
1

CSEE 4840 Embedded System Design
NES Emulator

Jeff Jaquith, Minghao Li, Zach Schuermann

2

Table of Contents

System Overview 3

Memory 3

Central Processing Unit (CPU) 4

Picture Processing Unit (PPU) 5

PPU Registers 6

Background Rendering 8

Sprite Rendering 9

PPU Rendering Example - Donkey Kong 10

PPU Rendering Figures in Summary 18

Linux Userspace Utilities 19

Clocking/Timing Figures 19

Arbitration of Shared Resources 20

Hardware/Software Interface 20

Resource Requirements 20

References 20

Appendix 21

3

System Overview

The Nintendo Entertainment System (NES) can be divided into two main components, the CPU and the PPU.
More specifically, the CPU has a 6502 core, an onboard audio generation and a controller interface. The second
main component is the PPU which generates sprite and background tiles to produce game images from the
cartridge ROM. The color palette has 64 colors and the system output is 256 by 240 pixels. In this project, the
audio processing unit and sprite rendering are not implemented due to time constraint, and a single memory
module is used to encompass all memory components of the cartridge. A top level file ultranes.sv is used to
instantiate all other modules including the CPU, PPU, VRAM, clock and VGA.

Figure 1. System Block Diagram

Memory

Name Use Access Location

Character ROM
8kb

Pattern for game graphics PPU PPU address space

Program ROM
32kb

Game data CPU CPU address space

VRAM
2kb

2 nametables, 2 attribute tables PPU PPU address space

Sprite RAM
256 bytes

64 sprites for a frame PPU/CPU PPU

4

Palette RAM
32 bytes

sprites and background color info PPU PPU

System RAM
2kb

Temporary game data CPU CPU address space

Table 1. Memory Summary

Above is the memory access and usage table for the actual NES implementation. However, in our project we
will only be using a dual port RAM with a single clock module, vram.sv, to encompass the entire memory space
for VRAM and the ROM that is usually loaded from the game cartridge.

Figure 2. CPU (left) and PPU (right) Memory Map

Central Processing Unit (CPU)

On a high level, the CPU reads from the program ROM, which contains essential game information, and
constructs the basic logics of the game. It then informs the PPU of how to specifically produce a pixel by pixel
output on the screen. For this project, an existing 6502 core implemented in SystemVerilog is imported and
connected to other components in the system.

5

Figure 3. CPU Memory Communications

The CPU is integrated on an ASIC (labelled RP2A03), that also integrates the Audio Processor, a DMA Unit, a
clock divider and a few additional pins related to controller input. The 16-bit address bus is used for the address
of a requested location. It is directly generated by the CPU. The CPU is all together able to address up to 64KB
of memory or memory-mapped peripherals.

The 8-bit control bus informs the connected components of whether the request is read or write. The 8-bit
bidirectional data bus is used to read or write a byte to the selected address. Due to its bidirectionality, each
peripheral is able to write to it at different times as specified by the address bus. To access the read-only ROM, a
MMC is used for bank switching. The I/O registers are used to communicate with other components of the
system.

Figure 4. 6502 Bus Timing Diagram

Picture Processing Unit (PPU)

There are two modules to render the background and sprite respectively on a per pixel basis. There are 8 PPU
registers and they are accessed by the CPU's address and data lines. One of the most crucial components of the
PPU is its integration with the VGA. To synchronize the PPU and the VGA together, a vga module is defined
for which it takes the PPU data as input and converts it to color output based on a look-up table, which takes in
PPU data and outputs its VGA RGB values for respective pixels. A scanline buffer is built in VGA to hold
incoming PPU data. Below is a comprehensive block diagram of the PPU and its related components.

6

Figure 5. PPU Block Diagram

PPU Registers

Register Details

$2000 -
PPUCTRL

PPU Control Register - write
Contains flags that describe PPU operation
LSB
NN - Designates name table base address (0=2000, 1=2400, 2=2800, 3=2C00)
I - VRAM address increment per CPU read/write of PPUDATA ($2007) (0: increment 1,
going across, 1:increment 32, going down)
S - Sprite table base address (0=0000, 1=10000) *only in 8x8 mode
B - Background pattern table address (0=0000, 1=1000)
H - Sprite size (0=8x8, 1=8x16)
V - PPU as master or slave (0: read from EXT pins, 1:output color to EXT pins)
N - 1: sets a non maskable interrupt at start of BLANK
MSB
2 LSBs are MSBs of scrolling location (bit 0 - adds 256 to X scroll, bit 1 - adds 240 to Y
scroll) After power on writes to register are ignored for 30k cycles

$2001 -
PPUMASK

PPU Mask Register - write
Controls the rendering of sprites and background tiles
LSB
G - Greyscale (0: normal, 1: grey)

7

m - 1: Show background is leftmost 8 pixels, 0:hide
M - 1: Show sprite in leftmost 8 pixels, 0: hide
b - 1: Show Background
s - 1: Show Sprite
R - 1: Emphasize red
G - 1: Emphasize green
B - 1: Emphasize blue
MSB
Bits 1&2 (m&M) enable rendering for leftmost 8 pixel columns - this is useful for scrolling
(when you want parital sprites or tiles to scroll in from the left)
Bits 3&4 (b&s) Render background or sprite respectively
If changes to VRAM outside of VBLANK set b&s to 0.

$2002 -
PPUSTATUS

PPU Status Register - read
LSB
(0-4) LSBs previously written into PPU Reg
O - Sprite overflow, flag is set during sprite evaluation, cleared at second tick of pre-render
line
S - Set when non zero pixel of sprite zero overlaps non zero background pixel. Cleared at
second tick of pre render line
V - Set at tick 1 of of line 241 (1 for in VBLANK, 0 for not). Cleared after reading this
register and second tick of pre-render line. Reading does not clear O&S

$2003 -
OAMADDR

OAM Address - write
Write address of OAM to access.
Set to 0 during 257-320 ticks of pre render and visible scan lines (Sprite loading interval)
Value at tick 65 of visible scan lines determines where in OAM sprite evaluation starts
regardless of byte type and every byte following is interpreted accordingly. This effectively
hides the sprites before the first address is accessed.

$2004 -
OAMDATA

OAM Data - read/ write
Writes will increment OAMADDR after the write.
Reads do increment, occur during VBLANK or forced blanking.

$2005 -
PPUSCROLL

PPU Scrolling position register - write x2
Typically written to during VBLANK (can be modified during rendering sp split the
screen)
Tell PPU which pixel in the nametable being used is the top left pixel. Nametable is selected
using NN in PPUCTRL.

$2006 -
PPUADDR

PPU Address register - writex2
Specifies the 16-bit address in VRAM that $2007 will use
CPU writes to VRAM through PPUADDR and PPUDATA

8

Upper byte is written first.
BYTE 1: upper 8-bit of effective address
BYTE 2: lower 8-bit of effective address

$2007 -
PPUDATA

PPU Data - read / write
After access I bit in PPUCTRL determines how much to increment address.
Only accessed during VBLANK or forced blanking.
After access needs to reload scroll position.

$4014 -
OAMDMA

OAMDMA register - write
Located on the CPU. Used to upload 256 bytes from CPU $XX00-4XXFF to PPU OAM.
Transfer takes 513/514 cycles during which the CPU is suspended. Should take place during
VBLANK, writes through OAMDATA or not suited.

Table 2. PPU Registers

Background Rendering

Name tables contain 8x8 pixel tiles for displaying graphics, it is the layout of a frame's background. In total, the
name tables contain 32x30 tiles (256x240 pixels). Each tile contains a single byte in PPU memory. It only holds
the tile number of the data that is kept in the pattern table

The pattern table holds the actual 8x8 tile data and also the lower 2 bits of the 4 bit color matrix needed to access
all 16 colors. It has the static info from the ROM that PPU can read only.

Figure 6. Pattern Table

In the attribute table, each byte represents a 4x4 group of tiles on the screen

9

Figure 7. Attribute Table

In the palette table, every frame has its own subset of palette of the system palette. And the frame palette is
dynamic meaning that two frames could have different sets of palettes that they use to produce colors. CPU
sends palette entries to the PPU. In a frame palette, there are 8 palette groups each with 4 colors. 0-3 are for
background and 3-7 are for sprites.

The color information at a specific pixel is determined by the priority mux shown below.

Figure 8. Priority Mux

Sprite Rendering

There are 64 sprites displayed in any given frame . The High-level memory is constructed by the CPU during
vertical blank and there are only 8 sprites per scanline due to time constraint. Sprite buffers are used for pattern
data for the sprite, color attributes, priority information, and an exact horizontal coordinate.

In summary, sprite rendering follows the below steps:

10

1. PPU scans through the y coordinates in sprite RAM to determine whether the sprite should be displayed on
the next scan line

2. If so store this data to the secondary OAM or store the sprite’s index number. The secondary OAM is only
used to store sprites for the next scanline.

3. Fetch and store pattern info in sprite buffers (shift registers) to make sure no conflict occurs with range
checking

4. Pixels output uses the sprite buffers which contain two shift registers and a horizontal coordinate counter.
The background gets drawn to a separate buffer.

5. The coordinate counter tells whether the sprite should display and and clocks the shift registers to output
data.

Figure 9. Sprite Renderer

PPU Rendering Example - Donkey Kong

Nametable:
● Tiles of Donkey Kong: nametable is the layout of the frame’s background

o (00,00) upper left to (1F,1D) bottom right
● Each tile contains a single byte in PPU memory
● The numbers 24 and 62 shown below are just indices into the pattern table

11

Figure 10. Tiles of Donkey Kong

Pattern Table:
● For tile at position (09,10) it has index 01

o In the pattern table at 01 we have 16 bytes and separating them into low and high bytes to get
o 0:7 18 38 18 18 18 18 7E 00
o 8:F 00 00 00 00 00 00 00 00

Figure 11. Combining Low and High Bitmap of Pattern Table

12

Figure 12. Example of Pattern Table Combination

Figure 13. Donkey Kong Example Pattern Table Combination Without Palette

System Palette:
● Define by NES a finite set of colors numbered from 00 to 3F

Figure 14. System Color Selection

Frame Palette:
● Every frame has its own subset of palette of the system palette
● Frame palette is dynamic

o CPU sends palette entries to the PPU so different frame can use different frame palette
● 8 palettes and each sub palette group has four colors

o 0-3 are for backgrounds and 4-7 are for sprites

Figure 15. Palette RAM

● For the oil drum

13

o (04, 19) (05,19) (04,1A) (05,1A)

Figure 16. Nametable For Oil Drum

Figure 17. Pattern Table Low and High Bitmap for Oil Drum

Figure 18. Combining Low and High Bitmap

● There are values between 00 and 11
● This is the index into the frame palette

14

Figure 19. Palette RAM

● We will use the attribute table to know which palette we are accessing
● In this case we are accessing palette table 0

Figure 20. Coloring After Accessing the Palette Table

Attribute Table:
● The tiles are divided into blocks, each block is a 4x4 tiles
● Continuing with the oil drum example we have

o In block (1,6)

15

Figure 21. Divided Block

● A block above is divided into 4 tiles, 0 1 2 3
● In the attribute table each block is a single byte

o Four 2 bit value
o Quad 0 is bit 0 and 1
o Quad 1 is bit 2 3
o Quad 2 is bit 4 5
o Quad 3 is bit 6 7

● In our example, at the location of the oil drum the byte is 0 so

Figure 22. Index into the Palette RAM

● Here is an example of Donkey Kong

Figure 23. Example of Donkey Kong in Nametable

● Looking up values in the pattern table we have the following

16

Figure 24. Donkey Kong Divided into Blocks

● For block (1,1) in the attribute table we read AA

o Each region of the four regions will use palette 2

Figure 25. Block (1,1) in Attribute Table

● For block (2,1) in the attribute we read 22

o Quad 0 and 2 will be palette 2 and 1 and 3 will be palette 0

Figure 26. Bock (2,1) in Attribute Table

17

Figure 27. Donkey Kong Rendered using Palette RAM

Sprites:
● a sprite has 4 bytes that can be accessed in the OAM: y pos, x pos, tile index and attribute.
● For Mario

Figure 28. Mario Sprite in OAM

● Using the same procedures for background for tile IDs and combining the bit maps

Figure 29. Mario in Nametable

● For Mario, the attribute byte is 00
o so we use palette 0 and in the palette frame it’s palette 4

18

Figure 30. Palette RAM

Figure 31. Mario Sprite Rendered

PPU Rendering Figures in Summary

❏ PPU renders 262 scan lines per frame

❏ 240 visible scan lines
❏ 20 fetching data (vblank)
❏ 2 dummy

❏ Only can write one pixel per PPU cycle
❏ Takes 341 PPU cycles per scanline
❏ 256 for rendering; remaining are used to fetch data from nametables, etc.
❏ (2 clock cycles per pfetch, PPU multiplexes bottom 8 VRAM Address pins to also use as data

pins)
❏ For each frame:

❏ -1 scanline: prefetch tile info for first two tiles. No pixel rendering for this scanline
❏ 0-239 scanline: render background and sprite. The program does not access PPU memory at this

time unless rendering is off.
❏ 240 scanline: idle. Vblank is set after this scanline.
❏ 241-260 scanline: vblank lines, CPU can access VRAM because PPU makes no memory access

during these scanlines.

19

❏ For each visible scanline (0-239):
❏ 0 cycle: idle
❏ 1-256 cycle: visible pixels. Each memory access takes 2 PPU cycles and each tile needs 4 for

nametable, attribute table, pattern table low and pattern table high.
❏ Output pixel based on VRAM
❏ Prefetch next tiles. PPU can only fetch an attribute byte every 8 cycles.
❏ Sprite evaluation for next scanline

❏ 257-320: prefetch tiles data for sprites on the next scanline
❏ 321-336: prefetch the first two tiles for the next scanline and loaded to the shift registers
❏ 337-340: unknown fetches

Figure 32. Timing Diagram Form NESDev Wiki

Figure 33. Blank Areas Used During CPU Cycles/Data Fetch

20

Linux Userspace Utilities

There are three main components:
1. Avlon bus interface to the FPGA
2. Linux device driver for memory-mapped access to avalon-bus
3. Userspace utility to issue IOCTL’s to modify RAM/ROM onboard FPGA

We have an installer script to build device driver, install kernel module, and install pre-compiled userspace
utility defined as 'ultranes' binary show below.

Figure 32. Ultranes binary

Clocking/Timing Figures
The total clocking scheme is facilitated via a global clock (50MHz) and respective clock enables. For the VGA,
it is running at double the resolution of the PPU (so 4x the number of pixels), the PPU is 4 times slower than the
VGA so they are in sync. Each PPU frame will take 89,342 PPU cycles and each VGA frame will take 357,368
VGA cycles (exactly 4x more). To ensure correct timing, a clock module is defined and several clock enables
are fed into other modules including the CPU, PPU and VGA.

● 50 MHz global clock
● 25 MHz VGA clock (50/2)
● 6.25 MHz PPU clock (50/8)
● 2.083 MHz CPU clock (50/24)

Figure 33. Timing Simulation

Arbitration of Shared Resources

CPU/PPU share memory, CPU updates mem (VRAM) during VBlank. A dual-port block RAM is used for PPU
and CPU to access memory separately.

21

Hardware/Software Interface

The hardware/software interface exists between the FPGA implementation of the NES and the Linux host which
will load ROM’s (game cartridges) onto the board.

Resource Requirements

The DE1-SoC has 64MB SDRAM, far greater than any combination of NES + ROM cartridges with additional
RAM (no more than 1MB). Furthermore, the original 6502 had ~3,200 transistors, while our FPGA has 85,000.
The 6502 core we plan to use occupied only 8% of the flops and 7% of the LUTs in the Xilinx xc3s500e FPGA.

References

https://www.quora.com/q/oefyspdckxhlovmr/How-NES-Graphics-Work-Pattern-tables
https://austinmorlan.com/posts/nes_rendering_overview/
http://web.mit.edu/6.111/www/f2004/projects/dkm_report.pdf
http://nesdev.com/NESDoc.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/ug/ug_altpll.pdf
http://www.aholme.co.uk/6502/Main.htm
http://tuxnes.sourceforge.net/nestech100.txt - NES Documentation
http://web.mit.edu/6.111/volume2/OldFiles/www/f2019/projects/dklahn_Project_Final_Report.pdf

Appendix

Sprite DMA Unit: For updating to the internal PPU memory, there are memory mapped registers at $2003 and
$2004. $2003 is used to set the internal address, $2004 writes a value with auto-increment.
Since most games would want to update all 256 bytes of sprite data in each frame, the 2A03 integrates a unit
that can halt the CPU and copy one memory page to $2004 directly.

https://www.quora.com/q/oefyspdckxhlovmr/How-NES-Graphics-Work-Pattern-tables
https://austinmorlan.com/posts/nes_rendering_overview/
http://web.mit.edu/6.111/www/f2004/projects/dkm_report.pdf
http://nesdev.com/NESDoc.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/ug/ug_altpll.pdf
http://www.aholme.co.uk/6502/Main.htm
http://tuxnes.sourceforge.net/nestech100.txt
http://web.mit.edu/6.111/volume2/OldFiles/www/f2019/projects/dklahn_Project_Final_Report.pdf

22

