Haskell Basics

Stephen A. Edwards

Columbia University

Fall 2020
Useful Websites

- https://www.haskell.org/
 Downloads, documentation
 E.g., the Haskell Wiki, the GHC User’s Guide, The Haskell 2010 language report, Hackage (package library), Hoogle (Haskell API search)

- http://docs.haskellstack.org
 The Haskell Tool Stack: a powerful system for downloading and installing packages, etc.
 We will be using the Haskell Stack to make sure everybody’s environment is consistent.
GHCi

GHC is the Glasgow Haskell Compiler (the major Haskell compiler release)
GHCi is the REPL (Read-Eval-Print Loop, a.k.a., command-line interface)

Run ghci with stack:

$ stack ghci
Configuring GHCi with the following packages:
GHCi, version 8.6.5: http://www.haskell.org/ghc/ :? for help
Loaded GHCi configuration from /tmp/haskell-stack-ghci/2a3bbd58/..
Prelude> :?
Commands available from the prompt:

 <statement> evaluate/run <statement>
 :quit exit GHCi
The material on the following slides is adapted from

Miran Lipovača.
Learn You a Haskell for Great Good!

http://learnyouahaskell.com/
Comments

Single-line comments start with two dashes: --

Prelude> -- Single-line comment

Multi-line comments start with {-, end with -}, and may nest.

In GHCi only, multi-line definitions, etc. may be written with :{ and :}; these are unnecessary in source (.hs) files.

Prelude> :{
Prelude| {- This is a
Prelude| multi-line comment -}
Prelude| :}

Alternately enable multi-line input mode in GHCi:

Prelude> :set +m
Prelude> {-
Prelude| A multi-line
Prelude| Comment
Prelude| -}
Prelude> {- Another
Prelude| one -}
Basic Arithmetic

Prelude> 2 + 15
17
Prelude> 42 - 10
32
Prelude> 1 + 2 * 3
7
Prelude> 5 / 2
2.5
Prelude> 3 + -2

<interactive>:4:1: error:
 Precedence parsing error
 cannot mix '+' [infixl 6] and prefix '-' [infixl 6] in the same
 infix expression
Prelude> 3 + (-2)
1
Booleans and Equality

Haskell is case-sensitive

Prelude> True && False
False

Prelude> False || True
True

Prelude> not True || True
True

Prelude> not (True || True)
False

Prelude> 5 == 5
True

Prelude> 5 == 0
False

Prelude> 5 /= 5
False

Prelude> 5 /= 0
True

Prelude> "hello" == "hello"
True

Prelude> "llama" == 5
<interactive>:25:12: error:
 * No instance for (Num [Char]) arising from the literal '5'
 * In the second argument of '==', namely '5'
 In the expression: "llama" == 5
 In an equation for 'it': it = "llama" == 5
Juxtaposition indicates function application. Don’t use parentheses or commas for arguments.

```
Prelude> succ 41
42
Prelude> min 42 17
17
Prelude> max 42 17
42
```

Juxtaposition binds tightly; use parentheses to group arguments

```
Prelude> succ 3 * 2
8
Prelude> succ (3 * 2)
7
```
Backticks and parentheses

Backticks make a function an infix operator. This is sometimes a more natural way to write expressions.

```
Prelude> 5 `max` 3
5
Prelude> 5 `max` 8
8
```

Parentheses around a binary operator turns it into a two-argument function. This is most useful when you want to pass it as an argument (later).

```
Prelude> (+) 17 25
42
```
In recent versions of GHCi, just use = to bind things to names

```
Prelude> x = 7
Prelude> x * x
49
```

Just add one or more arguments to define a function

```
Prelude> sqr x = x * x
Prelude> sqr 7
49
Prelude> y = 8
Prelude> sqr y
64
```
Defining Functions

You can similarly define a function in a source file:

```
sqr.hs:    sqr x = x * x
```

In GHCi, `:l` means “load”

```
Prelude> :l sqr
[1 of 1] Compiling Main             ( sqr.hs, interpreted )
Ok, one module loaded.
*Main> sqr 7
49
```
Lists: Homogeneous Sequences

Square brackets and commas denote list literals

```haskell
Prelude> fiveprimes = [2,3,5,7,11]
Prelude> fiveprimes
[2,3,5,7,11]
```

Strings are just lists of characters

```haskell
Prelude> ['h','e','l','l','o']
"hello"
```

`++` performs list concatenation

```haskell
Prelude> [1,2,3] ++ [4,5]
[1,2,3,4,5]
Prelude> ['h','e','l','l','o'] ++ " world"
"hello world"
```
The Cons Operator: Prepends a List Element

The bracket notation is just syntactic sugar for Cons.

Prelude> 1 : [2,3,4]
[1,2,3,4]
Prelude> 1 : 2 : [3,4]
[1,2,3,4]
Prelude> 1 : 2 : 3 : 4 : []
[1,2,3,4]

List elements must all be the same type

Prelude> 1 : ['h','e']
<interactive>:10:1: error:
 * No instance for (Num Char) arising from the literal '1'
 * In the first argument of '(:)', namely '1'
 In the expression: 1 : ['h', 'e']
 In an equation for 'it': it = 1 : ['h', 'e']
From Learn You a Haskell for Great Good!
Prelude> x = [0,1,2,3,4]
0
Prelude> head x
[1,2,3,4]
4
Prelude> last x
4
Prelude> length x
5
Prelude> init x
[0,1,2,3]
Prelude> reverse x
[4,3,2,1,0]
Prelude> null x
False
Prelude> null []
True
Prelude> [5,6,7] !! 2
7
Prelude> "Monty Python" !! 6
'P'
Prelude> take 3 x
[0,1,2]
Prelude> drop 2 x
[2,3,4]
Prelude> maximum x
4
Prelude> minimum x
0
Prelude> sum x
10
Prelude> product x
0
List Ranges

Prelude> [1..20]
[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20]
Prelude> [2,4..20]
[2,4,6,8,10,12,14,16,18,20]
Prelude> [20,19..1]
[20,19,18,17,16,15,14,13,12,11,10,9,8,7,6,5,4,3,2,1]
Prelude> ['a'..'z']
"abcdefghijklmnopqrstuvwxyz"

Linear sequences only
Floating point numbers problematic
Infinite Lists

Haskell supports infinite lists (and other infinite data structures).
Hint: don’t print out the whole thing. E.g., use take to see the first elements

```
Prelude> take 5 [1..]
[1,2,3,4,5]
Prelude> take 10 [1..]
[1,2,3,4,5,6,7,8,9,10]
Prelude> take 10 [1,2,3]
[1,2,3]
Prelude> take 10 (cycle [1,2,3])
[1,2,3,1,2,3,1,2,3,1]
Prelude> take 16 (cycle [1,2,3])
[1,2,3,1,2,3,1,2,3,1,2,3,1,2,3,1]
Prelude> take 17 (repeat 5)
[5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5]
Prelude> replicate 15 6
[6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6]
```
List Comprehensions

\[
[\text{expression} \mid \text{generator-guard-let, generator-guard-let, ...}]
\]

Prelude> \[
[x^2 \mid x <-[1..19]]
[1,4,9,16,25,36,49,64,81,100,121,144,169,196,225,256,289,324,361]
\]

Prelude> \[
[x^2 \mid x <-[1..20], (x^2) \mod 2 == 0]
[4,16,36,64,100,144,196,256,324,400]
\]

Prelude> \[
[x^2 \mid x <-[1..20], \text{even } (x^2)]
[4,16,36,64,100,144,196,256,324,400]
\]

Prelude> \[
[y \mid x <-[1..20], \text{let } y = x^2, \text{even } y]
[4,16,36,64,100,144,196,256,324,400]
\]
List Comprehensions

Multiple guards must all be true

Prelude> \[x \mid x \leftarrow [1..100], x \ `mod` 7 == 0 \]
[7,14,21,28,35,42,49,56,63,70,77,84,91,98]

Prelude> \[x \mid x \leftarrow [1..100], x \ `mod` 7 == 0, x \ `mod` 5 == 0 \]
[35,70]

Multiple generators apply right-to-left:

Prelude> \[x + y \mid x \leftarrow [100,200..400], y \leftarrow [0..3] \]
[100,101,102,103,200,201,202,203,300,301,302,303,400,401,402,403]
Application: CS Research Jargon Generator

Prelude> :set +m
Prelude> [adjective ++ " " ++ noun |
Prelude> adjective <- ["An integrated","A type-safe"],
Prelude> noun <- ["network","architecture","hypervisor"]]
["An integrated network","An integrated architecture",
 "An integrated hypervisor","A type-safe network",
 "A type-safe architecture","A type-safe hypervisor"]

https://www.cs.purdue.edu/homes/dec/essay.topic.generator.html
List Comprehensions

Here’s an awkward way to code the standard Prelude’s length function:

```haskell
Prelude> length' xs = sum [ 1 | _ <- xs ]
Prelude> length' [5,6,2,1,0]
5
Prelude> length' (replicate 11 []), -- List of eleven empty lists
11
```

Names (variable identifiers) start with a lowercase letter followed by zero or more letters, digits, underscores, and single quotes.

_ alone means “don’t give this a name”

```haskell
Prelude> onlyLetters s = [ c | c <- s, c `elem` ['A'..'Z'] ++ ['a'..'z'] ]
Prelude> onlyLetters "Does this do what I think it 5hould?"
"DoesthisdowhatIthinkithould"
```
Tuples: Pairs and More of Heterogeneous Objects

Lists are zero or more things of the same type; a tuple is two or more of (potentially) different types.

Prelude> (5,10)
(5,10)
Prelude> ("a",15)
("a",15)
Prelude> ("Douglas","Adams",42)
("Douglas","Adams",42)
Prelude> sae = ("Stephen", "Edwards")
Prelude> fst sae
"Stephen"
Prelude> snd sae
"Edwards"
Zip and Pythagorean Triples

Form a list of pairs from two lists. Shorter of the two lists dominates; convenient with infinite lists

Prelude> zip [1,2,3] [100,200,300]
[(1,100),(2,200),(3,300)]

Prelude> zip "Stephen" [1..]
[('S',1),('t',2),('e',3),('p',4),('h',5),('e',6),('n',7)]

Prelude> [(a,b,c) | c <- [1..20], b <- [1..c], a <- [1..b], a^2 + b^2 == c^2]
[(3,4,5),(6,8,10),(5,12,13),(9,12,15),(8,15,17),(12,16,20)]
The Handshake Problem

Number of handshakes among a group of n friends?

Prelude> handshakes n = [(a,b) | a <- [1..n-1], b <- [a+1..n]]
Prelude> handshakes 3
[(1,2),(1,3),(2,3)]
Prelude> handshakes 5
[(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)]
Prelude> length (handshakes 5)
10
Prelude> [length (handshakes n) | n <- [1..10]]
[0,1,3,6,10,15,21,28,36,45]
Prelude> [n * (n-1) `div` 2 | n <- [1..10]]
[0,1,3,6,10,15,21,28,36,45]