
1

Parallelized Haskell Mandelbrot Set Generation
Declan O’Reilly

Parallel Functional Programming

Abstract- This paper documents the Mandelbrot set
generation procedures, codes and results when created
using both the sequential and parallel facilities provided
by the Haskell runtime system and its libraries.

I. INTRODUCTION

He Mandelbrot set is the set of complex numbers c
which the function   2

cf z z c  does not diverge

when iterated from 0z  , i.e. for which the sequence

    0 , 0c c cf f f , etc. remains bounded in absolute

value [1]. When the set is displayed, the complex plain is
converted to its two-dimensional cartesian plane
representation, with the real values along the horizontal
axis and the imaginary values along the vertical axis. In
this representation, the horizontal values usually go from
-2 to 1 and the vertical axis goes from -1 to -1 as this range
of values will allow us to generate an image as in Figure
1.

Figure 1: The Mandelbrot set within a continuously
colored environment. [1]

II. MANDELBROT

When rendering the Mandelbrot set within the chosen
coordinates, we must choose the number of pixels that lie
between both the horizontal and vertical boundaries. Each
pixel coordinate then represents a complex number c that
is used in the function   2

cf z z c  , where z is initially

set to 0. When the function is applied iteratively, if the

value of  cf z remains bounded then we color that pixel

black. If the value of  cf z is unbounded, then the color

or the pixel is determined by the iteration number when
the function became unbounded. This number is
sometimes called the ‘escape’ number. Obviously, if the
function never goes unbounded, then the number of
iterations will be infinite. To avoid this situation, we use
two filters to determine if the function remains bounded.
First, we terminate our calculation after 100 iterations. In
other words, if the function is still bounded after 100
iterations, we decide that it will remain unbounded.
Second, if the magnitude of z goes above two, then the
function will eventually become unbounded [1].

From a parallel programming perspective what is
interesting about the Mandelbrot set; is that the
bounded/unbounded calculation for a pixel is independent
of all other pixels. Theoretically, if there is enough
computing power available, calculating the ‘escape’
number for each pixel could be calculated in parallel. Of
course, the computer power needed will depend on the
number of pixels between the coordinate boundaries. If, as
mentioned previously the horizontal boundary goes from
-2 to 1, and the vertical boundary goes from -1 to 1 and if
we choose 2048 pixels along the horizontal axis and 1024
pixels along the vertical axis, we will need to calculate the
‘escape’ number for 2,097152 pixels. Since calculating a
value for this number of pixels in parallel belongs to the
realm of GPU computing, while this study is restricted to
solutions running on CPU’s we will use the parallel
functionality supplied by the Haskell system runtime and
its libraries.

III. MANDELBROT (BASELINE)

In his book ‘Parallel and Concurrent Programming in
Haskell’ [2], Simon Marlow does use the GPU’s power to
calculate the Mandelbrot set in parallel
(github.com/simonmar/parconc-
examples/tree/master/mandel). He uses the Accelerate
library (www.acceleratehs.org) which is a Haskell Library
built on top of the CUDA library from Nvidia. In 2013
when the book was written the Accelerate library provided
two ‘backends’. The ‘interpreter’ backend which ran
calculations in serially and the CUDA backend, which
obviously ran its calculation on the GPU. Interestingly
since the book has written the Accelerate library has
changed their range of ‘backends’. The interpreter

T

2

‘backend’ is still available, but there are now two other
backends, the llvm-cpu and the llvm-ptx, which have
replaced the originally CUDA backend. The former
utilizes the LLVM complier infrastructure running on
multicore CPU’s and the latter again utilizing the LLVM
complier infrastructure, but this time running on the GPU.
The Accelerate library has gone from version 0.12.2.0 in
2013 to 1.3.0.0 today and there has been some ‘breaking
changes’ in the library, and as mentioned the ‘backend’
infrastructure has been upgraded. So rather than using
Marlow’s original Mandelbrot set code as a base line, we
will use an updated version that is included in the
examples package of the accelerate library
(hackage.haskell.org/package/accelerate-examples). This
version had its genesis with Marlow’s version but has been
updated over the years to utilize new functionality
introduced into Accelerate as new versions were released.

Our baseline example consists of the Mandelbrot
version running using the Accelerate interpreter backend
(i.e., sequentially) and the version running against the
LLVM CPU backend (i.e., in parallel). For the baseline
example we will create and render the Mandelbrot set with
a height of 1024 pixels and a width of 2048 pixels. The
example code suffers in one respect. The code is written
so the code does not need to change whether the example
is running sequentially or in parallel. The only difference
is the Accelerate library configuration. This means the
sequential version must use the Accelerate library in
places where it would not necessarily need to do so, if the
code did not need to be agnostic with respect to the run
time environment. There is an example of this in the
signature of the ‘mandelbrot’ function.

mandelbrot

 :: forall a. (Num a, RealFloat a, FromIntegral I

nt a, Elt (Complex a))

 => Int -

- ^ image width

 -> Int -

- ^ image height

 -> Acc (Scalar a) -

- ^ centre x

 -> Acc (Scalar a) -

- ^ centre y

 -> Acc (Scalar a) -

- ^ view width

 -> Acc (Scalar Int32) -

- ^ iteration limit

 -> Acc (Scalar a) -

- ^ divergence radius

 -> Acc (Array DIM2 (Complex a, Int32))

To aid in the parallel version, the ‘mandelbrot’ function

has a set of parameters using the Acc (Scalar a)
datatype. If the function had been written without regard
for the parallel version, these parameters, would no doubt
have used the simple Haskell Int or Double datatype.
So, while comparisons between the sequential and the
parallel version maybe skewed, looking at the parallel
version will be informative. Figure 2 shows the output
from ThreadScope when the program was run using the
interpreter backend, i.e., sequentially. The two points that
stand out is a) it took 500 seconds to complete and b) it
only utilized a single core, which is to be expected.

Figure 2: The Accelerate ‘examples’ Mandelbrot running
under the interpreter backend

When the program was run using the LLVM CPU
backend, running on 4 cores, Figure 3 shows that the
statistics have vastly improved. The program now runs in
0.5 seconds and we can also see that, while not
consistently, the 4 cores were utilized. The rest of the
timeline shows the application setup and the image
creation and its persistence to disk.

Figure 3: The Accelerate ‘examples’ Mandelbrot running
under the LLVM CPU backend

IV. MANDELBROT (SEQUENTIAL)

In the project examples, the code can be broken up into 5
steps.

1. Generate the complex plane values over the boundaries

(-2 to 1 on the horizontal axis and -1 to 1 on the vertical
axis). As in the baseline examples, all project examples

3

also have a height of 1024 pixels and a width of 2048
pixels (see code example 2).

2. Generate the Mandelbrot set for each Complex value
in the values generated in step a (see code example 1).

3. Convert the Mandelbrot ‘escape’ number to an RGB
value (see code example 3).

4. Collect the list of RGB values into a collection that can
be processed to create an image. The study collects the
RGB values into 3 different collections: a list, a vector
and a Repa array. Each of these collection types
provide their own distinct parallel opportunity.

5. Convert the collection of RGB values into an image
and persist this image.

Note: Step 5 provides the visual output validation, but
as it tends to be a sequential process, it will not play a
major part in the study.

The first example generates the complex plane values
using a Haskell list comprehension. As part of the list
comprehension the Mandelbrot set is generated, and then
the results are converted to their RGB values (see code
example 4). Figure 4 shows the ThreadScope graph output
for this run. From this graph we can see that the sequential
version took 10.53 seconds to run and as again would be
expected only utilized a single core. The graph also shows
that a small percentage of this time was taken up with
garbage collections.

Figure 4: The Mandelbrot set generated as a list running
‘sequentially’

The next example repeats the Mandelbrot set generation
while storing the set in a Haskell vector (see code example
5). In this test Figure 5 shows that the execution time was
reduced to 8.05 seconds.

Figure 5: The Mandelbrot set generated as a vector

running ‘sequentially’

The last sequential example stores the Mandelbrot set in a
Haskell Repa array (see code example 6). This example is
the quickest of the three examples at 7.36 seconds. This
maybe a little surprising since a Repa array has more
structure that a list or vector. Therefore, we might expect
that this extra structure would result in a slower output, but
obviously this structure creation time is an efficient
operation within Repa or the overall efficiencies inherent
in the Repa runtime makes up for any extra time that the
array creation would take. Part of these efficiencies maybe
as a result that during this run, zero garbage collections
occurred (see Figure 6).

Figure 6: The Mandelbrot set generated as a Repa array
running ‘sequentially’

V. MANDELBROT (PARALLEL)

The Haskell runtime has the concept of a spark as a
feature that allows code to be parallelized. ‘The runtime
collects sparks in a pool and uses this as a source of work
when there are spare processors available, using a
technique called work stealing. Sparks may be evaluated
at some point in the future, or they might not—it all
depends on whether there is a spare core available’ [3].
When we parallelize the code that generates the
Mandelbrot set as a list and a vector, we will use code
provided by the runtime that takes advantage of this
feature by creating sparks underneath the covers. Since
Haskell by default, is a ‘lazy’ language, ‘expressions are
not evaluated when they are bound to variables, but their
evaluation is deferred until their results are needed by
other computations. In consequence, arguments are not
evaluated before they are passed to a function, but only
when their values are actually used’ [4]. This means if we
can force eager evaluation and the creation of sparks, the
eager evaluation can happen in parallel. One of the most
straight forward means to cause parallelism is by using the
rpar and rseq functions from the Eval Monad. When
we use the rpar combinator before a section of code, it
states that the rpar argument (i.e., the operation of
interest) can be run in parallel. rseq is used when you
want to execute an operation but wait until it completes.
As stated previously, creating a Mandelbrot set that ranges

4

over 1024 rows and 2048 columns will result in 2,097,152
possible independent operations, i.e., the function iteration

  2
cf z z c  can be run for the value assigned to each

pixel. Though if we run 2 million parallel operations, the
overhead would outweigh the benefit that would result
from the parallelism. To avoid such a situation Haskell
provides ‘Evaluation Strategies’ that are designed to
separate an algorithm from its runtime parallelism. There
is a subset of these strategies called ‘Chunking Strategies’
that can be utilized in cases like our Mandelbrot set
problem. The idea is to ‘chunk’ or group the input data, so
that the level of granularity can be sensibly managed by
the Haskell runtime system. One such ‘chunking’ function
is called parListChunk, which takes two arguments, the
‘chunk’ size and a parallel strategy. Examples of strategies
are rpar and rseq that we have just see and the strategy
used in the study code, rdeepseq. rdeepseq is a
function that actively enforces evaluation to normal form
(completely), and makes Haskell behave more like a strict
programming language’ [5]. When the code that generates
the Mandelbrot set as a list is parallelized it is broken up
in 1000 chunks and uses the rdeepseq strategy (see code
example 7). The ThreadScope output from this is shown
in figure 7. Here we see that the code now runs in 6.24
seconds as opposed to 10.53 seconds when it ran
sequentially. This gives us a speedup of 1.69, which is
quite acceptable considering we only added one function
to the code. We also see that it used all four cores present
on the machine while the garbage collection pattern is
similar to the earlier sequential run.

Figure 7: The Mandelbrot set generated as a list running in
parallel with ‘chunk size’ of 1,000

In our example, the work was broken up into 1,000 chunks
which caused 2000 Sparks to be created. As a comparison,
when the work was broken up into 100,000 chunks the
processing wall-clock time of 6.29 seconds was similar,
but in this case only 21 Sparks were created. Interestingly,
when the work was broken up into 1,000,000 chunks, the
wall-clock time was 6.77 seconds again similar to the 1000
chunks case, but in this case only 3 Sparks were created
and noticeably not all cores were in use for most of the
run, see Figure 8.

Figure 8: The Mandelbrot set generated as a list running in
parallel with ‘chunk size’ of 1,000,000

When the chunk size is pushed to 2,000,000, we are in
effect running sequentially again and, the time increases
accordingly back to 9.18 seconds (see Figure 9).

Figure 9: The Mandelbrot set generated as a list running in
parallel with ‘chunk size’ of 1,000,000

When we go in the opposite direction and use a chunk size
of 100, we end up trying to create 20,972 sparks. Since the
spark pool is of a fixed size and if we try to create a spark
when it is full the spark will be dropped or ‘overflowed’.
So, in this case 20,972 is too many sparks and 10,760 did
in fact overflow. While we did successfully create roughly
10,000 sparks the overhead of the overflow sparks causes
the process to slow down to 9.40 seconds and again, we
see that not all cores are continually in use, see figure 10.

Figure 10: The Mandelbrot set generated as a list running
in parallel with ‘chunk size’ of 100

When we used 100 chunks approximately half the sparks
overflowed, therefore we might expect that if we increase
the chunk size to 200 then all the sparks would be created
successfully. In turns out that for a chunk size of 200,
1,255 sparks out of 10,486 sparks still overflowed.
Though the overhead of the overflow sparks is not as large
as we saw earlier, and the process finished in 6.53 seconds.

5

To achieve zero overflow sparks, the chunk size was
increased to 250. In this case 8389 sparks were created
successfully with no overflow sparks and the processed
finished in 6.65 seconds and, all four cores were utilized
while occurring a small garbage collection as seen
previously. The variation in chunk size shows that the
chunk size parameter can have a large variation and still
produce similar results.

Earlier we saw two other strategies besides rdeepseq,
namely rpar and rseq. It is instructive to see how the
process performs using either of these strategies. In other
words, if we used

`using` parListChunk 1000 rpar
rather than

`using` parListChunk 1000 rdeepseq

Surprisingly when we ran the process with both these
strategies, it only took 2.91 and 2.75 seconds to complete.
This would seem to be, not only a vast improvement over
the sequential run, but also an impressive improvement
over the parallel run using rdeepseq. On closer
inspection though, the improvement in speed can be
explained. When we use either rpar and rseq the result
is either not evaluated at all or is only evaluated to weak
head normal form. The par and seq function only
evaluate its argument up to its first constructor. In fact, if
we run the following command in ghci, (the second
example is using the force command)

a = mandelbrotAsListS 1024 2048
or

a = force $ mandelbrotAsListS 1024 2048
and then look at the evaluation status of the variable a
using the ghci sprint command, we see ‘a = _’.
Since Haskell is lazy, a was not evaluated at all, as there
was no need to evaluate the variable at this stage. If we use
Bang Patterns and change the above to

a! = mandelbrotAsListS 1024 2028
and look at the evaluation status of a, we still only see ‘a
= (_,_,_) : _’. In this second case a has been evaluated to
weak head normal form. If we are not ‘using’ the value of
a, e.g., printing its value, and we want to evaluate it
completely we need to use Bang Patterns and use the
force command and run the following

a! = force $ mandelbrotAsListS 1024 2028
So, while running the process using either rpar or rseq
as a strategy might seem to improve the performance,
under closer examination the work is in fact incomplete.

The second Mandelbrot set collection was stored in a
vector. The Vector.Strategies module provides a
function called parVector that is similar in functionality
to parListChunk. Though it only takes one parameter
the ‘chunk’ size (see code example 8). The strategy name
is hidden and not documented, but one would assume that

it is similar if not identical to rdeepseq. The vector
collection was chosen to see if its parallel behavior and/or
performance differed from the list collection parallel
facilities. It turned out that for all the same the range of
chunk sizes, i.e., 100 to 2,000,000 the behavior was almost
identical.

The last Mandelbrot set collection was the Repa array (see
code example 9). ‘Repa provides high performance,
regular, multi-dimensional, shape polymorphic parallel
arrays. All numeric data is stored unboxed. Functions
written with the Repa combinators are automatically
parallel provided you supply +RTS -Nwhatever (sic) on
the command line when running the program’ [6]. Like the
Haskell ‘Strategies’ facilities, the code can be paralyzed
with small code changes. In the case of Repa, we use
computeP rather than computeS (computeP though
must run in a Monad, though any Monad will suffice).
When running with Repa there are no parameters. That is,
it does not use a chunk size nor a ‘Strategy’. All the
parallelization happens underneath the covers. Of all the
tests the Repa process consistently gave the best
performance. In Figure 11 we see that it completed in 4.19
seconds. Also noticeable is that fact that while 4 cores
where initially in use, for at least half the run only two
cores were utilized.

Figure 11: The Mandelbrot set generated as a Repa array
running in parallel.

For Repa arrays, the concept of a spark is not applicable.
Repa arrays process unboxed data which by its nature is
not lazy. Likewise, when we looked at the Haskell
Accelerate example version of the Mandelbrot set
generation earlier, it also did not have any spark statistics.
As we saw earlier, their parallelization features do not use
the Haskell ‘Strategy’ features, but use a backend utilizing
LLVM running on multicores CPU’s or a backend
utilizing LLVM running on GPU’s.

One final task is to show the Mandelbrot image that was
generated by the above processes. Each process generated
the same image, which is to be expected. Figure 12 shows
this image, though obviously shrunk.

6

Figure 12: The Mandelbrot set image generated

This image does not match what we see in Figure 1. The
reason for this is the toRgb function (see code example
3). implementation is quite basic and is not able to capture
the variation that we see in Figure 1.

VI. CONCLUSIONS

This paper looked at the Mandelbrot set generation
using various parallelization facilities provided by either
the Haskell runtime or its libraries. In all cases that we
looked at; parallelization was added to the program with
just a little extra code. While utilizing the ‘Strategy’
module, we saw a speedup of 1.69, but the Repa array code
saw a speedup of 1.76 where its ‘sequential’ run was also
faster than the other ‘sequential’ runs. The one downside
of Repa arrays is that they can only contain unboxed data,
so they cannot hold arbitrary data types, which may
restrict their use. In our case we only used the array storage
for the final number, i.e., the RGB value, which was a
tuple of 3 Word8 variables. However, we were able to use
the Repa parallelization features while converting a Tuple
of 2 Int’s to a Complex Double, to a Word8. In other
words, it was only the final representation that needed to
be unboxed data, the data that was generated during the
process did not suffer from this restriction.

FUTURE WORK

By far, the most significant speedup was achieved by
the Accelerate Mandelbrot example. Though the
‘sequential’ version did seem to be hampered by the
design choices made to help the code run under
Accelerate. Nevertheless, the parallelized version did run
in 0.5 seconds. This makes a further investigation of the
Accelerate implementation running on top of LLVM
multicore an interesting project. Likewise, there would
seem to be many lessons to be learnt from their LLVM
GPU project.

One last project that would be interesting to tackle, is to
remedy the results produced by the RGB function. While
its implementation was not particularly important to the
paper, there is the saying that says ‘a picture paints a
thousand words’, so surely a more accurate image can only
increase this wordcount.

REFERENCES
[1] Wikipedia contributors. "Mandelbrot set." Wikipedia, The Free

Encyclopedia. Wikipedia, The Free Encyclopedia, 1 Dec. 2020.
Web. 1 Dec. 2020..

[2] Marlow, Simon. "‘Parallel and Concurrent Programming in
Haskell." O'Reilly Media, 2013, chapter 6.

[3] Marlow, Simon. "‘Parallel and Concurrent Programming in
Haskell." O'Reilly Media, 2013, chapter 2.

[4] "Lazy evaluation." HaskellWiki, . 3 Sep 2015, 03:52 UTC. 10 Dec
2020,

https://wiki.haskell.org/index.php?title=Lazy_evaluation&oldid=6
0051>.

[5] "A tutorial on Parallel Strategies in Haskell." Parallel Functional
Programming class,. 11 Dec 2020,

http://www.cse.chalmers.se/edu/year/2015/course/pfp/Papers/strat
egies-tutorial-v2.pdf

[6] Repa Hackage page. “repa: High performance, regular, shape
polymorphic parallel arrays”. 11 Dec 2020,

https://hackage.haskell.org/package/repa

BUILD INSTRUCTIONS
1) Uncompress final.gz

2) In the final directory run stack build

3) The usage and an example follows. Choices are

between 1 to 12 (see Main.hs) where choice 1
to 6 saves the Mandelbrot set image using one of
the different options outlined in the paper and
choices 7 to 12 create the Mandelbrot set (again
using the different options outlined in the paper)
witout creating the final image.

Usage: final <choice> <row count> <column count>

stack exec -- final-exe -RTS 6 1024
2048 +RTS -N4 -ls

7

Code examples referenced in the study: (Build instructions outlined at end of final page above)

Code example 1: The mandelbrot set generating function. The input complex number is converted to its ‘escape’ number

Code example 2: Given the number of rows and columns between the boundaries and a specified row and column number,

pixelValue returns its complex number representation

Code example 3: Given an ‘escape’ number toRgb returns an RGB representation

Code example 4: The Mandelbrot set stored in a Haskell list

Code example 5: The Mandelbrot set stored in a Haskell vector

Code example 6: The Mandelbrot set stored in a Haskell Repa array

8

Code example 7: The Mandelbrot set stored in a Haskell listwhile run in parallel

Code example 8: The Mandelbrot set stored in a Haskell vector while run in parallel

Code example 9: The Mandelbrot set stored in a Haskell Repa array while run in parallel

Code example 10: pixelToRGB converts a pixel value to a complex number to an ‘escape’ number to a RGB color

9

Lib.hs: Full code listing

module Lib

 (mandelbrotAsListS, mandelbrotAsListP, mandelbrotAsVectorS,

 mandelbrotAsVectorP, mandelbrotAsRepaS, mandelbrotAsRepaP)

 where

import Data.Complex (magnitude, Complex((:+)))

import Data.Vector (generate, Vector)

import Data.Array.Repa (fromFunction, computeS, computeP, Z (..), (:.)(..), Array, U, DIM2)

import Data.Functor.Identity (runIdentity)

import Control.Parallel.Strategies (parListChunk, rdeepseq, using)

import Data.Vector.Strategies (parVector)

import Data.Word (Word8)

mandelbrot :: Complex Double -> Word8

mandelbrot c = escapeTime

 where (_, escapeTime) = last $

 takeWhile (\(z, count) -> magnitude z < 2 && count < 100) $

 iterate (\(z, count) -> (z * z + c, count + 1)) (0.0 :+ 0.0, 0)

pixelValue :: (Int, Int) -> (Int, Int) -> Complex Double

pixelValue (rowCount, colCount) (row, col) =

 shiftAlongX col colCount :+ shiftAlongY row rowCount

 where shiftAlongX x maxX = normalizeZeroOne x maxX 3 2 -- i.e. (-2, 1)

 shiftAlongY y maxY = normalizeZeroOne y maxY 2 1 -- i.e. (-1, 1)

 normalizeZeroOne v m a b = a * (fromIntegral v - 1)/(fromIntegral m - 1) - b

toRgb :: Word8 -> (Word8, Word8, Word8)

toRgb i = if i == 0 then (0, 0, 0) else (r, g, b)

 where i' = (floor (255 * 255 * (255.0::Double)/100.0)::Integer) * toInteger i

 r' = i' `mod` 255

 r = fromIntegral r'

 g = floor(fromIntegral (i' - r') / 255::Double) `mod` 255

 b = floor(fromIntegral (i' - r') /

 (255 * 255::Double)) - floor(fromIntegral g / 255::Double)

pixelToRGB :: (Int, Int) -> (Int, Int) -> (Word8, Word8, Word8)

pixelToRGB (row, col) = toRgb . mandelbrot . pixelValue (row, col)

10

---Sequential mandelbrot

mandelbrotAsListS :: Int -> Int -> [(Word8, Word8, Word8)]

mandelbrotAsListS rowCount colCount = [pixelToRGB (rowCount, colCount) (r, c)

 | r <- [1..rowCount], c <- [1..colCount]]

mandelbrotAsVectorS :: Int -> Int -> Vector (Word8, Word8, Word8)

mandelbrotAsVectorS rowCount colCount = Data.Vector.generate (rowCount * colCount)

 (\n -> pixelToRGB (rowCount, colCount) (quotRem n colCount))

mandelbrotAsRepaS :: Int -> Int -> Array U DIM2 (Word8, Word8, Word8)

mandelbrotAsRepaS rowCount colCount = computeS $

 fromFunction (Z :. (rowCount::Int) :. (colCount::Int))

 (\(Z :. row :. col) -> pixelToRGB (rowCount, colCount) (row, col))

---Parallel mandelbrot

mandelbrotAsListP :: Int -> Int -> [(Word8, Word8, Word8)]

mandelbrotAsListP rowCount colCount = [pixelToRGB (rowCount, colCount)(r, c)

 | r <- [1..rowCount], c <- [1..colCount]]

 `using` parListChunk 1000 rdeepseq

mandelbrotAsVectorP :: Int -> Int -> Vector (Word8, Word8, Word8)

mandelbrotAsVectorP rowCount colCount = Data.Vector.generate (rowCount * colCount)

 (\n -> pixelToRGB (rowCount, colCount) (quotRem n colCount))

 `using` parVector 1000

mandelbrotAsRepaP :: Int -> Int -> Array U DIM2 (Word8, Word8, Word8)

mandelbrotAsRepaP rowCount colCount = runIdentity $ computeP $

 fromFunction (Z :. (rowCount::Int) :. (colCount::Int))

 (\(Z :. row :. col) -> pixelToRGB (rowCount, colCount) (row, col))

11

Main.hs: Driver code to run the exported functions from Lib.hs

module Main where

import System.Environment (getArgs)

import System.Exit (die)

import Data.Word (Word8)

import Data.ByteString (pack)

import Data.Array.Repa (extent)

import Data.Array.Repa.IO.BMP (writeImageToBMP)

import Data.Time (getCurrentTime, diffUTCTime)

import Control.DeepSeq (force)

import Codec.BMP (writeBMP, packRGBA32ToBMP, BMP)

import Lib (mandelbrotAsListS, mandelbrotAsListP, mandelbrotAsVectorS,

 mandelbrotAsVectorP, mandelbrotAsRepaS, mandelbrotAsRepaP)

main :: IO ()

main = do

 let errorMessage = "Usage: final <choice> <row count> <column count>"

 args <- getArgs

 case args of

 [ch, rc, cc] -> do

 let (choice, rowCount,colCount) = (read ch :: Int, read rc :: Int, read cc :: Int)

 beforeT <- getCurrentTime

 case choice of

 c

 | c >= 1 && c <= 6 -> mandelbrotSaveImage choice rowCount colCount

 | c >= 7 && c <= 9 -> mandelbrotSequential choice rowCount colCount

 | c >= 10 && c <= 12 -> mandelbrotParallel choice rowCount colCount

 | otherwise -> die errorMessage

 afterT <- getCurrentTime

 print $ show choice ++ " (" ++ show (diffUTCTime afterT beforeT) ++ ")"

 _ -> die errorMessage

12

mandelbrotSaveImage :: Int -> Int -> Int-> IO ()

mandelbrotSaveImage choice rowCount colCount = do

 case choice of

 c

 | c == 1 -> writeBMP "mandelbrotAsListS.bmp" $ collectionToBmp rowCount colCount

 $ mandelbrotAsListS rowCount colCount

 | c == 2 -> writeBMP "mandelbrotAsVectorS.bmp" $ collectionToBmp rowCount colCount

 $ mandelbrotAsVectorS rowCount colCount

 | c == 3 -> writeImageToBMP "mandelbrotAsRepaS.bmp" $ mandelbrotAsRepaS rowCount colCount

 | c == 4 -> writeBMP "mandelbrotAsListP.bmp" $ collectionToBmp rowCount colCount

 $ mandelbrotAsListP rowCount colCount

 | c == 5 -> writeBMP "mandelbrotAsVectorP.bmp" $ collectionToBmp rowCount colCount

 $ mandelbrotAsVectorP rowCount colCount

 | c == 6 -> writeImageToBMP "mandelbrotAsRepaP.bmp" $ mandelbrotAsRepaP rowCount colCount

 | otherwise -> print "unexpected"

mandelbrotSequential :: Int -> Int -> Int-> IO ()

mandelbrotSequential choice rowCount colCount = do

 case choice of

 c

 | c == 7 -> print $ Prelude.length $ force $ mandelbrotAsListS rowCount colCount

 | c == 8 -> print $ Prelude.length $ force $ mandelbrotAsVectorS rowCount colCount

 | c == 9 -> print $ extent $ mandelbrotAsRepaS rowCount colCount

 | otherwise -> print "unexpected"

 return ()

mandelbrotParallel :: Int -> Int -> Int-> IO ()

mandelbrotParallel choice rowCount colCount = do

 case choice of

 c

 | c == 10 -> print $ Prelude.length $ mandelbrotAsListP rowCount colCount

 | c == 11 -> print $ Prelude.length $ mandelbrotAsVectorP rowCount colCount

 | c == 12 -> print $ extent $ mandelbrotAsRepaP rowCount colCount

 | otherwise -> print "unexpected"

 return ()

13

-- conversion functions

collectionToBmp :: Foldable t => Int -> Int -> t (Word8, Word8, Word8) -> BMP

collectionToBmp rowCount colCount xs = packRGBA32ToBMP colCount rowCount $

 Data.ByteString.pack (Prelude.concatMap (\(r, g, b) -> [r, g, b, 255]) xs)

