libraries. 
 

I. INTRODUCTION 

He Mandelbrot set is the set of complex numbers c 
which the function   2

cf z z c   does not diverge 

when iterated from 0z  , i.e. for which the sequence 

    0 , 0c c cf f f , etc. remains bounded in absolute 

value [1]. When the set is displayed, the complex plain is 
converted to its two-dimensional cartesian plane 
representation, with the real values along the horizontal 
axis and the imaginary values along the vertical axis. In 
this representation, the horizontal values usually go from 
-2 to 1 and the vertical axis goes from -1 to -1 as this range 
of values will allow us to generate an image as in Figure 
1.  
 

 
Figure 1: The Mandelbrot set within a continuously 
colored environment. [1] 
 

II. MANDELBROT 

When rendering the Mandelbrot set within the chosen 
coordinates, we must choose the number of pixels that lie 
between both the horizontal and vertical boundaries. Each 
pixel coordinate then represents a complex number c that 
is used in the function   2

cf z z c  , where z is initially 

set to 0.  When the function is applied iteratively, if the 

value of   cf z  remains bounded then we color that pixel 

black. If the value of  cf z  is unbounded, then the color 

or the pixel is determined by the iteration number when 
the function became unbounded. This number is 
sometimes called the ‘escape’ number. Obviously, if the 
function never goes unbounded, then the number of 
iterations will be infinite. To avoid this situation, we use 
two filters to determine if the function remains bounded. 
First, we terminate our calculation after 100 iterations. In 
other words, if the function is still bounded after 100 
iterations, we decide that it will remain unbounded. 
Second, if the magnitude of z  goes above two, then the 
function will eventually become unbounded [1].   
 
From a parallel programming perspective what is 
interesting about the Mandelbrot set; is that the 
bounded/unbounded calculation for a pixel is independent 
of all other pixels. Theoretically, if there is enough 
computing power available, calculating the ‘escape’ 
number for each pixel could be calculated in parallel. Of 
course, the computer power needed will depend on the 
number of pixels between the coordinate boundaries. If, as 
mentioned previously the horizontal boundary goes from 
-2 to 1, and the vertical boundary goes from -1 to 1 and if 
we choose 2048 pixels along the horizontal axis and 1024 
pixels along the vertical axis, we will need to calculate the 
‘escape’ number for 2,097152 pixels. Since calculating a 
value for this number of pixels in parallel belongs to the 
realm of GPU computing, while this study is restricted to 
solutions running on CPU’s we will use the parallel 
functionality supplied by the Haskell system runtime and 
its libraries. 
 

III. MANDELBROT (BASELINE) 

In his book ‘Parallel and Concurrent Programming in 
Haskell’ [2], Simon Marlow does use the GPU’s power to 
calculate the Mandelbrot set in parallel 
(github.com/simonmar/parconc-
examples/tree/master/mandel). He uses the Accelerate 
library (www.acceleratehs.org) which is a Haskell Library 
built on top of the CUDA library from Nvidia. In 2013 
when the book was written the Accelerate library provided 
two ‘backends’. The ‘interpreter’ backend which ran 
calculations in serially and the CUDA backend, which 
obviously ran its calculation on the GPU. Interestingly 
since the book has written the Accelerate library has 
changed their range of ‘backends’. The interpreter 
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‘backend’ is still available, but there are now two other 
backends, the llvm-cpu and the llvm-ptx, which have 
replaced the originally CUDA backend. The former 
utilizes the LLVM complier infrastructure running on 
multicore CPU’s and the latter again utilizing the LLVM 
complier infrastructure, but this time running on the GPU. 
The Accelerate library has gone from version 0.12.2.0 in 
2013 to 1.3.0.0 today and there has been some ‘breaking 
changes’ in the library, and as mentioned the ‘backend’ 
infrastructure has been upgraded. So rather than using 
Marlow’s original Mandelbrot set code as a base line, we 
will use an updated version that is included in the 
examples package of the accelerate library 
(hackage.haskell.org/package/accelerate-examples). This 
version had its genesis with Marlow’s version but has been 
updated over the years to utilize new functionality 
introduced into Accelerate as new versions were released.  

Our baseline example consists of the Mandelbrot 
version running using the Accelerate interpreter backend 
(i.e., sequentially) and the version running against the 
LLVM CPU backend (i.e., in parallel). For the baseline 
example we will create and render the Mandelbrot set with 
a height of 1024 pixels and a width of 2048 pixels. The 
example code suffers in one respect. The code is written 
so the code does not need to change whether the example 
is running sequentially or in parallel. The only difference 
is the Accelerate library configuration. This means the 
sequential version must use the Accelerate library in 
places where it would not necessarily need to do so, if the 
code did not need to be agnostic with respect to the run 
time environment. There is an example of this in the 
signature of the ‘mandelbrot’ function. 

 

mandelbrot 

    :: forall a. (Num a, RealFloat a, FromIntegral I

nt a, Elt (Complex a)) 

    => Int                                  -

- ^ image width 

    -> Int                                  -

- ^ image height 

    -> Acc (Scalar a)                       -

- ^ centre x 

    -> Acc (Scalar a)                       -

- ^ centre y 

    -> Acc (Scalar a)                       -

- ^ view width 

    -> Acc (Scalar Int32)                   -

- ^ iteration limit 

    -> Acc (Scalar a)                       -

- ^ divergence radius 

    -> Acc (Array DIM2 (Complex a, Int32)) 
 

To aid in the parallel version, the ‘mandelbrot’ function 

has a set of parameters using the Acc (Scalar a) 
datatype. If the function had been written without regard 
for the parallel version, these parameters, would no doubt 
have used the simple Haskell Int or Double datatype. 
So, while comparisons between the sequential and the 
parallel version maybe skewed, looking at the parallel 
version will be informative. Figure 2 shows the output 
from ThreadScope when the program was run using the 
interpreter backend, i.e., sequentially.  The two points that 
stand out is a) it took 500 seconds to complete and b) it 
only utilized a single core, which is to be expected. 
 

 
Figure 2: The Accelerate ‘examples’ Mandelbrot running 
under the interpreter backend  
 
When the program was run using the LLVM CPU 
backend, running on 4 cores, Figure 3 shows that the 
statistics have vastly improved. The program now runs in 
0.5 seconds and we can also see that, while not 
consistently, the 4 cores were utilized. The rest of the 
timeline shows the application setup and the image 
creation and its persistence to disk. 
 

 
Figure 3: The Accelerate ‘examples’ Mandelbrot running 
under the LLVM CPU backend  
 

IV. MANDELBROT (SEQUENTIAL) 

In the project examples, the code can be broken up into 5 
steps.  
 
1. Generate the complex plane values over the boundaries 

(-2 to 1 on the horizontal axis and -1 to 1 on the vertical 
axis). As in the baseline examples, all project examples 
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also have a height of 1024 pixels and a width of 2048 
pixels (see code example 2). 

2. Generate the Mandelbrot set for each Complex value 
in the values generated in step a (see code example 1). 

3. Convert the Mandelbrot ‘escape’ number to an RGB 
value (see code example 3). 

4. Collect the list of RGB values into a collection that can 
be processed to create an image. The study collects the 
RGB values into 3 different collections: a list, a vector 
and a Repa array. Each of these collection types 
provide their own distinct parallel opportunity. 

5. Convert the collection of RGB values into an image 
and persist this image. 
 
Note: Step 5 provides the visual output validation, but 
as it tends to be a sequential process, it will not play a 
major part in the study. 
 

The first example generates the complex plane values 
using a Haskell list comprehension. As part of the list 
comprehension the Mandelbrot set is generated, and then 
the results are converted to their RGB values (see code 
example 4). Figure 4 shows the ThreadScope graph output 
for this run. From this graph we can see that the sequential 
version took 10.53 seconds to run and as again would be 
expected only utilized a single core. The graph also shows 
that a small percentage of this time was taken up with 
garbage collections. 
 
 

 
Figure 4: The Mandelbrot set generated as a list running 
‘sequentially’  
 
The next example repeats the Mandelbrot set generation 
while storing the set in a Haskell vector (see code example 
5). In this test Figure 5 shows that the execution time was 
reduced to 8.05 seconds. 
 

 
Figure 5: The Mandelbrot set generated as a vector 

running ‘sequentially’ 
 
The last sequential example stores the Mandelbrot set in a 
Haskell Repa array (see code example 6). This example is 
the quickest of the three examples at 7.36 seconds. This 
maybe a little surprising since a Repa array has more 
structure that a list or vector. Therefore, we might expect 
that this extra structure would result in a slower output, but 
obviously this structure creation time is an efficient 
operation within Repa or the overall efficiencies inherent 
in the Repa runtime makes up for any extra time that the 
array creation would take. Part of these efficiencies maybe 
as a result that during this run, zero garbage collections 
occurred (see Figure 6). 
 
 

 
Figure 6: The Mandelbrot set generated as a Repa array 
running ‘sequentially’ 
 

V. MANDELBROT (PARALLEL) 

The Haskell runtime has the concept of a spark as a 
feature that allows code to be parallelized. ‘The runtime 
collects sparks in a pool and uses this as a source of work 
when there are spare processors available, using a 
technique called work stealing. Sparks may be evaluated 
at some point in the future, or they might not—it all 
depends on whether there is a spare core available’ [3]. 
When we parallelize the code that generates the 
Mandelbrot set as a list and a vector, we will use code 
provided by the runtime that takes advantage of this 
feature by creating sparks underneath the covers. Since 
Haskell by default, is a ‘lazy’ language, ‘expressions are 
not evaluated when they are bound to variables, but their 
evaluation is deferred until their results are needed by 
other computations. In consequence, arguments are not 
evaluated before they are passed to a function, but only 
when their values are actually used’ [4]. This means if we 
can force eager evaluation and the creation of sparks, the 
eager evaluation can happen in parallel. One of the most 
straight forward means to cause parallelism is by using the 
rpar and rseq functions from the Eval Monad. When 
we use the rpar combinator before a section of code, it 
states that the rpar argument (i.e., the operation of 
interest) can be run in parallel. rseq is used when you 
want to execute an operation but wait until it completes. 
As stated previously, creating a Mandelbrot set that ranges 
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over 1024 rows and 2048 columns will result in 2,097,152 
possible independent operations, i.e., the function iteration 

  2
cf z z c   can be run for the value assigned to each 

pixel. Though if we run 2 million parallel operations, the 
overhead would outweigh the benefit that would result 
from the parallelism. To avoid such a situation Haskell 
provides ‘Evaluation Strategies’ that are designed to 
separate an algorithm from its runtime parallelism. There 
is a subset of these strategies called ‘Chunking Strategies’ 
that can be utilized in cases like our Mandelbrot set 
problem. The idea is to ‘chunk’ or group the input data, so 
that the level of granularity can be sensibly managed by 
the Haskell runtime system. One such ‘chunking’ function 
is called parListChunk, which takes two arguments, the 
‘chunk’ size and a parallel strategy. Examples of strategies 
are rpar and rseq that we have just see and the strategy 
used in the study code, rdeepseq. rdeepseq is a 
function that actively enforces evaluation to normal form 
(completely), and makes Haskell behave more like a strict 
programming language’ [5]. When the code that generates 
the Mandelbrot set as a list is parallelized it is broken up 
in 1000 chunks and uses the rdeepseq strategy (see code 
example 7). The ThreadScope output from this is shown 
in figure 7. Here we see that the code now runs in 6.24 
seconds as opposed to 10.53 seconds when it ran 
sequentially. This gives us a speedup of 1.69, which is 
quite acceptable considering we only added one function 
to the code. We also see that it used all four cores present 
on the machine while the garbage collection pattern is 
similar to the earlier sequential run. 

 
 

 
Figure 7: The Mandelbrot set generated as a list running in 
parallel with ‘chunk size’ of 1,000 
 
In our example, the work was broken up into 1,000 chunks 
which caused 2000 Sparks to be created. As a comparison, 
when the work was broken up into 100,000 chunks the 
processing wall-clock time of 6.29 seconds was similar, 
but in this case only 21 Sparks were created. Interestingly, 
when the work was broken up into 1,000,000 chunks, the 
wall-clock time was 6.77 seconds again similar to the 1000 
chunks case, but in this case only 3 Sparks were created 
and noticeably not all cores were in use for most of the 
run, see Figure 8.  

 
Figure 8: The Mandelbrot set generated as a list running in 
parallel with ‘chunk size’ of 1,000,000 
 
When the chunk size is pushed to 2,000,000, we are in 
effect running sequentially again and, the time increases 
accordingly back to 9.18 seconds (see Figure 9). 
 

 
Figure 9: The Mandelbrot set generated as a list running in 
parallel with ‘chunk size’ of 1,000,000 
 
When we go in the opposite direction and use a chunk size 
of 100, we end up trying to create 20,972 sparks. Since the 
spark pool is of a fixed size and if we try to create a spark 
when it is full the spark will be dropped or ‘overflowed’. 
So, in this case 20,972 is too many sparks and 10,760 did 
in fact overflow. While we did successfully create roughly 
10,000 sparks the overhead of the overflow sparks causes 
the process to slow down to 9.40 seconds and again, we 
see that not all cores are continually in use, see figure 10. 
 

 
Figure 10: The Mandelbrot set generated as a list running 
in parallel with ‘chunk size’ of 100 
 
When we used 100 chunks approximately half the sparks 
overflowed, therefore we might expect that if we increase 
the chunk size to 200 then all the sparks would be created 
successfully. In turns out that for a chunk size of 200, 
1,255 sparks out of 10,486 sparks still overflowed. 
Though the overhead of the overflow sparks is not as large 
as we saw earlier, and the process finished in 6.53 seconds. 
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To achieve zero overflow sparks, the chunk size was 
increased to 250. In this case 8389 sparks were created 
successfully with no overflow sparks and the processed 
finished in 6.65 seconds and, all four cores were utilized 
while occurring a small garbage collection as seen 
previously. The variation in chunk size shows that the 
chunk size parameter can have a large variation and still 
produce similar results.  
 
Earlier we saw two other strategies besides rdeepseq, 
namely rpar and rseq. It is instructive to see how the 
process performs using either of these strategies. In other 
words, if we used  

`using` parListChunk 1000 rpar 
rather than  

`using` parListChunk 1000 rdeepseq 
 

Surprisingly when we ran the process with both these 
strategies, it only took 2.91 and 2.75 seconds to complete. 
This would seem to be, not only a vast improvement over 
the sequential run, but also an impressive improvement 
over the parallel run using rdeepseq. On closer 
inspection though, the improvement in speed can be 
explained. When we use either rpar and rseq the result 
is either not evaluated at all or is only evaluated to weak 
head normal form. The par and seq function only 
evaluate its argument up to its first constructor. In fact, if 
we run the following command in ghci, (the second 
example is using the force command) 

a = mandelbrotAsListS 1024 2048  
or 

a = force $ mandelbrotAsListS 1024 2048  
and then look at the evaluation status of the variable a 
using the ghci sprint command, we see ‘a = _’. 
Since Haskell is lazy, a was not evaluated at all, as there 
was no need to evaluate the variable at this stage. If we use 
Bang Patterns and change the above to  

a! = mandelbrotAsListS 1024 2028 
and look at the evaluation status of a, we still only see ‘a 
= (_,_,_) : _’. In this second case a has been evaluated to 
weak head normal form. If we are not ‘using’ the value of 
a, e.g., printing its value, and we want to evaluate it 
completely we need to use Bang Patterns and use the 
force command and run the following  

a! = force $ mandelbrotAsListS 1024 2028 
So, while running the process using either rpar or rseq 
as a strategy might seem to improve the performance, 
under closer examination the work is in fact incomplete.  
 
The second Mandelbrot set collection was stored in a 
vector. The Vector.Strategies module provides a 
function called parVector that is similar in functionality 
to parListChunk. Though it only takes one parameter 
the ‘chunk’ size (see code example 8). The strategy name 
is hidden and not documented, but one would assume that 

it is similar if not identical to rdeepseq. The vector 
collection was chosen to see if its parallel behavior and/or 
performance differed from the list collection parallel 
facilities. It turned out that for all the same the range of 
chunk sizes, i.e., 100 to 2,000,000 the behavior was almost 
identical.  
 
The last Mandelbrot set collection was the Repa array (see 
code example 9). ‘Repa provides high performance, 
regular, multi-dimensional, shape polymorphic parallel 
arrays. All numeric data is stored unboxed. Functions 
written with the Repa combinators are automatically 
parallel provided you supply +RTS -Nwhatever (sic) on 
the command line when running the program’ [6]. Like the 
Haskell ‘Strategies’ facilities, the code can be paralyzed 
with small code changes. In the case of Repa, we use 
computeP rather than computeS (computeP though 
must run in a Monad, though any Monad will suffice). 
When running with Repa there are no parameters. That is, 
it does not use a chunk size nor a ‘Strategy’. All the 
parallelization happens underneath the covers. Of all the 
tests the Repa process consistently gave the best 
performance. In Figure 11 we see that it completed in 4.19 
seconds. Also noticeable is that fact that while 4 cores 
where initially in use, for at least half the run only two 
cores were utilized. 
 
 

 
Figure 11: The Mandelbrot set generated as a Repa array 
running in parallel.  
 
For Repa arrays, the concept of a spark is not applicable. 
Repa arrays process unboxed data which by its nature is 
not lazy. Likewise, when we looked at the Haskell 
Accelerate example version of the Mandelbrot set 
generation earlier, it also did not have any spark statistics. 
As we saw earlier, their parallelization features do not use 
the Haskell ‘Strategy’ features, but use a backend utilizing 
LLVM running on multicores CPU’s or a backend 
utilizing LLVM running on GPU’s. 
 
One final task is to show the Mandelbrot image that was 
generated by the above processes. Each process generated 
the same image, which is to be expected. Figure 12 shows 
this image, though obviously shrunk.  
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Figure 12: The Mandelbrot set image generated  
 
This image does not match what we see in Figure 1. The 
reason for this is the toRgb function (see code example 
3). implementation is quite basic and is not able to capture 
the variation that we see in Figure 1. 

VI. CONCLUSIONS 

This paper looked at the Mandelbrot set generation 
using various parallelization facilities provided by either 
the Haskell runtime or its libraries. In all cases that we 
looked at; parallelization was added to the program with 
just a little extra code. While utilizing the ‘Strategy’ 
module, we saw a speedup of 1.69, but the Repa array code 
saw a speedup of 1.76 where its ‘sequential’ run was also 
faster than the other ‘sequential’ runs. The one downside 
of Repa arrays is that they can only contain unboxed data, 
so they cannot hold arbitrary data types, which may 
restrict their use. In our case we only used the array storage 
for the final number, i.e., the RGB value, which was a 
tuple of 3 Word8 variables. However, we were able to use 
the Repa parallelization features while converting a Tuple 
of 2 Int’s to a Complex Double, to a Word8. In other 
words, it was only the final representation that needed to 
be unboxed data, the data that was generated during the 
process did not suffer from this restriction. 

FUTURE WORK 

By far, the most significant speedup was achieved by 
the Accelerate Mandelbrot example. Though the 
‘sequential’ version did seem to be hampered by the 
design choices made to help the code run under 
Accelerate. Nevertheless, the parallelized version did run 
in 0.5 seconds. This makes a further investigation of the 
Accelerate implementation running on top of LLVM 
multicore an interesting project. Likewise, there would 
seem to be many lessons to be learnt from their LLVM 
GPU project.  

One last project that would be interesting to tackle, is to 
remedy the results produced by the RGB function. While 
its implementation was not particularly important to the 
paper, there is the saying that says ‘a picture paints a 
thousand words’, so surely a more accurate image can only 
increase this wordcount. 

  

REFERENCES 
[1] Wikipedia contributors. "Mandelbrot set." Wikipedia, The Free 

Encyclopedia. Wikipedia, The Free Encyclopedia, 1 Dec. 2020. 
Web. 1 Dec. 2020.. 

[2] Marlow, Simon. "‘Parallel and Concurrent Programming in 
Haskell." O'Reilly Media, 2013, chapter 6.  

[3] Marlow, Simon. "‘Parallel and Concurrent Programming in 
Haskell." O'Reilly Media, 2013, chapter 2.  

[4] "Lazy evaluation." HaskellWiki, . 3 Sep 2015, 03:52 UTC. 10 Dec 
2020, 

https://wiki.haskell.org/index.php?title=Lazy_evaluation&oldid=6
0051>. 

[5] "A tutorial on Parallel Strategies in Haskell." Parallel Functional 
Programming class,. 11 Dec 2020, 

http://www.cse.chalmers.se/edu/year/2015/course/pfp/Papers/strat
egies-tutorial-v2.pdf 

[6] Repa Hackage page. “repa: High performance, regular, shape 
polymorphic parallel arrays”. 11 Dec 2020, 

https://hackage.haskell.org/package/repa 

 

BUILD INSTRUCTIONS 
1) Uncompress final.gz 

 
2) In the final directory run stack build 

 
3) The usage and an example follows. Choices are 

between 1 to 12 (see Main.hs) where choice 1 
to 6 saves the Mandelbrot set image using one of 
the different options outlined in the paper and 
choices 7 to 12 create the Mandelbrot set (again 
using the different options outlined in the paper) 
witout creating the final image. 
 
Usage: final <choice> <row count> <column count>  
 
stack exec -- final-exe -RTS 6 1024 
2048 +RTS -N4 -ls  
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Code examples referenced in the study: (Build instructions outlined at end of final page above) 
                                                                                                                       

 
Code example 1: The mandelbrot set generating function. The input complex number is converted to its ‘escape’ number  
 

 
Code example 2:  Given the number of rows and columns between the boundaries and a specified row and column number, 

pixelValue returns its complex number representation 
 

 
Code example 3: Given an ‘escape’ number toRgb returns an RGB representation 
 
 

 
Code example 4: The Mandelbrot set stored in a Haskell list 
 
 

 
Code example 5: The Mandelbrot set stored in a Haskell vector 
 
 

 
Code example 6: The Mandelbrot set stored in a Haskell Repa array 
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Code example 7: The Mandelbrot set stored in a Haskell listwhile  run in parallel 
 
 

 
Code example 8: The Mandelbrot set stored in a Haskell vector while run in parallel 
 
 

 
Code example 9: The Mandelbrot set stored in a Haskell Repa array while run in parallel 
 

 
Code example 10: pixelToRGB converts a pixel value to a complex number to an ‘escape’ number to a RGB color 
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Lib.hs: Full code listing 

module Lib 

    ( mandelbrotAsListS, mandelbrotAsListP, mandelbrotAsVectorS,  

      mandelbrotAsVectorP, mandelbrotAsRepaS, mandelbrotAsRepaP)  

    where 

 

import Data.Complex ( magnitude, Complex((:+)) ) 

import Data.Vector ( generate, Vector ) 

import Data.Array.Repa ( fromFunction, computeS, computeP, Z (..), (:.)(..), Array, U, DIM2 ) 

import Data.Functor.Identity ( runIdentity ) 

import Control.Parallel.Strategies ( parListChunk, rdeepseq, using) 

import Data.Vector.Strategies ( parVector ) 

import Data.Word ( Word8 ) 

 

mandelbrot :: Complex Double -> Word8 

mandelbrot c = escapeTime 

    where (_, escapeTime) = last $ 

                takeWhile (\(z, count) -> magnitude z < 2 && count < 100) $ 

                iterate   (\(z, count) -> (z * z + c, count + 1)) (0.0 :+ 0.0, 0) 

 

pixelValue :: (Int, Int) -> (Int, Int) -> Complex Double 

pixelValue (rowCount, colCount) (row, col)  =  

    shiftAlongX col colCount :+ shiftAlongY row rowCount  

    where shiftAlongX x maxX  = normalizeZeroOne x maxX 3 2 -- i.e. (-2, 1) 

          shiftAlongY y maxY  = normalizeZeroOne y maxY 2 1 -- i.e. (-1, 1) 

          normalizeZeroOne v m a b = a * (fromIntegral v - 1)/(fromIntegral m - 1) - b 

 

toRgb :: Word8 -> (Word8, Word8, Word8) 

toRgb i = if i == 0 then (0, 0, 0) else (r, g, b)  

    where i' = (floor (255 * 255 * (255.0::Double)/100.0)::Integer) * toInteger i 

          r' = i' `mod` 255 

          r = fromIntegral r' 

          g = floor(fromIntegral (i' - r') / 255::Double) `mod` 255 

          b = floor(fromIntegral (i' - r') /  

                (255 * 255::Double)) - floor(fromIntegral g / 255::Double)         

 

 

pixelToRGB :: (Int, Int) -> (Int, Int) -> (Word8, Word8, Word8) 

pixelToRGB (row, col) = toRgb . mandelbrot . pixelValue (row, col) 
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---Sequential mandelbrot 

 

mandelbrotAsListS :: Int -> Int -> [(Word8, Word8, Word8)] 

mandelbrotAsListS rowCount colCount = [ pixelToRGB (rowCount, colCount) (r, c)  

                 | r <- [1..rowCount],  c <- [1..colCount]] 

         

 

 

mandelbrotAsVectorS :: Int -> Int -> Vector (Word8, Word8, Word8) 

mandelbrotAsVectorS rowCount colCount = Data.Vector.generate (rowCount * colCount)  

        (\n -> pixelToRGB (rowCount, colCount) (quotRem n colCount) ) 

 

mandelbrotAsRepaS :: Int -> Int -> Array U DIM2 (Word8, Word8, Word8) 

mandelbrotAsRepaS rowCount colCount = computeS $  

        fromFunction (Z :. (rowCount::Int) :. (colCount::Int))  

                (\(Z :. row :. col) -> pixelToRGB (rowCount, colCount) (row, col) ) 

 

---Parallel mandelbrot 

 

mandelbrotAsListP :: Int -> Int -> [(Word8, Word8, Word8)] 

mandelbrotAsListP rowCount colCount = [ pixelToRGB (rowCount, colCount)(r, c)   

        | r <- [1..rowCount],  c <- [1..colCount]]  

                `using` parListChunk 1000 rdeepseq 

 

mandelbrotAsVectorP :: Int -> Int -> Vector (Word8, Word8, Word8) 

mandelbrotAsVectorP rowCount colCount = Data.Vector.generate (rowCount * colCount)  

        (\n -> pixelToRGB (rowCount, colCount) (quotRem n colCount) )  

                `using` parVector 1000 

 

mandelbrotAsRepaP :: Int -> Int -> Array U DIM2 (Word8, Word8, Word8) 

mandelbrotAsRepaP rowCount colCount = runIdentity $ computeP $  

        fromFunction (Z :. (rowCount::Int) :. (colCount::Int))  

                (\(Z :. row :. col) -> pixelToRGB (rowCount, colCount) (row, col) ) 
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Main.hs: Driver code to run the exported functions from Lib.hs 

module Main where 

 

import System.Environment ( getArgs ) 

import System.Exit ( die ) 

import Data.Word ( Word8 ) 

import Data.ByteString (pack )  

import Data.Array.Repa ( extent) 

import Data.Array.Repa.IO.BMP ( writeImageToBMP ) 

import Data.Time ( getCurrentTime, diffUTCTime ) 

import Control.DeepSeq ( force ) 

import Codec.BMP ( writeBMP, packRGBA32ToBMP, BMP )     

import Lib   ( mandelbrotAsListS, mandelbrotAsListP, mandelbrotAsVectorS,  

               mandelbrotAsVectorP, mandelbrotAsRepaS, mandelbrotAsRepaP )  

 

main :: IO () 

main = do 

    let errorMessage =  "Usage: final <choice> <row count> <column count>" 

    args <- getArgs 

    case args of 

        [ch, rc, cc] ->  do 

            let (choice, rowCount,colCount) = (read ch :: Int, read  rc :: Int, read  cc :: Int) 

 

            beforeT <- getCurrentTime  

            case choice of 

                c 

                    | c >=  1 && c <=  6 -> mandelbrotSaveImage  choice rowCount colCount  

                    | c >=  7 && c <=  9 -> mandelbrotSequential choice rowCount colCount  

                    | c >= 10 && c <= 12 -> mandelbrotParallel   choice rowCount colCount  

 

                    | otherwise -> die errorMessage 

 

            afterT <- getCurrentTime 

            print $ show choice ++ " (" ++ show (diffUTCTime afterT beforeT) ++ ")"                     

 

        _ -> die errorMessage 
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mandelbrotSaveImage :: Int -> Int -> Int-> IO () 

mandelbrotSaveImage choice rowCount colCount = do 

 

     case choice of 

        c 

            | c ==  1 -> writeBMP        "mandelbrotAsListS.bmp"   $ collectionToBmp     rowCount colCount  

                                                                   $ mandelbrotAsListS   rowCount colCount 

            | c ==  2 -> writeBMP        "mandelbrotAsVectorS.bmp" $ collectionToBmp     rowCount colCount  

                                                                   $ mandelbrotAsVectorS rowCount colCount 

            | c ==  3 -> writeImageToBMP "mandelbrotAsRepaS.bmp"   $ mandelbrotAsRepaS   rowCount colCount 

 

            | c ==  4 -> writeBMP        "mandelbrotAsListP.bmp"   $ collectionToBmp     rowCount colCount  

                                                                   $ mandelbrotAsListP   rowCount colCount 

            | c ==  5 -> writeBMP        "mandelbrotAsVectorP.bmp" $ collectionToBmp     rowCount colCount  

                                                                   $ mandelbrotAsVectorP rowCount colCount 

            | c ==  6 -> writeImageToBMP "mandelbrotAsRepaP.bmp"   $ mandelbrotAsRepaP   rowCount colCount 

 

            | otherwise -> print "unexpected" 

 

mandelbrotSequential :: Int -> Int -> Int-> IO () 

mandelbrotSequential choice rowCount colCount = do 

 

    case choice of 

        c 

            | c == 7    -> print $ Prelude.length $ force $ mandelbrotAsListS   rowCount colCount  

            | c == 8    -> print $ Prelude.length $ force $ mandelbrotAsVectorS rowCount colCount  

            | c == 9    -> print $ extent $                 mandelbrotAsRepaS   rowCount colCount 

 

            | otherwise -> print "unexpected" 

    return ()     

 

mandelbrotParallel :: Int -> Int -> Int-> IO () 

mandelbrotParallel choice rowCount colCount = do 

 

    case choice of 

        c 

            | c == 10   -> print $ Prelude.length $ mandelbrotAsListP   rowCount colCount  

            | c == 11   -> print $ Prelude.length $ mandelbrotAsVectorP rowCount colCount  

            | c == 12   -> print $ extent         $ mandelbrotAsRepaP   rowCount colCount 

 

            | otherwise ->  print "unexpected" 

    return ()    
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-- conversion functions  

 

collectionToBmp :: Foldable t => Int -> Int -> t (Word8, Word8, Word8) -> BMP 

collectionToBmp rowCount colCount xs = packRGBA32ToBMP colCount rowCount $  

        Data.ByteString.pack ( Prelude.concatMap (\(r, g, b) -> [r, g, b, 255])  xs) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


