Functors
 Functor Laws

Applicative Functors
 Pure and the <$> Operator
 ZipList Applicative Functors
 liftA2
 sequenceA
 Applicative Functor Laws

newtype

Monoids

Foldable
Functors: Types That Hold a Type in a Box

```haskell
class Functor f where
    fmap :: (a -> b) -> f a -> f b
```

f is a type constructor of kind \(* \rightarrow *\). “A box of”

\[\text{fmap } g \ x \text{ means “apply } g \text{ to every } a \text{ in the box } x \text{ to produce a box of } b's \]\n
```haskell
data Maybe a = Just a | Nothing

instance Functor Maybe where
    fmap _ Nothing = Nothing
    fmap g (Just x) = Just (g x)
```

```haskell
data Either a b = Left a | Right b

instance Functor (Either a) where
    fmap _ (Left x) = Left x
    fmap g (Right y) = Right (g y)
```

```haskell
data List a = Cons a (List a) | Nil

instance Functor List where
    fmap g (Cons x xs) = Cons (g x) (fmap g xs)
    fmap _ Nil = Nil
```
IO as a Functor

Functor takes a type constructor of kind \(\ast \to \ast \), which is the kind of \(\text{IO} \)

```haskell
Prelude> :k IO
IO :: \( \ast \to \ast \)
```

IO does behave like a kind of box:

```haskell
query :: IO String
query = do line <- getLine  -- getline returns a box :: IO String
           let res = line ++ "!"  -- take line out of box from getline
           return res           -- put res in an IO box
```

The definition of *Functor* \(\text{IO} \) in the Prelude: (alternative syntax)

```haskell
instance Functor IO where
    fmap f action = do result <- action  -- take result from the box
                        return (f result)  -- apply f; put it a box
```
Using fmap with I/O Actions

main = do line <- getLine
 let revLine = reverse line -- Tedious but correct
 putStrLn revLine

main = do revLine <- fmap reverse getLine -- More direct
 putStrLn revLine

Prelude> fmap (++"!") getLine
foo
"foo!"
Functions are Functors

That is, the function type constructor \(\rightarrow \) takes two concrete types and produces a third (a function). This is the same kind as \(\text{Either} \)

\[
\text{instance Functor } ((\rightarrow) a) \text{ where}
\quad \text{fmap } f \ g = \lambda x \rightarrow f (g \ x) \quad \text{-- Wait, this is just function composition!}
\]

\[
\text{instance Functor } ((\rightarrow) a) \text{ where}
\quad \text{fmap } = (.) \quad \text{-- Much more succinct (Prelude definition)}
\]
Fmapping Functions: fmap f g = f . g

Prelude> :t fmap (*3) (+100)
fmap (*3) (+100) :: Num b => b -> b

Prelude> fmap (*3) (+100) 1
303

Prelude> (*3) `fmap` (+100) $ 1
303

Prelude> (*3) . (+100) $ 1
303

Prelude> fmap (show . (*3)) (+100) 1
"303"
Partially Applying `fmap`

```
Prelude> :t fmap
fmap :: Functor f => (a -> b) -> f a -> f b
```

```
Prelude> :t fmap (*3)
fmap (*3) :: (Functor f, Num b) => f b -> f b
```

“`fmap (*3)`” is a function that operates on functors of the Num type class (“functors over numbers”). The function (*3) has been *lifted* to functors

```
Prelude> :t fmap (replicate 3)
fmap (replicate 3) :: Functor f => f a -> f [a]
```

“`fmap (replicate 3)`” is a function over functors that generates “boxed lists”
Functor Laws

Applying the identity function does not change the functor (“fmap does not change the box”):

\[
\text{fmap } \text{id} = \text{id}
\]

Applying \(\text{fmap} \) with two functions is like applying their composition (“applying functions to the box is like applying them in the box”):

\[
\text{fmap } (f \ . \ g) = \text{fmap } f \ . \ \text{fmap } g
\]

\[
\text{fmap } (\langle y \rightarrow f \ (g \ y) \rangle) \ x = \text{fmap } f \ (\text{fmap } g \ x) \quad \text{-- Equivalent}
\]
data Maybe a = Just a | Nothing

instance Functor Maybe where
fmap _ Nothing = Nothing
fmap f (Just x) = Just (f x)

{– Does Maybe follow the laws? –}

fmap id Nothing = Nothing
fmap id (Just x) = Just (id x)
 = Just x

(fmap f . fmap g) Nothing = fmap f (fmap g Nothing) -- def of .
 = fmap f Nothing -- def of fmap
 = Nothing -- def of fmap
 = fmap (f . g) Nothing -- def of fmap

(fmap f . fmap g) (Just x) = fmap f (fmap g (Just x)) -- def of .
 = fmap f (Just (g x)) -- def of fmap
 = Just (f (g x)) -- def of fmap
 = Just ((f . g) x) -- def of .
 = fmap (f . g) (Just x) -- def of fmap
data CMaybe a = CNothing | CJust Int a

deriving Show

instance Functor CMaybe where -- Purported
 fmap _ CNothing = CNothing
 fmap f (CJust c x) = CJust (c+1) (f x)

*Main> fmap id CNothing
CNothing -- OK: fmap id Nothing = id Nothing
*Main> fmap id (CJust 42 "Hello")
CJust 43 "Hello" -- FAIL: fmap id /= id because 43 /= 42

*Main> fmap ((+1) . (+1)) (CJust 42 100)
CJust 43 102

*Main> (fmap (+1) . fmap (+1)) (CJust 42 100)
CJust 44 102 -- FAIL: fmap (f . g) /= fmap f . fmap g because 43 /= 44
Multi-Argument Functions on Functors: Applicative Functors

Functions in Hakell are Curried:

\[1 + 2 = (+) 1 2 = ((+) 1) 2 = (1+) 2 = 3\]

What if we wanted to perform 1+2 in a Functor?

```haskell
class Functor f where
    fmap :: (a -> b) -> f a -> f b
```

fmap is “apply a normal function to a functor, producing a functor”

Say we want to add 1 to 2 in the \([\]]\) Functor (lists):

\[
[1] + [2] = (+) [1] [2] \quad \text{-- Infix to prefix}
\]

\[
= (fmap (+) [1]) [2] \quad \text{-- fmap: apply function to functor}
\]

\[
= [(1+)] [2] \quad \text{-- Now what?}
\]

We want to apply a Functor containing functions to another functor, e.g., something with the signature \([a -> b] -> [a] -> [b]\)
Applicative Functors: Applying Functions in a Functor

```haskell
infixl 4 <*>
class Functor f => Applicative f where
  pure :: a -> f a -- Box something, e.g., a function
  (<*>) :: f (a -> b) -> f a -> f b -- Apply boxed function to a box

instance Applicative Maybe where
  pure = Just -- Put it in a “Just” box
  Nothing <*> _ = Nothing -- No function to apply
  Just f <*> m = fmap f m -- Apply function-in-a-box f

Prelude> :t fmap (+) (Just 1)
fmap (+) (Just 1) :: Num a => Maybe (a -> a) -- Function-in-a-box

Prelude> fmap (+) (Just 1) <*> (Just 2)
Just 3
Prelude> fmap (+) Nothing <*> (Just 2)
Nothing -- Nothing is a buzzkiller
```
Pure and the <$> Operator

```haskell
Prelude> pure (-) <$> Just 10 <$> Just 4
Just 6
Prelude> pure (10-) <$> Just 4
Just 6
Prelude> (-) <$> fmap (Just 10) <$> Just 4
Just 6
```

<$> is simply an infix `fmap` meant to remind you of the $ operator

```haskell
infixl 4 <$> 
(<$>) :: Functor f => (a -> b) -> f a -> f b
f <$> x = fmap f x  -- Or equivalently, f `fmap` x
```

So

```haskell
f <$> x <*> y <*> z  is like  f x y z  but on applicative functors x, y, z
```

```haskell
Prelude> (+) <$> [1] <$> [2] <$> [3]
Prelude> (,,) <$> Just "PFP" <*> Just "Rocks" <*> Just "Out"
Just ("PFP","Rocks","Out")
```
Maybe as an Applicative Functor

\[
\begin{align*}
\text{instance } & \text{Functor } \text{Maybe} \text{ where } \\
& \text{fmap } _ \text{ Nothing } = \text{Nothing} \\
& \text{fmap } g (\text{Just } x) = \text{Just } (g \ x)
\end{align*}
\]

\[
\text{infixl } 4 \ <\>
\]

\[
f \ <\> \ x = \text{fmap } f \ x
\]

\[
\begin{align*}
f \ <\> \ \text{Just } x \ \ <*> \ \text{Just } y &= (f \ <\> \ \text{Just } x) \ <*> \ \text{Just } y \quad \text{-- a } <\> b <*> c = (a <\> b) <*> c \\
&= (\text{fmap } f (\text{Just } x)) \ <*> \ \text{Just } y \quad \text{-- Definition of } <\>
\end{align*}
\]

\[
\begin{align*}
&= (\text{Just } (f \ x)) \ <*> \ \text{Just } y \quad \text{-- Definition of fmap Maybe} \\
&= \text{fmap } (f \ x) \ (\text{Just } y) \quad \text{-- Definition of } <*
\end{align*}
\]

\[
= \ \text{Just } (f \ x \ y) \quad \text{-- Definition of fmap Maybe}
\]
Lists are Applicative Functors

```haskell
instance Applicative [] where
  pure x = [x] -- Pure makes singleton list
  fs <*> xs = [ f x | f <- fs, x <- xs ] -- All combinations
<*> associates (evaluates) left-to-right, so the last list is iterated over first:

Prelude> [ (++)"!"), (++)"?"), (++"." ) ] <*> [ "Run", "GHC" ]
["Run!","GHC!","Run?","GHC?","Run.","GHC."]

Prelude> [ x+y | x <- [100,200,300], y <- [1..3] ]
[101,102,103,201,202,203,301,302,303]

Prelude> (+) <$> [100,200,300] <*> [1..3]
[101,102,103,201,202,203,301,302,303]

Prelude> pure (+) <*> [100,200,300] <*> [1..3]
[101,102,103,201,202,203,301,302,303]
```
IO is an Applicative Functor

<*> enables I/O actions to be used more like functions

```
instance Applicative IO where
  pure = return
  a <*> b = do f <- a
              x <- b
              return (f x)
```

Specialized to IO actions,

```
(<*>), :: IO (a -> b)
    -> IO a
    -> IO b
```

```
main = do
  a <- getLine
  b <- getLine
  putStrLn $ a ++ b
```

```
main :: IO ()
main = do
  a <- (++)<$> getLine <*> getLine
  putStrLn a
```

```
$ stack runhaskell af2.hs
One
Two
OneTwo
```
Function Application ((->) a) as an Applicative Functor

pure :: b -> ((->) a) b
 :: b -> a -> b
(<*>()) :: ((->) a) (b -> c) -> ((->) a) b -> ((->) a) c
 :: (a -> b -> c) -> (a -> b) -> (a -> c)

The “box” is “a function that takes an a and returns the type in the box”
<*>() takes f :: a -> b -> c and g :: a -> b and should produce a -> c.

Applying an argument x :: a to f and g gives g x :: b and f x :: b -> c.
This means applying g x to f x gives c, i.e., f x (g x) :: c.

instance Applicative ((->) a) where
 pure x = _ -> x -- a.k.a., const
 f <*> g = \x -> f x (g x) -- Takes an a and uses f & g to produce a c

Prelude> :t \f g x -> f x (g x)
\f g x -> f x (g x) :: (a -> b -> c) -> (a -> b) -> a -> c
Functions as Applicative Functors

\[
\text{instance Applicative } ((\to) \to a) \text{ where } f \langle\star\rangle g = \x \to f \x (g \x)
\]

\[
\text{instance Functor } ((\to) \to a) \text{ where } \text{fmap} = (.)
\]

\[
f \langle\$\rangle x = \text{fmap} f x
\]

Prelude> :t (+) \langle\$\rangle (+3) \langle\star\rangle (*100)
(+) \langle\$\rangle (+3) \langle\star\rangle (*100) :: \text{Num } b \to b \to b \text{ -- A function on numbers}

Prelude> ((+) \langle\$\rangle (+3) \langle\star\rangle (*100)) 5
508 \text{ -- Apply 5 to +3, apply 5 to *100, and add the results}

Single-argument functions (+3), (*100) are the boxes (arguments are “put inside”), which are assembled with (+) into a single-argument function.
Functions as Applicative Functors

Another example: (,,) is the “build a 3-tuple operator”

\[
\text{Prelude}> :t \ (,,) \ <$> \ (+3) \ <*> \ (*3) \ <*> \ (*100) \\
(,,) \ <$> \ (+3) \ <*> \ (*3) \ <*> \ (*100) \ :: \ \text{Num} \ a \ \Rightarrow \ a \ \rightarrow \ (a, a, a)
\]

\[
\text{Prelude}> ((,,) \ <$> \ (+3) \ <*> \ (*3) \ <*> \ (*100)) \ 2 \\
(5, 6, 200)
\]

The elements of the 3-tuple:

\[
2 + 3 = 5 \\
2 * 3 = 6 \\
2 * 100 = 200
\]

Each comes from applying 2 to the three functions.

“Generate a 3-tuple by applying the argument to (+3), (*3), and (*100)”
ZipList Applicative Functors

The usual implementation of Applicative Functors on lists generates all possible combinations:

Prelude> [(+),(*)] <*> [1,2] <*> [10,100]
[11,101,12,102,10,100,20,200]

Control.Applicative provides an alternative approach with zip-like behavior:

newtype ZipList a = ZipList { getZipList :: [a] }
instance Applicative ZipList where
 pure x = ZipList (repeat x) -- Infinite list of x's
 ZipList fs <*> ZipList xs = ZipList (zipWith (\f x -> f x) fs xs)

> ZipList [(+),(*)] <*> ZipList [1,2] <*> ZipList [10,100]
ZipList {getZipList = [11,200]} -- [1 + 10, 2 * 100]
ZipList {getZipList = [(1,3,5),(2,4,6)]}
liftA2: Lift a Two-Argument Function to an Applicative Functor

class Functor f => Applicative f where
 pure :: a -> f a
 (<<*>>) :: f (a -> b) -> f a -> f b
 (<<*>>) = liftA2 id -- Default: get function from 1st arg's box

 liftA2 :: (a -> b -> c) -> f a -> f b -> f c
 liftA2 f x = (<<*>>) (fmap f x) -- Default implementation

liftA2 takes a binary function and "lifts" it to work on boxed values, e.g.,

 liftA2 :: (a -> b -> c) -> (f a -> f b -> f c)

Prelude Control.Applicative> liftA2 (:) (Just 3) (Just [4])
Just [3,4] -- Apply (:) inside the boxes, i.e., Just ((:) 3 [4])

instance Applicative ZipList where
 pure x = ZipList (repeat x)
 liftA2 f (ZipList xs) (ZipList ys) = ZipList (zipWith f xs ys)
Turning a list of boxes into a box containing a list

sequenceA1 :: Applicative f => [f a] -> f [a] -- Prelude sequenceA
sequenceA1 [] = pure []
sequenceA1 (x:xs) = (:) <$> x <*> sequenceA1 xs

*Main> sequenceA1 [Just 3, Just 2, Just 1]
Just [3,2,1]

Recall that \(f <$> Just \ x <*> Just \ y = Just \ (f \ x \ y) \)

sequenceA1 [Just 3, Just 1]
= (:) <$> Just 3 <*> sequenceA1 [Just 1]
= (:) <$> Just 3 <*> ((:) <$> Just 1 <*> sequenceA1 [])
= (:) <$> Just 3 <*> ((:) <$> Just 1 <*> pure [])
= (:) <$> Just 3 <*> ((:) <$> Just 1 <*> Just [])
= (:) <$> Just 3 <*> Just [1]
= Just [3,1]
SequenceA Can Also Be Implemented With a Fold

```haskell
import Control.Applicative (liftA2)

sequenceA2 :: Applicative f => [f a] -> f [a]  -- Prelude sequenceA
sequenceA2 = foldr (liftA2 (:)) (pure [])
```

How do the types work out?

```haskell
liftA2 :: App. f ⇒ (a → b → c) → f a → f b → f c
(:) :: a → [a] → [a]
```

Passing (:) to `liftA2` makes `b = [a]` and `c = [a]`, so

```haskell
liftA2 (:) :: App. f ⇒ f a → f [a] → f [a]
```

```haskell
foldr :: (d → e → e) → e → [d] → e
```

Passing `liftA2 (:)` to `foldr` makes `d = f a` and `e = f [a]`, so

```haskell
foldr (liftA2 (:)) :: App. f ⇒ f [a] → [f a] → f [a]
```

```haskell
pure [] :: App. f ⇒ f [a]
foldr (liftA2 (:)) (pure []) :: App. f ⇒ [f a] → f [a]
```
SequenceA in Action

sequenceA :: Applicative f => [f a] -> f [a]
sequenceA = foldr (liftA2 (:)) (pure [])

“Take the items from a list of boxes to make a box with a list of items”

Prelude> sequenceA [Just 3, Just 2, Just 1]
Just [3,2,1]
Prelude> sequenceA [Just 3, Nothing, Just 1]
Nothing -- ``Nothing'' nullifies the result

Prelude> :t sequenceA [(+3), (+2), (+1)]
sequenceA [(+3), (+2), (+1)] :: Num a => a -> [a] -- Produces a list
Prelude> sequenceA [(+3), (+2), (+1)] 10
[13,12,11] -- Apply the argument to each function

Prelude> sequenceA [[1,2,3],[10,20]]
[[1,10],[1,20],[2,10],[2,20],[3,10],[3,20]] -- fmap on lists
Applicative Functor Laws

\[
\text{pure } f \langle*\rangle x = \text{fmap } f x \quad \text{--- } \langle*\rangle: \text{apply a boxed function}
\]

\[
\text{pure } \text{id} \langle*\rangle x = x \quad \text{--- Because } \text{fmap id} = \text{id}
\]

\[
\text{pure } (\cdot) \langle*\rangle x \langle*\rangle y \langle*\rangle z = x \langle*\rangle (y \langle*\rangle z) \quad \text{--- } \langle*\rangle \text{ is left-to-right}
\]

\[
\text{pure } f \langle*\rangle \text{pure } x = \text{pure } (f x) \quad \text{--- Apply a boxed function}
\]

\[
x \langle*\rangle \text{pure } y = \text{pure } (\$ \ y) \langle*\rangle x \quad \text{--- } \$(y): \text{“apply arg. } y\text{”}
\]
The `newtype` keyword: Build a New Type From an Existing Type

Say you want a version of an existing type only usable in certain contexts. `type` makes an alias with no restrictions. `newtype` is a more efficient version of `data` that only allows a single data constructor

```haskell
newtype DegF = DegF { getDegF :: Double }
newtype DegC = DegC { getDegC :: Double }

fToC :: DegF -> DegC
fToC (DegF f) = DegC $ (f - 32) * 5 / 9

cToF :: DegC -> DegF
cToF (DegC c) = DegF $ (c * 9 / 5) + 32

instance Show DegF where show (DegF f) = show f ++ "F"

instance Show DegC where show (DegC c) = show c ++ "C"
```
DegF and DegC In Action

*Main> fToC (DegF 32)
0.0C
*Main> fToC (DegF 98.6)
37.0C
*Main> cToF (DegC 37)
98.6F
*Main> cToF 33
* No instance for (Num DegC) arising from the literal '33'
*Main> DegC 33 + DegC 32
* No instance for (Num DegC) arising from a use of '+'
*Main> let t1 = DegC 33
*Main| t2 = DegC 10 in
*Main| getDegC t1 + getDegC t2
43.0
Newtype vs. Data: Slightly Faster and Lazier

```
newtype DegF = DegF { getDegF :: Double }
data DegF = DegF { getDegF :: Double }  -- Same syntax
```

A `newtype` may only have a single data constructor with a single field

Compiler treats a `newtype` as the encapsulated type, so it’s slightly faster

Pattern matching always succeeds for a `newtype`:

```
Prelude> data DT = DT Bool
Prelude> newtype NT = NT Bool

Prelude> helloDT (DT _) = "hello"
Prelude> helloNT (NT _) = "hello"

Prelude> helloDT undefined
"*** Exception: Prelude.undefined"
Prelude> helloNT undefined
"hello"  -- Just a Bool in NT's clothing
```
Data vs. Type vs. NewType

<table>
<thead>
<tr>
<th>Keyword</th>
<th>When to use</th>
</tr>
</thead>
<tbody>
<tr>
<td>data</td>
<td>When you need a completely new algebraic type or record, e.g.,</td>
</tr>
<tr>
<td></td>
<td>data MyTree a = Node a (MyTree a) (MyTree a)</td>
</tr>
<tr>
<td>type</td>
<td>When you want a concise name for an existing type and aren’t</td>
</tr>
<tr>
<td></td>
<td>trying to restrict its use, e.g., type String = [Char]</td>
</tr>
<tr>
<td>newtype</td>
<td>When you’re trying to restrict the use of an existing type and were</td>
</tr>
<tr>
<td></td>
<td>otherwise going to write data MyType = MyType t</td>
</tr>
</tbody>
</table>
Monoids

Type classes present a common interface to types that behave similarly.

A Monoid is a type with an associative binary operator and an identity value.

E.g., * and 1 on numbers, ++ and [] on lists:

```
Prelude> 4 * 1
4    -- 1 is the identity on the right
Prelude> 1 * 4
4    -- 1 is the identity on the left
Prelude> 2 * (3 * 4)
24
Prelude> (2 * 3) * 4
24    -- * is associative
Prelude> 2 * 3
6
Prelude> 3 * 2
6    -- * happens to be commutative
Prelude> "hello" ++ []
"hello"    -- [] is the right identity
Prelude> [] ++ "hello"
"hello"    -- [] is the left identity
Prelude> "a" ++ ("bc" ++ "de")
"abcde"
Prelude> ("a" ++ "bc") ++ "de"
"abcde"    -- ++ is associative
Prelude> "a" ++ "b"
"ab"
Prelude> "b" ++ "a"
"ba"    -- ++ is not commutative
```
The Monoid Type Class

class Monoid m where
 mempty :: a
 mappend :: m -> m -> m

 mconcat :: [m] -> m
 mconcat = foldr mappend mempty

-- The identity value
-- The associative binary operator
-- Apply the binary operator to a list
-- Default implementation

Lists are Monoids:

instance Monoid [a] where
 mempty = []
 mappend = (++)

Prelude> mempty :: [a]
[]
Prelude> "hello " `mappend` "world!"
"hello world!"
Prelude> mconcat ["hello ","pfp ","world!"]
"hello pfp world!"
*, 1 and +, 0 Can Each Make a Monoid

newtype lets us build distinct Monoids for each

In Data.Monoid,

```haskell
newtype Product a = Product { getProduct :: a }
deriving (Eq, Ord, Read, Show, Bounded)

instance Num a => Monoid (Product a) where
  mempty = Product 1
  Product x `mappend` Product y = Product (x * y)
```

```haskell
newtype Sum a = Sum { getSum :: a }
deriving (Eq, Ord, Read, Show, Bounded)

instance Num a => Monoid (Sum a) where
  mempty = Sum 0
  Sum x `mappend` Sum y = Sum (x + y)
```
Product and Sum In Action

Prelude Data.Monoid> mempty :: Sum Int
Sum {getSum = 0}

Prelude Data.Monoid> mempty :: Product Int
Product {getProduct = 1}

Prelude Data.Monoid> Sum 3 `mappend` Sum 4
Sum {getSum = 7}

Prelude Data.Monoid> Product 3 `mappend` Product 4
Product {getProduct = 12}

Prelude Data.Monoid> mconcat [Sum 1, Sum 10, Sum 100]
Sum {getSum = 111}

Prelude Data.Monoid> mconcat [Product 10, Product 3, Product 5]
Product {getProduct = 150}
The Any (||, False) and All (&&, True) Monoids

In Data.Monoid,

```haskell
class Monoid m where
  mempty :: m
  mappend :: m -> m -> m
```

```haskell
newtype Any = Any { getAny :: Bool }
  deriving (Eq, Ord, Read, Show, Bounded)

instance Monoid Any where
  mempty = Any False
  Any x `mappend` Any y = Any (x || y)
```

```haskell
newtype All = All { getAll :: Bool }
  deriving (Eq, Ord, Read, Show, Bounded)

instance Monoid All where
  mempty = All True
  All x `mappend` All y = All (x && y)
```
Any and All

Prelude Data.Monoid> mempty :: Any
Any {getAny = False}
Prelude Data.Monoid> mempty :: All
All {getAll = True}

Prelude Data.Monoid> getAny $ Any True `mappend` Any False
True
Prelude Data.Monoid> getAll $ All True `mappend` All False
False

Prelude Data.Monoid> mconcat [Any True, Any False, Any True]
Any {getAny = True}
Prelude Data.Monoid> mconcat [All True, All True, All False]
All {getAll = False}

Yes, *any* and *all* are easier to use
Ordering as a Monoid

data Ordering = LT | EQ | GT

In Data.Monoid,

instance Monoid Ordering where
 mempty = EQ
 LT `mappend` _ = LT
 EQ `mappend` y = y
 GT `mappend` _ = GT

Application: an \textit{lcomp} for strings ordered by length then alphabetically, e.g.,

\texttt{lcomp :: String -> String -> Ordering}

"b" `lcomp` "aaaa" = LT \textit{-- b is shorter}
"bbbbbb" `lcomp` "a" = GT \textit{-- bbbbbb is longer}
"avenger" `lcomp` "avenged" = LT \textit{-- Same length: r is after d}
lcomp :: String -> String -> Ordering
lcomp x y = case length x `compare` length y of
 LT -> LT
 GT -> GT
 EQ -> x `compare` y

A little too operational; mappend is exactly what we want

lcomp :: String -> String -> Ordering
lcomp x y = (length x `compare` length y) `mappend`
 (x `compare` y)
Maybe the Monoid

```haskell
instance Monoid a => Monoid (Maybe a) where
    mempty = Nothing
    Nothing `mappend` m = m
    m `mappend` Nothing = m
    Just m1 `mappend` Just m2 = Just (m1 `mappend` m2)
```

Prelude> Nothing `mappend` Just "pfp"
Just "pfp"
Prelude> Just "fun" `mappend` Nothing
Just "fun"

Prelude> :m +Data.Monoid
Prelude Data.Monoid> Just (Sum 3) `mappend` Just (Sum 4)
Just (Sum {getSum = 7})
```
The Foldable Type Class

What I taught you:

```haskell
foldr :: (a -> b -> b) -> b -> [a] -> b
foldr _ a [] = a
foldr f a (x:xs) = f x (foldr f a xs)
```

How it’s actually defined (Data.Foldable):

```haskell
foldr :: Foldable t => (a -> b -> b) -> b -> t a -> b
```
class Foldable t where
{-# MINIMAL foldMap | foldr #-}
foldr, foldr' :: (a -> b -> b) -> b -> t a -> b
foldr1 :: (a -> a -> a) -> t a -> a
foldl, foldl' :: (b -> a -> b) -> b -> t a -> b
foldl1 :: (a -> a -> a) -> t a -> a
fold :: Monoid m => t m -> m
      -- with mappend
foldMap :: Monoid m => (a -> m) -> t a -> m
toList :: t a -> [a]
null :: t a -> Bool
length :: t a -> Int
elem :: Eq a => a -> t a -> Bool
maximum :: Ord a => t a -> a
minimum :: Ord a => t a -> a
sum :: Num a => t a -> a
product :: Num a => t a -> a

Instance of Foldable for [] is just the usual list functions
data Tree a = Node a (Tree a) (Tree a) | Nil deriving (Eq, Read)

instance Foldable Tree where
    foldMap _ Nil = mempty
    foldMap f (Node x l r) = foldMap f l `mappend` f x `mappend` foldMap f r

> foldl (+) 0 (fromList [5,3,1,2,4,6,7] :: Tree Int)
28
  -- folding the tree
> getSum $ foldMap Sum $ fromList [5,3,1,2,4,6,7]
28
  -- The Sum Monoid's mappend is +
> getAny $ foldMap (\x -> Any $ x == 'w') $ fromList "brown"
True
  -- Any's mappend is ||
> getAny $ foldMap (Any . (=='w')) $ fromList "brown"
True
  -- More concise
> foldMap (\x -> [x]) $ fromList [5,3,1,2,4,6,7]
[1,2,3,4,5,6,7]
  -- List's mappend is ++