
Basic Function Definitions

Stephen A. Edwards

Columbia University

Fall 2020

Patterns

You can define a function with patterns

Patterns may include literals, variables, and _ “wildcard”

badCount :: Integral a => a -> String
badCount 1 = "One"
badCount 2 = "Two"
badCount _ = "Many"

Patterns are tested in order; put specific first:

factorial :: (Eq a, Num a) => a -> a
factorial 0 = 1
factorial n = n * factorial (n - 1)

Pattern Matching May Fail

Prelude> :{
Prelude| foo 'a' = "Alpha"
Prelude| foo 'b' = "Bravo"
Prelude| foo 'c' = "Charlie"
Prelude| :}
Prelude> :t foo
foo :: Char -> [Char]
Prelude> foo 'a'
"Alpha"
Prelude> foo 'd'
"*** Exception: <interactive>:(23,1)-(25,19): Non-exhaustive

 patterns in function foo

Let the Compiler Check for Missing Cases

Much better to get a compile-time error than a runtime error:

Prelude> :set -Wall
Prelude> :{
Prelude| foo 'a' = "Alpha"
Prelude| foo 'b' = "Bravo"
Prelude| :}

<interactive>:32:1: warning: [-Wincomplete-patterns]
 Pattern match(es) are non-exhaustive
 In an equation for 'foo':
 Patterns not matched: p where p is not one of {'b', 'a'}

Prelude> :set -Wincomplete-patterns

Pattern Matching on Tuples

A tuple in a pattern lets you dismantle the tuple. E.g., to implement fst,

Prelude> fst' (x,_) = x
Prelude> :t fst'
fst' :: (a, b) -> a
Prelude> fst' (42,28)
42
Prelude> fst' ("hello",42)
"hello"

Prelude> addv (x1,y1) (x2,y2) = (x1 + x2, y1 + y2)
Prelude> :t addv
addv :: (Num a, Num b) => (a, b) -> (a, b) -> (a, b)
Prelude> addv (1,10) (7,3)
(8,13)

Patterns in List Comprehensions

Usually, where you can bind a name, you can use a pattern, e.g., in a list
comprehension:

Prelude> :set +m
Prelude> pts = [(a,b,c) | c <- [1..20], b <- [1..c], a <- [1..b],
Prelude| a^2 + b^2 == c^2]
Prelude> pts
[(3,4,5),(6,8,10),(5,12,13),(9,12,15),(8,15,17),(12,16,20)]

Prelude> perimeters = [a + b + c | (a,b,c) <- pts]

Prelude> perimeters
[12,24,30,36,40,48]

Pattern Matching On Lists

You can use : and [,,,]-style expressions in patterns

Like fst, head is implemented with pattern-matching

Prelude> :{
Prelude| head' (x:_) = x
Prelude| head' [] = error "empty list"
Prelude| :}

Prelude> :t head'
head' :: [p] -> p

Prelude> head' "Hello"
'H'

Pattern Matching On Lists
Prelude> :{
Prelude| dumbLength [] = "empty"
Prelude| dumbLength [_] = "singleton"
Prelude| dumbLength [_,_] = "pair"
Prelude| dumbLength [_,_,_] = "triple"
Prelude| dumbLength _ = "four or more"
Prelude| :}

Prelude> :t dumbLength
dumbLength :: [a] -> [Char]
Prelude> dumbLength []
"empty"
Prelude> dumbLength [1,2,3]
"triple"
Prelude> dumbLength (replicate 10 ' ')
"four or more"

List Pattern Matching Is Useful on Strings

Prelude> :{
Prelude| notin ('i':'n':xs) = xs
Prelude| notin xs = "in" ++ xs
Prelude| :}

Prelude> notin "inconceivable!"
"conceivable!"
Prelude> notin "credible"
"incredible"

Pattern Matching On Lists with Recursion

Prelude> :{
Prelude| length' [] = 0
Prelude| length' (_:xs) = 1 + length' xs
Prelude| :}
Prelude> :t length'
length' :: Num p => [a] -> p
Prelude> length' "Hello"
5

Prelude> :{
Prelude| sum' [] = 0
Prelude| sum' (x:xs) = x + sum' xs
Prelude| :}
Prelude> sum' [1,20,300,4000]
4321

The “As Pattern” Names Bigger Parts

Syntax: <name>@<pattern>

Prelude> :{
Prelude| initial "" = "Nothing"
Prelude| initial all@(x:_) = "The first letter of " ++ all ++
Prelude| " is " ++ [x]
Prelude| :}

Prelude> :t initial
initial :: [Char] -> [Char]
Prelude> initial ""
"Nothing"
Prelude> initial "Stephen"
"The first letter of Stephen is S"

Guards: Boolean constraints

Patterns match structure; guards (Boolean expressions after a |) match value

Prelude> :{
Prelude| heightEval h
Prelude| | h < 150 = "You're short"
Prelude| | h < 180 = "You're average"
Prelude| | otherwise = "You're tall" -- otherwise = True
Prelude| :}

Prelude> heightEval 149
"You're short"
Prelude> heightEval 150
"You're average"
Prelude> heightEval 180
"You're tall"

Filter: Keep List Elements That Satisfy a Predicate

odd and filter are Standard Prelude functions

odd n = n ̀ rem` 2 == 1

filter :: (a -> Bool) -> [a] -> [a]
filter p [] = []
filter p (x:xs) | p x = x : filter p xs

 | otherwise = filter p xs

Prelude> filter odd [1..10]
[1,3,5,7,9]

Compare: Returns LT, EQ, or GT
Another Standard Prelude function

x ̀ compare` y
 | x < y = LT
 | x == y = EQ
 | otherwise = GT

Prelude> :t compare
compare :: Ord a => a -> a -> Ordering
Prelude> compare 5 3
GT
Prelude> compare 5 5
EQ
Prelude> compare 5 7
LT
Prelude> 41 ̀ compare` 42
LT

Where: Defining Local Names
triangle :: Int -> Int -> Int -> String
triangle a b c

 | a + b < c || b + c < a || a + c < b = "Impossible"
 | a + b == c || a + c == b || b + c == a = "Flat"
 | right = "Right"
 | acute = "Acute"
 | otherwise = "Obtuse"
 where
 right = aa + bb == cc || aa + cc == bb || bb + cc == aa
 acute = aa + bb > cc && aa + cc > bb && bb + cc > aa
 sqr x = x * x
 (aa, bb, cc) = (sqr a, sqr b, sqr c)

Order of the where clauses does not matter

Indentation of the where clauses must be consistent

Where blocks are attached to declarations

The Primes Example

primes = filterPrime [2..]
 where filterPrime (p:xs) =
 p : filterPrime [x | x <- xs, x ̀ mod` p /= 0]

[2..] The infinite list [2,3,4,...]

where filterPrime Where clause defining filterPrime

(p:xs) Pattern matching on head and tail of list

p : filterPrime ... Recursive function application

[x | x <- xs, x ‘mod‘ p /= 0] List comprehension: everything in xs not
divisible by p

Haskell Layout Syntax

Internally, the Haskell compiler intreprets

a = b + c
 where
 b = 3
 c = 2

as

a = b + c where { b = 3 ; c = 2 }

The only effect of layout is to insert { ; } tokens.

Manually inserting { ; } overrides the layout rules

Haskell Layout Syntax

Ï Layout blocks begin after let, where, do, and of unless there’s a {

Ï The first token after the keyword sets the indentation of the block
Ï Every following line at that indentation gets a leading ;

Ï Every line indented more is part of the previous line
Ï The block ends (an implicit }) when anything is indented less

a = b + c where
 b = 2
 c = 3

a = b + c
 where b = 3
 + 2
 c = 3

a = b + c where b = 2
 c = 3

a = b + c
 where b = 3
 + 2 −− No
 c = 3

a = b + c
 where b = 2
 c = 3

a = b + c
 where b = 2
 c = 3 −− No

Let Bindings: Naming Things In an Expression

let <bindings> in <expression>

cylinder :: RealFloat a => a -> a -> a
cylinder r h = let sideArea = 2 * pi * r * h

 topArea = pi * r^2
 in sideArea + 2 * topArea

This example can be written “more mathematically” with where

cylinder :: RealFloat a => a -> a -> a
cylinder r h = sideArea + 2 * topArea

 where sideArea = 2 * pi * r * h
 topArea = pi * r^2

Semantically equivalent; let...in is an expression; where only comes after
bindings. Only where works across guards.

let...in Is an Expression and More Local
A contrived example:

f a = a + let a = 3 in a

This is the “add 3” function. The scope of a = 3 is limited to the let...in

let bindings are recursive. E.g.,

let a = a + 1 in a

does not terminate because all the a’s refer to the same thing: a + 1

This can be used to define infinite lists

Prelude> take 5 (let x = 1 : 2 : x in x)
[1,2,1,2,1]

but is mostly for defining recursive functions. There’s no non-recursive let

Let Can Also Be Used in List Comprehensions

Prelude> handshakes n = [handshake | a <- [1..n-1], b <- [a+1..n],
Prelude| let handshake = (a,b)]
Prelude> handshakes 3
[(1,2),(1,3),(2,3)]

Its scope includes everything after the let and the result expression

case...of Is a Pattern-Matching Expression

Defining a function with patterns is syntactic sugar for case...of

badCount 1 = "One"
badCount 2 = "Two"
badCount _ = "Many"

is equivalent to

badCount x = case x of
 1 -> "One"
 2 -> "Two"
 _ -> "Many"

But, like let, case...of is an expression and may be used as such:

describeList :: [a] -> String
describeList xs = "The list is " ++ case xs of [] -> "empty"

 [x] -> "a singleton"
 _ -> "two or more"

