Processors, FPGAs, and ASICs Part 2: Processors to Fixed-Function

Stephen A. Edwards

Columbia University

Spring 2020

Spectrum of IC choices Flexible, efficient You choose				
Flexible, e	mcient	You choose		
	Full Custom	Polygons (Intel)		
	ASIC	Circuit (Sony)		
	Gate Array	Wires		
	FPGA	Logic network		
	PLD	Logic function		
	GP Processor	Program (e.g., ARM)		
	SP Processor	Program (e.g., DSP)		
	Multifunction	Settings (e.g., Accelerometer)		
	Fixed-function	Part number (e.g., 7400)		
Cheap, quick to design				

Euclid's Algorithm

```
int gcd(int m, int n)
{
    int r;
    while ((r = m % n) != 0) {
        m = n;
        n = r;
     }
    return n;
}
```

The Intel 80386 c. 1985

i386 Programmer's Model

31		0
	eax	
	ebx	
	ecx	
	edx	

Mostly General-Purpose Registers

esi
edi
ebp
esp

Source index Destination index Base pointer Stack pointer

15	
----	--

0

CS	
ds	
SS	
es	
fs	
gs	

Code segment Data segment Stack segment Extra segment Data segment Data segment

eflags	
eip	

Status word Instruction Pointer

Euclid on the i386

```
int gcd(int m, int n)
{
    int r;
    while ((r = m % n) != 0) {
        m = n;
        n = r;
    }
    return n;
}
```

gcd: pushl %ebp movl %esp,%ebp pushl %ebx movl 8(%ebp),%eax movl 12(%ebp),%ecx jmp .L6 .L4: movl %ecx,%eax movl %ebx.%ecx .L6: cltd idivl %ecx movl %edx,%ebx testl %edx,%edx jne .L4 movl %ecx.%eax movl -4(%ebp),%ebx leave ret

Sun's SPARC Processor c. 1987

SPARC Programmer's Model

31	0		31	0	
r0		Always 0	r16/l	0	Local Registers
r1		Global Registers	r17/l	1	
i			i		
r7			r23/l	7	
r8/o0		Output Registers	r24/i	0	Input Registers
i		<i>.</i>	:		
r14/o6		Stack Pointer	r30/i	6	Frame Pointer
r15/o7			r31/i	7	Return Address
		-			

PSR
PC
nPC

Status Register Program Counter Next PC

SPARC Register Windows

The output registers of the calling procedure become the inputs to the called procedure

The global registers remain unchanged

The local registers are not visible across procedures

		r8/o0
		:
		r15/o7
		r16/l0
		:
		r23/l7
	r8/o0	r24/i0
	:	:
	r15/o7	r31/i7
	r16/l0	
	:	
	r23/l7	
r8/o0	r24/i0	
:	:	
r15/o7	r31/i7	
r16/l0		
:		
r23/l7		
r24/i0		
:		
r31/i7		

Euclid on the SPARC

```
int gcd(m, n)
int m, n;
 int r;
 while ((r = m \% n) != 0) {
    m = n;
    n = r;
  }
  return n:
```

-		
gcd:	save	%sp,-96,%sp
	mov	%i0,%o0
	call	. rem ,2
	mov	%i1,%o1
	mov	%00,%i5
	tst	%i5
	be	L2
	mov	%i1,%o0
L1:	mov	%i5,%i1
	call	. rem ,2
	mov	%i1,%o1
	mov	%00,%i5
	tst	%i5
	bne,a	L1
	mov	%i1,%o0
L2:	ret	
	restore	%g0,%i1,%o0

Motorola's DSP56000 c. 1986

DSP 56000 Programmer's Model

Motorola DSP56000 Data ALU

Motorola DSP56000 AGU

FIR Filter in 56000

```
move #samples, r0
move #coeffs, r4
move \#n-1, mO
move mO. m4
movep y:input, x:(r0)
clr a x:(r0)+, x0 y:(r4)+, v0
rep
    #n-1
mac x0,v0,a x:(r0)+, x0 y:(r4)+, v0
macr x0, y0, a (r0)-
movep a, y:output
```

TI TMS320 C6201 VLIW DSP c. 1997

TI TMS320 C6000 VLIW DSP

Dual 32-bit load/store path

FIRLOOP:

	LDH	.D1	*A1++, A2	;	Fetch next sample
	LDH	.D2	*B1++, B2	;	Fetch next coefficient
[B0]	SUB	.L2	BO, 1, BO	;	Decrement loop count
[B0]	В	.S2	FIRLOOP	;	Branch if non-zero
	MPY	.M1X	A2, B2, A3	;	Sample × Coefficient
	ADD	.L1	A4, A3, A4	;	Accumulate result

FIRLOOP:

*A1++, A2 ; Fetch next sample LDH D1 *B1++, B2 ; Fetch next coefficient LDH .D2 BO. 1. BO : Decrement loop count [B0] SUB .L2 FIRLOOP : Branch if non-zero [BO] B .S2 11 MPY .M1X A2, B2, A3 ; Sample \times Coefficient ADD .L1 A4. A3. A4 : Accumulate result

Run in parallel

Load a halfword (16 bits)					
FIRLOOP	: ↓				
	LDH	.D1	*A1++, A	.2 ;	Fetch next sample
	LDH	.D2	*B1++, B	;2	Fetch next coefficient
[BO]	SUB	.L2	BO, 1, B	;0	Decrement loop count
[BO]	В	.S2	FIRLOOP	;	Branch if non-zero
	MPY	.M1X	A2, B2,	A3 ;	Sample \times Coefficient
	ADD	.L1	A4, A3,	A4 ;	Accumulate result

		Do t	his on unit D1		
FIRLOOP:		Ļ			
	LDH	.D1	*A1++, A2	;	Fetch next sample
	LDH	.D2	*B1++, B2	;	Fetch next coefficient
[BO]	SUB	.L2	BO, 1, BO	;	Decrement loop count
[BO]	В	.S2	FIRLOOP	;	Branch if non-zero
	MPY	.M1X	A2, B2, A3	;	Sample × Coefficient
	ADD	.L1	A4, A3, A4	;	Accumulate result

FTRLOOP: LDH .D1 *A1++, A2 ; Fetch next sample LDH .D2 *B1++, B2 ; Fetch next coefficient BO. 1. BO : Decrement loop count [B0] SUB .L2 FIRLOOP : Branch if non-zero [BO] B .S2 MPY .M1X A2, B2, A3 ; Sample \times Coefficient 11 ADD .L1 A4, A3, A4 ; Accumulate result

Use the cross path

FIRLOOP: LDH .D1 *A1++, A2 ; Fetch next sample LDH .D2 *B1++, B2 ; Fetch next coefficient || [B0] SUB .L2 B0, 1, B0 ; Decrement loop count || [B0] B .S2 FIRLOOP ; Branch if non-zero || MPY .M1X A2, B2, A3 ; Sample × Coefficient || ADD .L1 A4, A3, A4 ; Accumulate result

Predicated instruction (only if B0 non-zero)

Analog Devices ADXL345 Accelerometer

14 pins, 3mm by 5mm

DE1-SoC Connections to the ADXL345 Accelerometer

I²C Bus Protocol

ADXL345 Registers (30, 8-bit)

Addre	SS				
Hex	Dec	Name	Туре	Reset Value	Description
0x00	0	DEVID	R	11100101	Device ID
0x01 to 0x1C	1 to 28	Reserved			Reserved; do not access
0x1D	29	THRESH_TAP	R/W	0000000	Tap threshold
0x1E	30	OFSX	R/W	00000000	X-axis offset
0x1F	31	OFSY	R/W	00000000	Y-axis offset
0x20	32	OFSZ	R/W	00000000	Z-axis offset
0x21	33	DUR	R/W	00000000	Tap duration
0x22	34	Latent	R/W	00000000	Tap latency
0x23	35	Window	R/W	00000000	Tap window
0x24	36	THRESH_ACT	R/W	00000000	Activity threshold
0x25	37	THRESH_INACT	R/W	00000000	Inactivity threshold
0x26	38	TIME_INACT	R/W	00000000	Inactivity time
0x27	39	ACT_INACT_CTL	R/W	0000000	Axis enable control for activity and inactivity detection
0x28	40	THRESH_FF	R/W	0000000	Free-fall threshold
0x29	41	TIME_FF	R/W	0000000	Free-fall time
0x2A	42	TAP_AXES	R/W	00000000	Axis control for single tap/double tap
0x2B	43	ACT_TAP_STATUS	R	00000000	Source of single tap/double tap
0x2C	44	BW_RATE	R/W	00001010	Data rate and power mode control
0x2D	45	POWER_CTL	R/W	00000000	Power-saving features control
0x2E	46	INT_ENABLE	R/W	00000000	Interrupt enable control
0x2F	47	INT_MAP	R/W	00000000	Interrupt mapping control
0x30	48	INT_SOURCE	R	00000010	Source of interrupts
0x31	49	DATA_FORMAT	R/W	00000000	Data format control
0x32	50	DATAX0	R	00000000	X-Axis Data 0
0x33	51	DATAX1	R	00000000	X-Axis Data 1
0x34	52	DATAY0	R	0000000	Y-Axis Data 0
0x35	53	DATAY1	R	0000000	Y-Axis Data 1
0x36	54	DATAZ0	R	0000000	Z-Axis Data 0
0x37	55	DATAZ1	R	0000000	Z-Axis Data 1
0x38	56	FIFO_CTL	R/W	0000000	FIFO control
0x39	57	FIFO_STATUS	R	00000000	FIFO status

Register Documentation (only 3 pages)

REGISTER DEEINITIONS

Register 0x00—DEVID (Read Only) D7 D6 D5 D4 D3 D2 0

The DEVID register holds a fixed desice ID code of 0xES (345 octal).

Register (v10 TURESH TAR (Regd(White)

The THRESH TAP register is eight bits and holds the threshold value for tap interrupts. The data format is unsigned, therefore, the magnitude of the tan event is compared with the value in THRESH_TAP for normal tap detection. The scale factor is 62.5 mail SR (that is (trEE = 16 e). A value of 0 may result in undesirable behavior if single tap/double tap interrupts are enabled

Register 0x1E. Register 0x1E. Register 0x20_OESY. OFSY, OFSZ (Read/Write)

The OFSX. OFSY, and OFSZ registers are each eight bits and offer user-set offset adjustments in twos complement format with a scale factor of 15.6 mail SB (that is dw7E = 2.e). The value stored in the offset registers is automatically added to the acceleration data, and the resulting value is stored in the output data registers. For additional information regarding office calibration and the use of the offset registers, refer to the Offset Calibration section.

Register (v 21-DUR (Regd/Write)

The DUR register is eight bits and contains an unsigned time value representing the maximum time that an event must be above the THRESH. TAP threshold to qualify as a tap event. The scale factor is 625 m/I SB A value of 0 disables the simple tan/ double tap functions.

Register 0x22-Latent (Read/Write)

The latent register is eight bits and contains an unsigned time value representing the unit time from the detection of a tan event to the start of the time window (defined by the window register) during which a possible second tap event can be detected. The scale factor is 1.25 ms/L5B. A value of 0 disables the double tap

Realister 0x22-Window (Read/Weite)

The azimbose maintee is sight hits and contains an unsigned time value representing the amount of time after the expiration of the between times (determined by the latent mainter) during which a second valid tan can beein. The scale factor is 1.25 ms/LSR A value of 0 disables the double tap function.

Register 0x24-TURESH ACT (Regd/Maite)

The THRESH ACT register is cight hits and holds the threshold value for detecting activity. The data format is unsigned, so the magnitude of the activity event is compared with the value in the THRESH ACT register. The scale factor is 62.5 me/LSB. A makes of 0 mere enough in condenies bla hadronics if the activity interrupt is enabled.

Reakter 0x25_THRESH_INACT (Read/Write)

The THRESH_INACT register is eight bits and holds the threshold value for detecting inactivity. The data format is unsigned so. the magnitude of the inactivity event is compared with the value in the TURESH INACT excision. The code factor is 63.5 and 5R A value of 0 may result in undesirable behavior if the inactivity interrupt is enabled.

Register 0x26-TIME INACT (Read/Write)

The TIME INACT register is eight hits and contains an unsigned time value representing the amount of time that acceleration must be less than the value in the THRESH_INACT register for inactivity to be declared. The scale factor is 1 sec/LSB. Unlike the other interrupt functions which use unfiltened data (see the Threshold section), the inactivity function uses filtered output data. At least one control sample must be reperated for the inactivity interrupt to be triggered. This results in the function appearing unresponsive if the TIME_INACT register is set to a Register 0x29-TIME FF (Regd/Write) value less than the time constant of the output data rate. A value of 0 results in an interrupt when the output data is less than the value in the THRESH INACT register.

Register 0x27—ACT_INACT_CTL (Read/Write)

D7 ACT ac/dc	D6 ACT_X enable		D4 ACT_Z enable	ľ
D3	D2 INACT_X enable	D1	D0	l
P64,130/00	INPL1_X HIGH	INPL1_F INADIE	INVIT'S BURNE	ŋ

ACT AC/DC and INACT AC/DC Bits

A setting of 0 selects dc-coupled operation, and a setting of 1 enables ac-coupled operation. In dc-coupled operation, the current acceleration marnitude is compared directly with THRESH ACT and THRESH INACT to determine whether activity or inactivity is detected.

In ac-coupled operation for activity detection, the acceleration value at the start of activity detection is taken as a reference value. New semples of acceleration are then command to this reference value, and if the marnitude of the difference exceeds the THRESH_ACT value, the device triggers an activity interrupt.

Similarly in as compled operation for inactivity detection a reference value is used for comparison and is updated whenever Register 0x28-ACT TAP STATUS (Road Only) the denice exceeds the inactivity threshold. After the reference value is selected, the device commares the magnitude of the difference between the reference when and the correct acceleration with THRESH. INACT. If the difference is less than the value in ACT x Source and TAP x Source Bits THRESH_INACT for the time in TIME_INACT, the device is considered inactive and the inactivity interrupt is trippered.

ACT x Enable Bits and INACT x Enable Bits

A setting of 1 enables x-, y-, or z-axis participation in detectine activity or inactivity. A setting of 0 excludes the selected axis from participation. If all area are excluded, the function is disabled For activity detection, all participating axes are logically ORed. causing the activity function to trigger when any of the participating axes exceeds the threshold. For inactivity detection, all participating axes are logically ANDird, causing the inactivity function to tripper only if all participating axes are below the threshold for the specified time.

Register 0x28-THRESH FF (Regd/Write)

The THRESH. FF register is eight hits and holds the threshold value, in unsigned format, for free-fall detection. The acceleration on all axes is compared with the value in THRESH FF to determine if a free-fall exert occurred. The scale factor is 62.5 me/LSB. Note that a value of 0 me may result in undesirable behavior if the freefall interrunt is enabled. Values between 300 mer and 600 mer (0x05 to 0x09) are recommended.

The TIME FF register is gight bits and stores an unsigned time value representing the minimum time that the value of all axes must be less than THRESH FF to generate a free-fall interrupt. The scale factor is 5 ms/I SB. A value of 0 may read; in undesirable behavior if the free-fall interrupt is enabled. Values between 100 ms and 350 ms (0x14 to 0x46) are recommended

Zenable	Regis	Register 0x2A—TAP_AXES (Read/Write)									
	D7	D6	DS	D4				D0			
	0	0	0	0	Suppress	TAP_X enable	TAP_Y enable	TAP_Z enable			

Suppress Bit

Setting the suppress bit suppresses double tap detection if acceleration arouter than the value in TURESH. TAP is present between tars. See the Tan Detection section for more details.

TAP x Enable Bits

A setting of Lin the TAP, X mahls, TAP, X mahle, or TAP, Z enable bit enables x., y., or z-axis participation in tan detection. A settine of 0 excludes the selected axis from participation in

D7							DB
0	ACT_X source	ACT_Y source	ACT_Z source	Asleep	TAP_X source	TAP_Y SOURCE	TAP_Z source

These bits indicate the first axis involved in a tap or activity event. A setting of 1 corresponds to involvement in the event, and a setting of 0 corresponds to no involvement. When new data is available, these bits are not cleared but are overwritten by the new data. The ACT_TAP_STATUS register should be read before clearing the interrupt. Disabling an axis from participation clears the corresponding source bit when the pest activity or single tap/double tap event occurs.

Asleep Bit

A setting of 1 in the asleen hit indicates that the part is asleen and a setting of 0 indicates that the part is not asleep. This bit togales only if the desice is configured for auto sleep. See the AUTO SLEEP Bit section for more information on autosleep mode

Register 0x2C-BW_RATE (Regd/Write) D7 D6 D5 D4 D3 D2 D1 D0

0 0 0 LOW_POWER LOW POWER Bit

A setting of 0 in the LOW_POWER bit selects normal operation and a setting of 1 selects reduced power operation, which has someshot higher noise (see the Power Modes section for details) Rate Bits

These bits select the device bandwidth and output data rate (see Table 7 and Table 8 for details). The default value is 0x0.4, which translates to a 100 Hz output data rate. An output data rate should he selected that is appropriate for the communication protocol and frequency selected. Selecting too high of an output data rate with a low communication speed results in samples being discarded.

Register 0x2D-POWER_CTL (Read/Write) D7 D6 D5 D4 D3 D2 D1 D6

0 0 Link AUTO_SLEEP Measure Sleep Wakeup Link Bit

A setting of 1 in the link hit with both the activity and inactivity functions enabled delays the start of the activity function until inactivity is detected. After activity is detected, inactivity detection begins, preventing the detection of activity. This bit serially links the activity and inactivity functions. When this bit is set to 0. the inactivity and activity functions are concurrent. Additional information can be found in the Link Mode section

When clearing the link bit, it is recommended that the part be placed into standly mode and then set back to measurement mode with a subsequent write. This is done to ensure that the device is properly biased if sleep mode is manually disabled: otherwise, the first few samples of data after the link bit is cleared may have additional noise, especially if the device was asleep when the bit was cleared.

AUTO SLEEP BR

Other link hit is not a patting of 1 in the AUTO's SUEEP hit meldes the auto-sleep functionality. In this mode, the ADXL345 automatically switches to sleep mode if the inactivity function is enabled and inactivity is detected (that is, when acceleration is below the THRESH INACT value for at least the time indicated he TIME INACT). If activity is also analyzed the ADVI 345. automatically wakes up from deep after detecting activity and returns to operation at the output data rate set in the BW_RATE register. A setting of 0 in the AUTO, SLEEP bit disables automatic switching to sleep mode. See the description of the Sleep Bit in this section for more information on sleep mode.

If the link bit is not set, the AUTO_SLEEP feature is disabled and setting the AUTO_SUFEP bit does not have an impact on device operation. Refer to the Link Bit section or the Link Mode section for more information on utilization of the link feature.

When clearing the AUTO: SI FEP bit, it is recommended that the part be placed into standby mode and then set back to measurement mode with a subsequent write. This is done to ensure that the device is properly biased if sleep mode is manually disabled: otherwise, the first frae samples of data after the AUTO, SLEEP, bit is cleared may have additional noise, especially if the device yess asleen when the hit year cleared

Measure Bit

A setting of 0 in the measure bit places the part into standby mode, and a setting of 1 places the part into measurement mode. The ADXL345 powers up in standby mode with minimum power consumption.

Share Bit

A setting of 0 in the sleep bit puts the part into the normal mode of operation, and a setting of 1 places the part into sleep mode. Sleep mode suppresses DATA_READY, stops transmission of data to FIFO, and switches the sampling rate to one specified by the wakeup bits. In sleep mode, only the activity function can be used. When the DATA_READY interrunt is suppressed, the output data registers (Register 0x32 to Register 0x37) are still undated at the sampling rate set by the wakeup bits (D1:D0).

When clearing the shoes hit, it is recommended that the part he placed into standby mode and then set back to measurement mode with a subsequent write. This is done to ensure that the device is properly biased if sleep mode is manually disabled. otheracise, the first first samples of data after the sleep hit is cleared may have additional noise, carecially if the device was schem when the hit year cleaned

Weberry Bits

These bits control the frequency of readings in sleep mode as described in Table 20.

able 2	0. Frequency of	Readings in Sleep Mode
	Setting	

D1	DO	Frequency (Hz)
0	0	8
0	1	4
1	0	2
1	1	1

Register 0x2E—INT_ENABLE (Read/Write)

D7		DS	D4
DATA_READY		DOUBLE_TAP	Activity
D3	D2	D1	D0
Inactivity	FREE_FALL	Watermark	Overrun

Setting bits in this register to a value of 1 enables their respective functions to generate interrupts, whereas a value of 0 prevents the functions from generating interrupts. The DATA_READY watermark, and overrun bits enable only the interrupt output the functions are shows enabled. It is recommended that internents be configured before enabling their outputs.

Register 0x2F-INT MAP (R/W)

D7 DATA_READY	D6 SINGLE_TAP	DS DOUBLE_TAP	D4 Activity
D3	D2 FREE FALL	D1 Watermark	D0
Inactivity	FREE_FALL	Watermark	Overrun

Any bits set to 0 in this register send their respective interrupts to the INT1 pin, whereas bits set to 1 send their respective interrupts to the INT2 pin. All selected interrupts for a sizen pin are Offed.

Resister 0x20 INT SOURCE (Read Oak)

D7 DATA_READY	D6	DS	D4
DATA_READY	SINGLE_TAP	DOUBLE_TAP	Activity
D3 Inactivity	D2	D1	D0
Inactivity	FREE_FALL	Watermark	Overrun

Bits set to 1 in this register indicate that their respective functions have triggered an event, whereas a value of 0 indicates that the corresponding count has not occurred. The DATA_READY watermark, and overrun bits are always set if the corresponding events occur, regardless of the INT_ENABLE register settings, and are cleared by reading data from the DATAX, DATAY, and DATAZ registers. The DATA_READY and watermark bits may require multiple reads, as indicated in the FIFO mode descriptions in the UEO section. Other hits and the common ding interments are cleared by reading the INT_SOURCE register.

Register 0x31-DATA FORMAT (Read/Write) D6 D5 D4 D3 D2

The DATA FORMAT register controls the presentation of data to Resistor (hr?? through Resistor (hr?? All data excent that for the ±16 e range, must be clipped to moid rollower.

SELF TEST Bit

A setting of 1 in the SELF. TEST bit applies a self-test force to the sensor, causing a shift in the output data. A value of 0 disables

CDI Die

A value of 1 in the SPI bit sets the device to 3 seize SPI mode. and a value of 0 sets the device to 4-wire SPI mode

Analog Devices ADV7180 Video Decoder

Add	ress		r	1		r	1	1		1		Reset	1
Dec	Hex	Register Name	ĸw	7	6	5	4	3	2	1	•	Value	(Hex)
0	00	Input Control	ίκων	VID_SEL[3]	VID_SEL[2]	VID_SEL[1]	VID_SEL[0]	INSEL[3]	INSEL[2]	INSEL[1]	INSEL[0]	00000000	00
1	01	Video Selection	8W		ENHSPLL	BETACAM		ENVSPROC	SOPE			11001000	CB
3	03	Output Control	8W	VBI_EN	100	OF_SEL[3]	OF_SEL[2]	OF_SEL[1]	OF_SEL[0]		SD_DUP_AV	00001100	0C
4	04	Extended Output Control	8W	8T.656-4				TIM_OE	BL_C_VBI	EN_SFL_PIN	Range	01xx0101	45
5	05	Reserved											
6	06	Reserved											
7	07	Autodetect Enable	8W	AD_SEC525_EN	AD_SECAM_EN	AD_N443_EN	AD_P60_EN	AD_PALN_EN	AD_PALM_EN	AD_NTSC_EN	AD_PAL_EN	01111111	ΤF
8	08	Contrast	8W	CON[7]	CON[6]	CON(5)	CON[4]	CON[3]	CON[2]	CON[1]	CON[0]	10000000	80
9	09	Reserved											
10	0A	Brightness	8W	BR1[7]	£191(d)	BRI[5]	880[4]	BRI[3]	BRI[2]	£R(1)	860[0]	00000000	00
11	0B	Hae	έw.	HUE[7]	HUE[6]	HUE(S)	HUE[4]	HUE[3]	HUE[2]	HUE[1]	HUE[0]	00000000	00
12	0C	Default Value Y	8W	DEF_Y[5]	DEF_Y[4]	DEF_Y[3]	DEF_Y[2]	DEF_Y[1]	DEF_Y[0]	DEF_VAL_ AUTO_EN	DEF_VAL_EN	00110110	36
13	0D	Default Value C	ŔW	DEF_C[7]	DEF_C[6]	DEF_C[5]	DEF_C[4]	DEF_C[3]	DEF_C[2]	DEF_C[1]	DEF_C[0]	01111100	π
14	0E	ADI Control 1	ŔW			SUB_USR_EN						00000000	00
15	OF	Power Management	ŔW	RESET		PWRDWN			PD8P			00000000	00
16	10	Status 1	ĸ	COL_KILL	AD_RESULT[2]	AD_RESULT[1]	AD_RESULT[0]	FOLLOW_PW	FSC_LOCK	LOST_LOCK	IN_LOCK	-	-
17	11	IDENT	Ŕ	IDENT[7]	IDENT(6)	IDENT[5]	IDENT[4]	IDENT[3]	IDENT[2]	IDENT[1]	IDENT[0]	00011100	1C
18	12	Status 2	Ŕ			FSC NSTD	LL NSTD	MV AGC DET	MV PS DET	MVCST3	MVCS DET	-	-
19	13	Status 3	Ŕ.	PAL_SW_LOCK	INTERLACED	STD FLD LEN	FREE_FUN_ACT	Reserved	SD_OP_SOHz	GEND	INST_HLOCK	+	-
20	14	Analog Clamp Control	ŔW				CCLEN					00010010	12
21	15	Digital Clamp Control 1	ŔW		OCT[1]	DCT[0]	DCFE					0000xxx	00
22	16	Reserved	Г										1
23	17	Shaping Filter Control 1	ŔW	CSFM[2]	CSFM[1]	CSFM[0]	YSFM(4)	YSFM(3)	YSFM[2]	YSFM[1]	YSEM(0)	00000001	01
24	18	Shaping Filter Control 2	ŔW	WISEMOVR			WYSEM[4]	WYSFM[3]	WYSFM[2]	WYSFM(1)	WYSENEO	10010011	93
25	19	Comb Filter Control	ŔW					NSFSEL[1]	NSFSEL(0)	PSFSEL[1]	PSFSEL[0]	11110001	Ē1
29	1D	ADI Control 2	ŔW	TRI_LLC	EN2EXTAL							01000xxx	40
39	27	Pixel Delay Control	8W	SWPC	AUTO_PDC_EN	CTA[2]	CTA[1]	CTA(0)		LTA[1]	LTA(0)	01011000	58
43	28	Misc Gain Control	ŔW		CKE						PW_UPD	11100001	Ē1
44	2C	AGC Mode Control	ŔW		LAGC[2]	LAGC[1]	LAGC[0]			CAGC[1]	CAGC[0]	10101110	AE
45	2D	Chroma Gain Control 1	w	CAGT[1]	CAGT[0]			CMG[11]	CMG[10]	CMG(9)	CMG(8)	11110100	F4
45	2D	Chroma Gain 1	Ŕ.					CG[11]	CG[10]	CG(9)	CGIN	-	
46	2E	Chroma Gain Control 2	w	CMG[7]	CMG(6)	CMG[5]	CMS[4]	CMG[3]	CMG[2]	CMG(1)	CMG(0)	00000000	00
46	2E	Chroma Gain 2	R	CG[7]	CG(6)	CG[5]	CG[4]	CG[3]	CG[2]	CG(1)	CGER	-	
47	2F	Luma Gain Control 1	w	LAGT[1]	LAGT(0)			LMG[11]	LMG[10]	LMG[9]	LMG08	11113000X	FO
47	2F	Luma Gain 1	Ŕ.					LG[11]	LG[10]	LG[9]	LG(8)		-
48	30	Luma Gain Control 2	w	LMG[7]	LMG(6)	LMGEST	LMG(4)	LMG[3]	LMG[2]	LMG[1]	LMG(0)	100003001	00
48	30	Luma Gain 2	Ŕ.	LGE71	LG(6)	LGES	LGE4	LG[3]	LG[2]	LG[1]	LG(0)		
49	31	VS/Field Control 1	8W				NEWAVMODE	HVSTIM				00010010	12
50	32	VS/Field Control 2	8W	VSEHO	VSBHE							01000001	41
51	33	VS/Field Control 3	8W	VSEHO	VSEHE							10000100	84
52	34	HS Position Control 1	8W		HSB(10)	H58(9)	HSB[8]		HSE(10)	HSE[9]	HSE(8)	00000000	00
53	35	HS Position Control 2	8W	H58[7]	HSB(6)	H58[5]	H5854]	H\$8(3)	H58[2]	H58(1)	HSBID	00000010	02
54	36	HS Position Control 3	8W	HSE[7]	HSEIdi	HSE(5)	HSE[4]	HSEIN	HSE[2]	HSE[1]	HSEI01	00000000	00
55	37	Polarity	RW	PHS		PV5		PF			PCLK	00000001	01
56	38	NTSC Comb Control	RW	CTAPSN[1]	CTAP5N[0]	CCMN[2]	CCMN[1]	CCMN(0)	YCMN(2)	YCMN[1]	YCMN(0)	10000000	80
57	39	PAL Comb Control	RW	CTAPSP(1)	CTAPSP[0]	CCMP[2]	CCMP[1]	CCMP(0)	YCMP[2]	YCMP[1]	YCMP(0)	11000000	CO
58	3A	ADC Control	RW					PWRDWN_MUX_0	PWRDWN_MUX_1	PWRDWN_MUX_2	MUX PDN override	00010000	10
61	3D	Manual Window Control	RW		CKILLTHR[2]	CKILLTHR[1]	COLLTHR[0]					01110010	82
65	41	Resample Control	8W		SFL_IN/			1				00000001	01
72	48	Gernstar Control 1	8W	GDECEL[15]	GDECEL[14]	GDECEL[13]	GDECEL[12]	GDECEL[11]	GDECEL[10]	GDECEL(9)	GDECEL[8]	000000000	00
73	49	Gernstar Control 2	8W	GDECEL[7]	GDECEL(6)	GDECEL[5]	GDECEL[4]	GDECEL[3]	GDECEL[2]	GDECEL[1]	GDECEL[0]	00000000	00
74	4A	Gernstar Control 3	kw	GDECOL[15]	GDECOL[14]	GDECOL[13]	GDECOL[12]	GDECOL[11]	GDECOL[10]	GDECOL[9]	GDECOL(8)	00000000	00
75	48	Gernstar Control 4	8W	GDECOL[7]	GDECOL[6]	GDECOL[5]	GDECOL[4]	GDECOL[3]	GDECOL[2]	GDECOL[1]	GDECOL(0)	00000000	00
76	4C	Gernstar Control 5	8W					GDE_SEL_OLD_ADF			GDECAD	100000000	00
77	4D	CTI DNR Control 1	8W			DNR_EN		CTL_AB[1]	CTI_AB[0]	CTL_AB_EN	CTI_EN	11101111	EF
78	4E	CTIDNR Control 2	8W	CTL_C_TH[7]	CTI_C_TH[6]	CTI_C_TH[5]	CTI_C_TH(4)	CTI_C_TH[3]	CTI_C_TH[2]	CTI_C_TH[1]	CTI_C_TH(0)	00001000	08
80	50	CTIDNR Control 4	8W	DNR_TH[7]	DNR_TH[6]	DNR_TH[5]	DNR THE	DNR_TH[3]	DNR_TH[2]	DNR_TH[1]	DNR_TH(0)	00001000	08
81	51	Lock Count	8W	FSCLE	SRLS	COL[2]	COL[1]	COL[0]	CILI2	CIL[1]	CILIO	00100100	24
88	58	VS/FIELD Pin Control	RW						ADC sampling control		VS/FIELD	00000000	00
82	52	General-Purpose Outputs ²	8W				GPO_Enable	GPO[3]	GPO[2]	GPO[1]	GPO(0)	00000000	00
143	59 8F	General-Purpose Outputs* Free-Run Line Length 1	WW W		LLC_PAD_SEL[2]	LLC_PAD_	GPO_bnable LLC_PAD_	arajaj	GPO[2]	uno[1]	anojoj	000000000	00
	1. C	r new man und Length 1	Ľ.			SEL[1]	SELIO	1		1			~
153	99	CCAP 1	R.	CCAP1[7]	CCAP1[6]	CCAP1[5]	CCAP1[4]	CCAP1[3]	CCAP1[2]	CCAP1[1]	CCAP1[0]	-	-

Addres	15											Reset	
Dec He	ex	Register Name	RW	7	6	5	4	3	2	1	0	Value	Hex
155 96	ŝ	Letterbax 1	Ŕ	LB_LCT[7]	LB_LCT[6]	LB_LCT[5]	LB_LCT[4]	LB_LCT[3]	LB_LCT[2]	LB_LCT[1]	LB_LCT[0]	-	-
156 90	-	Letterbax 2	Ŕ	LB_LCM[7]	LB_LCM[6]	LB_LCM[5]	LB_LCM[4]	LB_LCM[3]	LB_LCM[2]	LB_LCN[1]	LB_LCM[0]	-	-
157 90	>	Letterbax 3	Ŕ	LB_LCB[7]	LB_LCB[6]	LB_LCB[5]	LB_LCB[4]	LB_LCB[3]	LB_LCB[2]	LB_LCB[1]	LB_LCB(0)	-	-
178 83	2	CNC Enable	W						CRC_ENABLE			00011100	1C
195 C3	ŝ	ADC Switch 1	RW	Reserved	ML0(1[2]	MUX1[1]	MUDC1 [0]	Reserved	MUX0[2]	MLIX0[1]	MILOCO[0]	1000030000	00
196 C4	ι.	ADC Switch 2	RW	MAN_MUX_EN				Reserved	MUX2[2]	MLDQ[1]	MU0C2[0]	Genoceter	00
220 DI	C	Letterbax Control 1	RW				LB_TH[4]	LB_TH[3]	L8_TH[2]	L8_TH[1]	LB_TH[0]	10101100	AC
221 DI	D	Letterbax Control 2	ŔŴ	LB_SL[3]	LB_SL[2]	LB_SL[1]	LB_SL[0]	LB_EL[3]	LB_EL[2]	LB_EL[1]	LB_EL(0)	01001100	4C
222 Di	Ē	ST Noise Readback 1	Ŕ					ST_NOISE_VLD	ST_NOISE[10]	ST_NOISE[9]	ST_NOISE[8]	-	-
223 DI	F	ST Noise Readback 2	Ŕ	ST_NOISE[7]	ST_NOISE(6)	ST_NOISE[5]	ST_NOISE[4]	ST_NOISE[3]	ST_NCISE[2]	ST_NOISE[1]	ST_NOISE(0)	-	-
224 E0	5	Reserved											
225 E1	1	SD Offset Cb	RW	SD_OFF_CB[7]	SD_OFF_C8(6)	SD_OFF_CB[5]	SD_OFF_CB[4]	SD_OFF_CB[3]	SD_OFF_CB[2]	SD_OFF_C8[1]	SD_OFF_CB[0]	10000000	80
226 E2	2	SD Offset Cr	RW	SD_OFF_CR[7]	SD_OFF_CR(6)	SD_OFF_CR[5]	SD_OFF_CR[4]	SD_OFF_CR(3)	SD_OFF_CR[2]	SD_OFF_CR[1]	SD_OFF_CR[0]	10000000	80
227 E3	5	SD Saturation Cb		SD_SAT_CB[7]	SD_SAT_CB[6]	SD_SAT_CB[5]	SD_SAT_CB[4]	SD_SAT_CB[3]	SD_SAT_C8[2]	SD_SAT_CB[1]	SD_SAT_CB(0)	10000000	80
228 E4	5	SD Saturation Cr	8W	SD_SAT_CR[7]	SD_SAT_CR(6)	SD_SAT_CR[5]	SD_SAT_CR(4)	SD_SAT_CR[3]	SD_SAT_CR[2]	SD_SAT_CR[1]	SD_SAT_CR(0)	10000000	80
229 ES	5	NTSC V Bit Begin	itw.	NVBEGDELO	NVBEGDELE	NVBEGSIGN	NVBEG[4]	NVBEG[3]	NVBEG[2]	NVBEG(1)	NVBEG(0)	00100101	25
230 É6	5	NTSC V Bit End	itw	NVENDDELO	NVENDDELE	NVENDSIGN	NVEND[4]	NVEND[3]	NVEND[2]	NVEND(1)	NVEND[0]	00000100	04
231 E7	r	NTSC F Bit Toggle	RW	NFTOGDELO	NFTOGDELE	NFTOGSIGN	NFTOG[4]	NFTOG[3]	NFTOG[2]	NFTOG[1]	NFTOG(0)	01100011	63
232 E8	5	PAL V Bit Begin	RW	PVBEGDELO	PVBEGDELE	PVBEGSIGN	PVEEC(4)	PV8EG[3]	PV8EG[2]	PVBEG[1]	PVBEG(0)	01100101	65
233 ÉS	2	PAL V Bit End	8W	PVENDDELO	PVENDOELE	PVENDSIGN	PVEND(4)	PVEND[3]	PVEND[2]	PVEND[1]	PVEND(0)	00010100	14
234 E <i>F</i>	1	PAL F Bit Toggle	8W	PFTOGDELO	PFTOGDELE	PFTOGSIGN	PFTOG[4]	PFTOG(3)	PFTOG[2]	PFTOG[1]	PFTOG[0]	01100011	63
235 E8	5	Volank Control 1	itW.	NVBIOLCM[1]	NVBIOLON(0)	NVBIELCM[1]	NVBELCM[0]	PVBIOLCM[1]	PVBIOLCM[0]	PVBELCM[1]	PVBIELCM(0)	01010101	55
236 ÉC		Volank Control 2	itw	NVBIOCCM[1]	NVBIOCCM[0]	NVBIECCN[1]	NVBECCM(0)	PVBIOCCM[1]	PVBIOCCM[0]	PVBIECCM[1]	PVBIECCM[0]	01010101	55
143 F3	1	AFE_CONTROL 1	itw					AA_FILT MAN_OVR	AA_FILT_EN[2]	AA_FILT_EN[1]	AA_FET_EN(0)	00000000	00
244 F4	•	Drive Strength	RW			DR_STR[1]	DR_STR0(DR_STR_C[1]	DR_STR_C(0)	DR_STR_S[1]	DR_STR_S(0)	xx010101	15
48 F8	1	IF Comp Control	RW						FFILTSEL[2]	IFFILTSEL[1]	IFFETSEL[0]	00000000	00
49 FS	2	VS Mode Control	RW					VS_COAST_ MODE[1]	VS_COAST_ MODE(0)	EXTEND_VS_ MIN_FREQ	EXTEND_VS_ MAX_FREQ	00000011	03
51 FB	1	Peaking Control	RW	PEANING_ GAIN[7]	PEAKING_ GAIN[6]	PEANING_ GAIN(5)	PEAKING_ GAIN(4)	PEAKING_ GAIN[3]	PEAKING_ GAIN[2]	PEAKING_ GAIN(1)	PEAKING_ GAIN(0)	01000000	40
152 FC	1	Coring Threshold	itw	DNR_TH2[7]	DNR_TH2(6)	DNR_TH2[5]	DNR_TH2[4]	DNR_TH2[3]	ONR TH2[2]	DNR TH2[1]	DNR_TH2(0)	00000100	04

Fixed-function: The 7400 series

The 74181 4-bit ALU

The 74181 4-bit ALU

