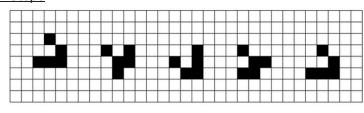
Final Project Proposal

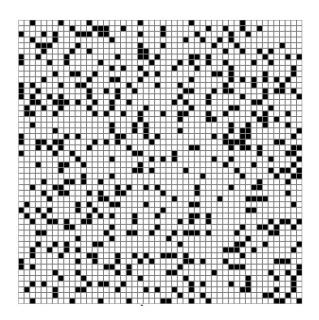
Intro

For the final project, I would like to implement a program for Conway's Game of Life in parallel to compare performance on large grids and complex inputs.


Background

The Game of Life is a grid based "zero player game" where an initial state is defined by the player, and the next states are computed using a set of rules (there are many variations on this game). The original set of rules created by John Horton Conway are:

(From https://www.conwaylife.com/wiki/Conway%27s Game of Life#Rules)


- 1. Any live cell with fewer than two live neighbours dies (referred to as **underpopulation** or **exposure**^[1]).
- 2. Any live cell with more than three live neighbours dies (referred to as **overpopulation** or **overcrowding**).
- 3. Any live cell with two or three live neighbours lives, unchanged, to the next generation.
- 4. Any dead cell with exactly three live neighbours will come to life.

Game of Life Small Grid w/ Steps

Step: 1 2 3 4 5

Game of Life Large Grid

