Functors and Friends

Stephen A. Edwards

Columbia University

Fall 2020
Functors: Types That Hold a Type in a Box

class Functor f where
 fmap :: (a -> b) -> f a -> f b

f is a type constructor of kind * -> *. “A box of”

fmap g x means “apply g to every a in the box x to produce a box of b’s”

data Maybe a = Just a | Nothing
instance Functor Maybe where
 fmap _ Nothing = Nothing
 fmap g (Just x) = Just (g x)

data Either a b = Left a | Right b
instance Functor (Either a) where
 fmap _ (Left x) = Left x
 fmap g (Right y) = Right (g y)

data List a = Cons a (List a) | Nil
instance Functor List where
 fmap g (Cons x xs) = Cons (g x) (fmap g xs)
 fmap _ Nil = Nil
IO as a Functor

Functor takes a type constructor of kind \(* \rightarrow * \), which is the kind of \(\text{IO} \).

```haskell
Prelude> :k IO
IO :: * -> *
```

IO does behave like a kind of box:

```haskell
query :: IO String
query = do line <- getLine
    let res = line ++ "!"
    return res
```

The definition of *Functor* \(\text{IO} \) in the Prelude: (alternative syntax)

```haskell
instance Functor IO where
    fmap f action = do result <- action
                        return (f result)
```

Functor takes a type constructor of kind \(* \rightarrow * \), which is the kind of \(\text{IO} \).
Using `fmap` with I/O Actions

```haskell
main = do line <- getLine
         let revLine = reverse line         -- Tedious but correct
         putStrLn revLine

main = do revLine <- fmap reverse getLine  -- More direct
          putStrLn revLine

Prelude> fmap (++"!") getline
foo
"foo!"
```
Functions are Functors

Prelude> :k (->)
(->) :: * -> * -> * -- Like ```(+),'' (->) is a function on types

That is, the function type constructor \(-> \) takes two concrete types and produces a third (a function). This is the same kind as \(Either \)

Prelude> :k ((->) Int)
((->) Int) :: * -> *

The \((->)\) type constructor takes type \(a \) and produces functions that transform Ints to \(a \)'s. \(fmap \) will apply a function that transforms the \(a \)'s to \(b \)'s.

\[
\text{instance Functor } ((->) \text{ a}) \text{ where} \\
\quad \text{fmap } f \ g = \ \lambda x \rightarrow f (g \ x) \quad -- \text{Wait, this is just function composition!}
\]

\[
\text{instance Functor } ((->) \text{ a}) \text{ where} \\
\quad \text{fmap } = (.) \quad -- \text{Much more succinct (Prelude definition)}
\]
Fmapping Functions: \(\text{fmap } f \ g = f \ . \ g \)

Prelude> :t fmap (*3) (+100)
fmap (*3) (+100) :: \text{Num } b \Rightarrow b \rightarrow b

Prelude> fmap (*3) (+100) 1
303

Prelude> (*3) `fmap` (+100) $ 1
303

Prelude> (*3) . (+100) $ 1
303

Prelude> fmap (show . (*3)) (+100) 1
"303"
Partially Applying *fmap*

```
Prelude> :t fmap
fmap :: Functor f => (a -> b) -> f a -> f b
```

```
Prelude> :t fmap (*3)
fmap (*3) :: (Functor f, Num b) => f b -> f b
```

“*fmap (*3)*” is a function that operates on functors of the Num type class (“functors over numbers”). The function (*3) has been *lifted* to functors

```
Prelude> :t fmap (replicate 3)
fmap (replicate 3) :: Functor f => f a -> f [a]
```

“*fmap (replicate 3)*” is a function over functors that generates “boxed lists”
Applying the identity function does not change the functor ("fmap does not change the box"):

\[\text{fmap id} = \text{id} \]

Applying \text{fmap} with two functions is like applying their composition ("applying functions to the box is like applying them in the box"):

\[\text{fmap (f . g)} = \text{fmap f . fmap g} \]

\[\text{fmap (\ y \to f (g y))} \ x = \text{fmap f (fmap g x)} \quad \text{-- Equivalent} \]
data Maybe a = Just a | Nothing

instance Functor Maybe where
 fmap Nothing = Nothing
 fmap f (Just x) = Just (f x)

{- Does Maybe follow the laws? -}

fmap id Nothing = Nothing
fmap id (Just x) = Just (id x)
 = Just x

(fmap f . fmap g) Nothing = fmap f (fmap g Nothing)
 = fmap f Nothing
 = Nothing
 = fmap (f . g) Nothing

(fmap f . fmap g) (Just x) = fmap f (fmap g (Just x))
 = fmap f (Just (g x))
 = Just (f (g x))
 = Just ((f . g) x)
 = fmap (f . g) (Just x)
data CMaybe a = CNothing | CJust Int a

deriving Show

instance Functor CMaybe where -- Purportd
 fmap _ CNothing = CNothing
 fmap f (CJust c x) = CJust (c+1) (f x)

*Main> fmap id CNothing
CNothing -- OK: fmap id Nothing = id Nothing
*Main> fmap id (CJust 42 "Hello")
CJust 43 "Hello" -- FAIL: fmap id /= id because 43 /= 42

*Main> fmap ((+1) . (+1)) (CJust 42 100)
CJust 43 102
*Main> (fmap (+1) . fmap (+1)) (CJust 42 100)
CJust 44 102 -- FAIL: fmap (f . g) /= fmap f . fmap g because 43 /= 44
Multi-Argument Functions on Functors: Applicative Functors

Functions in Haskell are Curried:

\[1 + 2 = (+) 1 2 = ((+) 1) 2 = (1+) 2 = 3 \]

What if we wanted to perform 1+2 in a Functor?

```haskell
class Functor f where
  fmap :: (a -> b) -> f a -> f b
```

fmap is “apply a normal function to a functor, producing a functor”

Say we want to add 1 to 2 in the \([\]\) Functor (lists):

\[
[1] + [2] = (+) [1] [2] \quad -- \text{Infix to prefix}
= (fmap (+) [1]) [2] \quad -- \text{fmap: apply function to functor}
= [(1+)] [2] \quad -- \text{Now what?}
\]

We want to apply a Functor containing functions to another functor, e.g., something with the signature \([a \rightarrow b] \rightarrow [a] \rightarrow [b]\)
Applicative Functors: Applying Functions in a Functor

```haskell
infixl 4 <*>
class Functor f => Applicative f where
  pure :: a -> f a  -- Box something, e.g., a function
  (</*>) :: f (a -> b) -> f a -> f b  -- Apply boxed function to a box

instance Applicative Maybe where
  pure = Just  -- Put it in a “Just” box
  Nothing _ = Nothing  -- No function to apply
  Just f </*> m = fmap f m  -- Apply function-in-a-box f

Prelude> :t fmap (+) (Just 1)
fmap (+) (Just 1) :: Num a => Maybe (a -> a)  -- Function-in-a-box

Prelude> fmap (+) (Just 1) </*> (Just 2)
Just 3

Prelude> fmap (+) Nothing </*> (Just 2)
Nothing  -- Nothing is a buzzkiller
```
Pure and the <$> Operator

```haskell
Prelude> pure (-) <$> Just 10 <$> Just 4
Just 6

Prelude> pure (10-) <$> Just 4
Just 6

Prelude> (\_ \_ \_ -> (Just 10)) <$> Just 4
Just 6
```

<$> is simply an infix `fmap` meant to remind you of the $ operator

```haskell
infixl 4 <$> 
(::<>) :: Functor f => (a -> b) -> f a -> f b 
f <$> x = fmap f x

-- Or equivalently, f `fmap` x
```

So f <$> x <$> y <$> z is like f x y z but on applicative functors x, y, z

```haskell
Prelude> (+) <$> [1] <$> [2] <$> [3]
[3]

Prelude> (,,) <$> Just "PFP" <$> Just "Rocks" <$> Just "Out"
Just ("PFP","Rocks","Out")
```
Maybe as an Applicative Functor

instance Functor Maybe where
 fmap _ Nothing = Nothing
 fmap g (Just x) = Just (g x)

infixl 4 <$>!
f <$> x = fmap f x

instance Applicative Maybe where
 pure = Just
 Nothing <*> _ = Nothing
 Just f <*> m = fmap f m

f <$> Just x <*> Just y = (f <$> Just x) <*> Just y -- a <$> b <*> c = (a <$> b) <*> c
= (fmap f (Just x)) <*> Just y -- Definition of <$>!
= (Just (f x)) <*> Just y -- Definition of fmap Maybe
= fmap (f x) (Just y) -- Definition of <*>!
= Just (f x y) -- Definition of fmap Maybe
Lists are Applicative Functors

```haskell
instance Applicative [] where
  pure x = [x]  -- Pure makes singleton list
  fs <*> xs = [ f x | f <- fs, x <- xs ]  -- All combinations

<*> associates (evaluates) left-to-right, so the last list is iterated over first:

Prelude> [: (++)"!"), (++)"?"), (++)."] : [ "Run", "GHC" ] [: "Run!","GHC!","Run?","GHC?","Run.","GHC."]

Prelude> [: x+y | x <- [100,200,300], y <- [1..3] ]
[101,102,103,201,202,203,301,302,303]

Prelude> (+) <$> [100,200,300] <*> [1..3]
[101,102,103,201,202,203,301,302,303]

Prelude> pure (+) <*> [100,200,300] <*> [1..3]
[101,102,103,201,202,203,301,302,303]
```
IO is an Applicative Functor

<*> enables I/O actions to be used more like functions

```
instance Applicative IO where
    pure = return
    a <*> b = do f <- a
                x <- b
                return (f x)
```

Specialized to IO actions,

```
(<*>) :: IO (a -> b)
    -> IO a
    -> IO b
```

```
main = do
    a <- getLine
    b <- getLine
    putStrLn $ a ++ b

main :: IO ()
main = do
    a <- (++ <$> getLine <*> getLine
    putStrLn a

$ stack runhaskell af2.hs
One
Two
OneTwo
```
Function Application ((->) a) as an Applicative Functor

```
pure :: b -> ((->) a) b
  :: b -> a -> b

(<*>): ((->) a) (b -> c) -> ((->) a) b -> ((->) a) c
  :: (a -> b -> c) -> (a -> b) -> (a -> c)
```

The “box” is “a function that takes an a and returns the type in the box”

`(<*>)` takes `f :: a -> b -> c` and `g :: a -> b` and should produce `a -> c`.

Applying an argument `x :: a` to `f` and `g` gives `g x :: b` and `f x :: b -> c`.
This means applying `g x` to `f x` gives `c`, i.e., `f x (g x) :: c`.

```
instance Applicative ((->) a) where
  pure x = \_ -> x -- a.k.a., const
  f <*> g = \x -> f x (g x) -- Takes an a and uses f & g to produce a c

Prelude> :t \f g x -> f x (g x)
\f g x -> f x (g x) :: (a -> b -> c) -> (a -> b) -> a -> c
```
Functions as Applicative Functors

\[\text{instance } \text{Applicative } ((\to) \ a) \ \text{where} \ f \ <*> \ g = \lambda x \to f \ x \ (g \ x) \]
\[\text{instance } \text{Functor } ((\to) \ a) \ \text{where} \ \text{fmap} = (.) \]
\[f <$> x = \text{fmap} \ f \ x \]

Prelude> :t (+) <$> (+3) <*> (*100)
(+) <$> (+3) <*> (*100) :: \ b \to b -> b -- A function on numbers

Prelude> ((+) <$> (+3) <*> (*100)) 5
508 -- Apply 5 to +3, apply 5 to *100, and add the results

Single-argument functions (+3), (*100) are the boxes (arguments are "put inside"), which are assembled with (+) into a single-argument function.

\[
((+) <$> (+3) <*> (*100)) 5
= ((\ x \to ((+). (+3))) <*> (*100)) 5 -- Definition of <$> \\
= (\ x \to ((+). (+3)) x ((*100) x)) 5 -- Definition of <*> \\
= ((+). (+3)) 5 ((*100) 5)) -- Apply 5 to lambda expr. \\
= ((+)((+3) 5)) ((*100) 5)) -- Definition of . \\
= (+) 8 500 -- Evaluate (+3) 5, (*100) 5 \\
= 508 -- Evaluate (+) 8 500
\]
Functions as Applicative Functors

Another example: (,,) is the “build a 3-tuple operator”

```
Prelude> :t (,,) <$> (+3) <*> (*3) <*> (*100)
(,,) <$> (+3) <*> (*3) <*> (*100) :: Num a => a -> (a, a, a)
Prelude> ((,,) <$> (+3) <*> (*3) <*> (*100)) 2
(5,6,200)
```

The elements of the 3-tuple:

\[2 + 3 = 5 \]
\[2 * 3 = 6 \]
\[2 * 100 = 200 \]

Each comes from applying 2 to the three functions.

“Generate a 3-tuple by applying the argument to (+3), (*3), and (*100)”
ZipList Applicative Functors

The usual implementation of Applicative Functors on lists generates all possible combinations:

```haskell
Prelude> [(+),(*)] <*> [1,2] <*> [10,100]
[11,101,12,102,10,100,20,200]
```

Control.Applicative provides an alternative approach with zip-like behavior:

```haskell
newtype ZipList a = ZipList { getZipList :: [a] }
instance Applicative ZipList where
  pure x = ZipList (repeat x)  -- Infinite list of x's
  ZipList fs <*> ZipList xs = ZipList (zipWith (\f x -> f x) fs xs)
```

```haskell
> ZipList [(+),(*)] <*> ZipList [1,2] <*> ZipList [10,100]
ZipList {getZipList = [11,200]}  -- [1 + 10, 2 * 100]
ZipList {getZipList = [(1,3,5),(2,4,6)]}
```
liftA2: Lift a Two-Argument Function to an Applicative Functor

```haskell
class Functor f => Applicative f where
    pure :: a -> f a
    (<*>) :: f (a -> b) -> f a -> f b
    (<*>) = liftA2 id  -- Default: get function from 1st arg's box

    liftA2 :: (a -> b -> c) -> f a -> f b -> f c
    liftA2 f x = (<*>) (fmap f x)  -- Default implementation
```

liftA2 takes a binary function and "lifts" it to work on boxed values, e.g.,

```haskell
liftA2 :: (a -> b -> c) -> (f a -> f b -> f c)
```

Prelude Control.Applicative> liftA2 (:) (Just 3) (Just [4])
Just [3,4] -- Apply (:) inside the boxes, i.e., Just ((:) 3 [4])

```haskell
instance Applicative ZipList where
    pure x = ZipList (repeat x)
    liftA2 f (ZipList xs) (ZipList ys) = ZipList (zipWith f xs ys)
```
Turning a list of boxes into a box containing a list

sequenceA1 :: Applicative f => [f a] -> f [a] -- Prelude sequenceA
sequenceA1 [] = pure []
sequenceA1 (x:xs) = (:) <$> x <*> sequenceA1 xs

*Main> sequenceA1 [Just 3, Just 2, Just 1]
Just [3,2,1]

Recall that \(f <$> \) Just \(x <*> \) Just \(y = \) Just \((f x \ y) \)

sequenceA1 [Just 3, Just 1]
= (:) <$> Just 3 <*> sequenceA1 [Just 1]
= (:) <$> Just 3 <*> ((:) <$> Just 1 <*> sequenceA1 [])
= (:) <$> Just 3 <*> ((:) <$> Just 1 <*> pure [])
= (:) <$> Just 3 <*> ((:) <$> Just 1 <*> Just [])
= (:) <$> Just 3 <*> Just [1]
= Just [3,1]
SequenceA Can Also Be Implemented With a Fold

```haskell
import Control.Applicative (liftA2)

sequenceA2 :: Applicative f => [f a] -> f [a] -- Prelude sequenceA
sequenceA2 = foldr (liftA2 (:)) (pure [])
```

How do the types work out?

```haskell
liftA2 :: App. f ⇒ (a → b → c) → f a → f b → f c
(:) :: a → [a] → [a]
```

Passing (:') to liftA2 makes \(b = [a] \) and \(c = [a] \), so

```haskell
liftA2 (:) :: App. f ⇒ f a → f [a] → f [a]
```

```haskell
foldr :: (d → e → e) → e → [d] → e
```

Passing liftA2 (:) to foldr makes \(d = f a \) and \(e = f [a] \), so

```haskell
foldr (liftA2 (:)) :: App. f ⇒ f [a] → [f a] → f [a]
pure [] :: App. f ⇒ f [a]
foldr (liftA2 (:)) (pure []) :: App. f ⇒ [f a] → f [a]
```
SequenceA in Action

sequenceA :: Applicative f => [f a] -> f [a]
sequenceA = foldr (liftA2 (:)) (pure [])

"Take the items from a list of boxes to make a box with a list of items"

Prelude> sequenceA [Just 3, Just 2, Just 1]
Just [3,2,1]
Prelude> sequenceA [Just 3, Nothing, Just 1]
Nothing -- "Nothing" nullifies the result

Prelude> :t sequenceA [(+3), (+2), (+1)]
sequenceA [(+3), (+2), (+1)] :: Num a => a -> [a] -- Produces a list
Prelude> sequenceA [(+3), (+2), (+1)] 10
[13,12,11] -- Apply the argument to each function

Prelude> sequenceA [[1,2,3],[10,20]]
[[1,10],[1,20],[2,10],[2,20],[3,10],[3,20]] -- fmap on lists
Applicative Functor Laws

pure \(f \land x \) = \(\text{fmap} \ f \land x \) -- \(\land \): apply a boxed function

pure \(\text{id} \land x \) = \(x \) -- Because \(\text{fmap} \ \text{id} = \text{id} \)

pure \((\cdot) \land x \land y \land z = x \land (y \land z) \) -- \(\land \) is left-to-right

pure \(f \land \text{pure} \ x = \text{pure} \ (f \land x) \) -- Apply a boxed function

\(x \land \text{pure} \ y = \text{pure} \ (\$ \ y) \land x \) -- \(\$ \ y \): “apply arg. \ y”
The *newtype* keyword: Build a New Type From an Existing Type

Say you want a version of an existing type only usable in certain contexts. *type* makes an alias with no restrictions. *newtype* is a more efficient version of *data* that only allows a single data constructor.

```haskell
newtype DegF = DegF { getDegF :: Double }
newtype DegC = DegC { getDegC :: Double }

fToC :: DegF -> DegC
fToC (DegF f) = DegC $ (f - 32) * 5 / 9

cToF :: DegC -> DegF
cToF (DegC c) = DegF $ (c * 9 / 5) + 32

instance Show DegF where show (DegF f) = show f ++ "F"

instance Show DegC where show (DegC c) = show c ++ "C"
```
 DegF and DegC In Action

*Main> fToC (DegF 32)
0.0C
*Main> fToC (DegF 98.6)
37.0C
*Main> cToF (DegC 37)
98.6F
*Main> cToF 33
 * No instance for (Num DegC) arising from the literal '33'
*Main> DegC 33 + DegC 32
 * No instance for (Num DegC) arising from a use of '+'
*Main> let t1 = DegC 33
*Main| t2 = DegC 10 in
*Main| getDegC t1 + getDegC t2
43.0
Newtype vs. Data: Slightly Faster and Lazier

newtype DegF = DegF { getDegF :: Double }
data DegF = DegF { getDegF :: Double } -- Same syntax

A *newtype* may only have a single data constructor with a single field.

Compiler treats a *newtype* as the encapsulated type, so it’s slightly faster.

Pattern matching always succeeds for a *newtype*:

```
Prelude> data DT     = DT Bool
Prelude> newtype NT = NT Bool

Prelude> helloDT (DT _) = "hello"
Prelude> helloNT (NT _) = "hello"

Prelude> helloDT undefined
"*** Exception: Prelude.undefined"
Prelude> helloNT undefined
"hello"  -- Just a Bool in NT's clothing
```
Data vs. Type vs. NewType

<table>
<thead>
<tr>
<th>Keyword</th>
<th>When to use</th>
</tr>
</thead>
<tbody>
<tr>
<td>data</td>
<td>When you need a completely new algebraic type or record, e.g., data MyTree a = Node a (MyTree a) (MyTree a)</td>
</tr>
<tr>
<td>type</td>
<td>When you want a concise name for an existing type and aren’t trying to restrict its use, e.g., type String = [Char]</td>
</tr>
<tr>
<td>newtype</td>
<td>When you’re trying to restrict the use of an existing type and were otherwise going to write data MyType = MyType t</td>
</tr>
</tbody>
</table>
Monoids

Type classes present a common interface to types that behave similarly

A Monoid is a type with an associative binary operator and an identity value

E.g., * and 1 on numbers, ++ and [] on lists:

```haskell
Prelude> 4 * 1
4  -- 1 is the identity on the right
Prelude> 1 * 4
4  -- 1 is the identity on the left
Prelude> 2 * (3 * 4)
24
Prelude> (2 * 3) * 4
24  -- * is associative
Prelude> 2 * 3
6
Prelude> 3 * 2
6  -- * happens to be commutative

Prelude> "hello" ++ []
"hello"  -- [] is the right identity
Prelude> [] ++ "hello"
"hello"  -- [] is the left identity
Prelude> "a" ++ ("bc" ++ "de")
"abcde"
Prelude> ("a" ++ "bc") ++ "de"
"abcde"  -- ++ is associative
Prelude> "a" ++ "b"
"ab"
Prelude> "b" ++ "a"
"ba"  -- ++ is not commutative
```
The Monoid Type Class

class Monoid m where
 mempty :: a -- The identity value
 mappend :: m -> m -> m -- The associative binary operator

mconcat :: [m] -> m -- Apply the binary operator to a list
mconcat = foldr mappend mempty -- Default implementation

Lists are Monoids:

instance Monoid [a] where
 mempty = []
 mappend = (++)

Prelude> mempty :: [a]
[]
Prelude> "hello " `mappend` "world!"
"hello world!"
Prelude> mconcat ["hello ","pfp ","world!"]
"hello pfp world!"
*, 1 and +, 0 Can Each Make a Monoid

`newtype` lets us build distinct Monoids for each

In Data.Monoid,

```haskell
newtype Product a = Product { getProduct :: a }
    deriving (Eq, Ord, Read, Show, Bounded)

instance Num a => Monoid (Product a) where
    mempty = Product 1
    Product x `mappend` Product y = Product (x * y)
```

```haskell
newtype Sum a = Sum { getSum :: a }
    deriving (Eq, Ord, Read, Show, Bounded)

instance Num a => Monoid (Sum a) where
    mempty = Sum 0
    Sum x `mappend` Sum y = Sum (x + y)
```
Product and Sum In Action

Prelude Data.Monoid> mempty :: Sum Int
Sum {getSum = 0}
Prelude Data.Monoid> mempty :: Product Int
Product {getProduct = 1}

Prelude Data.Monoid> Sum 3 `mappend` Sum 4
Sum {getSum = 7}
Prelude Data.Monoid> Product 3 `mappend` Product 4
Product {getProduct = 12}

Prelude Data.Monoid> mconcat [Sum 1, Sum 10, Sum 100]
Sum {getSum = 111}
Prelude Data.Monoid> mconcat [Product 10, Product 3, Product 5]
Product {getProduct = 150}
The Any (||, False) and All (&&, True) Monoids

In Data.Monoid,

define Any = Any { getAny :: Bool }
define deriving (Eq, Ord, Read, Show, Bounded)

instance Monoid Any where
 mempty = Any False
 Any x `mappend` Any y = Any (x || y)

define All = All { getAll :: Bool }
define deriving (Eq, Ord, Read, Show, Bounded)

instance Monoid All where
 mempty = All True
 All x `mappend` All y = All (x && y)
Any and All

```
Prelude Data.Monoid> mempty :: Any
Any {getAny = False}
Prelude Data.Monoid> mempty :: All
All {getAll = True}

Prelude Data.Monoid> getAny $ Any True `mappend` Any False
True
Prelude Data.Monoid> getAll $ All True `mappend` All False
False

Prelude Data.Monoid> mconcat [Any True, Any False, Any True]
Any {getAny = True}
Prelude Data.Monoid> mconcat [All True, All True, All False]
All {getAll = False}
```

Yes, *any* and *all* are easier to use
Ordering as a Monoid

data Ordering = LT | EQ | GT

In Data.Monoid,

instance Monoid Ordering where
 mempty = EQ
 LT `mappend` _ = LT
 EQ `mappend` y = y
 GT `mappend` _ = GT

Application: an `lcomp` for strings ordered by length then alphabetically, e.g.,

`lcomp :: String -> String -> Ordering`

"b" `lcomp` "aaaa" = LT -- b is shorter
"bbbbbb" `lcomp` "a" = GT -- bbbbb is longer
"avenger" `lcomp` "avenged" = LT -- Same length: r is after d
lcomp :: String -> String -> Ordering
lcomp x y = case length x `compare` length y of
 LT -> LT
 GT -> GT
 EQ -> x `compare` y

A little too operational; `mappend` is exactly what we want

lcomp :: String -> String -> Ordering
lcomp x y = (length x `compare` length y) `mappend`
 (x `compare` y)
Maybe the Monoid

```haskell
class Monoid a where
  mempty        = Nothing
  mappend Nothing m  = m
  mappend m Nothing = m
  mappend Just m1 Just m2 = Just (m1 `mappend` m2)

instance Monoid a => Monoid (Maybe a) where
  mempty   = Nothing
  Nothing `mappend` m   = m
  m `mappend` Nothing  = m
  Just m1 `mappend` Just m2 = Just (m1 `mappend` m2)
```

Prelude> Nothing `mappend` Just "pfp"
Just "pfp"
Prelude> Just "fun" `mappend` Nothing
Just "fun"

Prelude> :m +Data.Monoid
Prelude Data.Monoid> Just (Sum 3) `mappend` Just (Sum 4)
Just (Sum {getSum = 7})
The Foldable Type Class

What I taught you:

```haskell
foldr :: (a -> b -> b) -> b -> [a] -> b
foldr _ a [] = a
foldr f a (x:xs) = f x (foldr f a xs)
```

How it’s actually defined (Data.Foldable):

```haskell
foldr :: Foldable t => (a -> b -> b) -> b -> t a -> b
```
class Foldable t where
{¬# MINIMAL foldMap | foldr #–}
foldr, foldr' :: (a -> b -> b) -> b -> t a -> b
foldr1 :: (a -> a -> a) -> t a -> a
foldl, foldl' :: (b -> a -> b) -> b -> t a -> b
foldl1 :: (a -> a -> a) -> t a -> a
fold :: Monoid m => t m -> m -- with mappend
foldMap :: Monoid m => (a -> m) -> t a -> m
toList :: t a -> [a]
null :: t a -> Bool
length :: t a -> Int
elem :: Eq a => a -> t a -> Bool
maximum :: Ord a => t a -> a
minimum :: Ord a => t a -> a
sum :: Num a => t a -> a
product :: Num a => t a -> a

Instance of Foldable for [] is just the usual list functions
data Tree a = Node a (Tree a) (Tree a) | Nil

instance Foldable Tree where
 foldMap _ Nil = mempty
 foldMap f (Node x l r) = foldMap f l `mappend` f x `mappend` foldMap f r

> foldl (+) 0 (fromList [5,3,1,2,4,6,7] :: Tree Int)
28 -- folding the tree
> getSum $ foldMap Sum $ fromList [5,3,1,2,4,6,7]
28 -- The Sum Monoid's mappend is +
> getAny $ foldMap (\x -> Any $ x == 'w') $ fromList "brown"
True -- Any's mappend is ||
> getAny $ foldMap (Any . (=='w')) $ fromList "brown"
True -- More concise
> foldMap (\x -> [x]) $ fromList [5,3,1,2,4,6,7]
[1,2,3,4,5,6,7] -- List's mappend is ++