
Benjamin Flin, Jay Karp 11/22/20 
brf2117, jlk2225 
Parallel Functional Programming 

 

Parallel Sorting Algorithms 
 
1 Introduction 
 

In this project, we will be exploring and comparing different optimization techniques for 
three different sorting algorithms. We will attempt to build an implementation of six main 
algorithms. These include compare-exchange [1] for merge sort, a naive implementation of 
Quicksort, Hyperquicksort, Quicksort by regular sampling, a common implementation of Bitonic 
sort and some hybrid sorting algorithm using the best features of the previous five. This project 

will be an exploration into the pros and cons of sorting in parallel based on different 
implementations. Our goal for each of these implementations is to analyze their features in order 
to make them as fast and efficient as possible. We will test each algorithm, and determine which 
ones perform the best under certain conditions, e.g. when the size of the list is small or when the 
list is nearly already sorted. 

 

2 Expectations 
 
Sorting algorithms are often heavily optimized, and matching that performance will most 

likely prove to be a challenging task both in sequential and in parallel Haskell. However, we are 
expecting to receive a moderate performance benefit from each of the different algorithms over 
their sequential counterparts. We will have to have a very clear understanding of Haskell’s 
paradigms for parallel programming in order to maximize performance and efficiency.  
 

3 Resources 
[1] ​11.4 Mergesort 
[2] ​Lecture 12: Parallel quicksort algorithms 
[3] ​Bitonic Sort: Overview 

https://www.mcs.anl.gov/~itf/dbpp/text/node127.html
https://www.uio.no/studier/emner/matnat/ifi/INF3380/v10/undervisningsmateriale/inf3380-week12.pdf
https://www.cs.rutgers.edu/~venugopa/parallel_summer2012/bitonic_overview.html

