
Tank Game Design

Zixiang Zheng zz2642 & Wenzhe He wh2443

1. Project Overview

We will be designing a classic 1985 tank game ‘Battle City’. Our goal is to imitate as much as possible,

to bring up the original taste of the game.

Fig.1 NES 1985 ‘Battle City’

The original tank game has 35 different stage, we will try to implement one stage and design another

one stage by our own. Fig.1 shows the stage 8 of the game. Because the game was firstly deployed on

NES. So, we will use joystick to control the game.

2. Game information.

Fig.2 General Sprite of the ‘Battle City’

Figure 2 shows the general sprite of the game. It is important to know that only have of the tank tiles

are actually used in the game.

(a) Color information

The total number of colors used in tank game is about 21. But it is important to notice that each tile

contains no more than 4 colors. Which means that each pixel can be storage in 2 bits. Then use a color

table to store the RBG information of the 21 different color.

(b) Map Information

There are 6 different blocks in the game. We will at least finish first 5 of them. We named them our own.

Each block 16*16 contains with four identical 8*8 basic block.

Table 1 Block Information

Image (8*8) Name Tank pass Bullet pass Note

 Blank Yes Yes

 Brick No No

 Stone No No Only level-4 player can break

 Grass Yes Yes
Tank and bullet will display

under it

 Water No Yes Water will display

 Ice Yes Yes Tank cannot stop immediately

(c) Tank information

As we mentioned, there are only limit tank used in the game. In this part we will list all of them. Each

tank used two images to display, this is because when tank is moving, the track is not move. As shown

in figure, the track of to tank is actually 1 pixel different, so when tank is moving, they are displayed

alternately.

Fig. 3 Two Image of tank moving upward

Now we will list all tank and their image used in this game.

(1) Player 1 Tank

Table 2 Player 1 tank information

Tank image

(16*16 pixel *8)
Feature Bullet Speed Bullet per round Note

 Level 1 Slow 1

 Level 2 Fast 1

 Level 3 Fast 2

 Level 4 Fast 2 Can destroy ‘Stone’

We call above tank color ‘Yellow’.

(2) Player 2 Tank

Table 3 Player 2 tank information

Tank image

(16*16 pixel *8)
Feature Bullet Speed Bullet per round Note

 Level 1 Slow 1

 Level 2 Fast 1

 Level 3 Fast 2

 Level 4 Fast 2 Can destroy ‘Stone’

We call above tank color ‘Green’.

(3) Enemy normal Tank

Table 4 Enemy normal tank information

Tank image

(16*16 pixel *8)
Feature Bullet Speed

Movement

Speed
Note

 Level 1 Slow Slow

 Level 2 Fast Fast

 Level 3 Fast Slow

 Level 4 Fast Red Need 4 bullet to destory

We call above color ‘White’.

The level-4 tank will first display in ‘Green-White color’. This means that it will swipe between ‘Green’

and ‘White’ so that it looks like ‘light green’ so that it will be different with player’s ‘Green’ tank. After

1 hit, it will change to ‘Yellow-White’, then it will change to ‘Green -Yellow’, then it will change to

‘White’. Then after another bullet, it will be destroyed.

(4) Emery Gadget tank

Fig.4 Gadget tank image

We called above color ‘red’.

Emery Gadget tank is display in ‘Red-white color’. When it is hit, the player bullet will deal same

damage then there will be a random Gadget display on map. The red color will disappear after the hit.

(d) Gadget Information

Although there are 7 icon of the Gadget, our team only know first 6 of them. So, we will at least finish

4 of them.

Table 5 Gadget information

Image (16*16) Name Function

 invincible Player tank become invincible for several second

 Freeze Emery tank will stop moving and shooting for several sec.

 Reinforce The bass wall will repair and become stone for several sec.

 Upgrade Upgrade player tank by one level.

 Nuke Destroy all existing tank

 Life Add one additional life

(e) Important Game logic

(1) Player can use arrow button to control the movement of tank and press ‘A’ to shoot.

(2) Brick wall will lose 8*16 pixel after player shoot. Brick wall will lose 4*16 after emery shoot.

(3) There are at most 4 emery tanks in the game. When the number is less than 4, it will appear in top

left, top middle, top right in order. The remain enemy tank of the stage will display on the top right of

the game.

(4) Player remain life will display on the middle right of the screen. If the life remain is 0 and tank is

destroyed, game over will appear on screen.

(5) Just to make it simple, all bullet can be destroyed by another bullet. All tank can deal damage to

another tank.

(6) If tank turn turned in the middle of 8 pixels, it will automatedly be adjust to fix point to avoid bug.

(7) The size of the battle filed is 208*208, the size of whole game is 256*224

3. Block diagram

Hardware

Software

VGA
Module

Audio
Module

Speaker

Avalon Bus
Interface

Joystick
Controller

Game Logic
Control

VGA
Monitor

VGA Signal
USB Signal

Game Logic
Signal

Audio Select
Signal

Sprite Signal

Sound
Signal

Fig.5 Block Diagram

4. Hardware Implementation.

(a) VGA Module

RAM IP Core

ROM Initiation file

Stage.v

Tank.v

Wall.v

Gadget.v

Score.v

Color.v

Tank.mif

Wall.mif

Gadget.mif

Score.mif

Color.mif

Main.sv

Avalon Bus

VGA D-Sub

VGA Monitor

ROM IP Core

Data

Address

16 bit writedata

Map Update

Map Information

R,G,B
H,V,Sync

Fig.6 VGA Module Block Diagram

Fig.6 is the block diagram for VGA part. We use ROM IP Core to store tile pixel and color map. And

we use RAM to store current Map wall information. At each cycle, software will only send updated wall

information instead of send whole map information. This can be seen as an ‘Differential Encoder’.

The different map information is store in software. When the stage starts, the software will send the

current entire stage map to the hardware. After the stage is running, it will only send data when some

wall are change. By doing this we can greatly reduce the data send at each time through Avalon interface.

The data of Avalon Bus will be shown in section 5.

When display each pixel, first check the register to find out the name of tile or sprite on this pixel. Then

check the ROM to find the pixel data, then check the ROM colormap to find the color of this pixel. Then

send the color to VGA D-sub to display on the monitor.

We will use the same technic in Lab3 to process the data. From the analysis of the game logic, we need

four layers to display the graphics.

Table 6 Layer of the game

Layer Name Description

1 Background background, wall, gadget, score

2 Tank player’s tank and enemy tank

(b) Audio Interface

On the DE1-SoC, there is a device called Wolfson WM8731 which has 2 24bits ADC, 2 24bits DAC

and a headphone amplifier and support 8-96 kHz sampling rates. The WM8731 is controlled via serial

𝐼2𝐶 bus, which is connected to HPS or Cyclone V SoC FPGA through an I2C multiplexer. The

connection of the circuit is shown as following.

Fig.7 Block Diagram Connection of circuit

Basically, we need two signal lines to control the WM8731. One is for 𝐼2𝐶 bus clock and another is for

data communication. To start the process, pulling down the data line and pulling high the clock line.

The first step is to send a device address through the data line. If R/W signal is sent, the master releases

the data line. If an I2C device receives its address, it pulls the data line LOW at the next clock cycle.

Then two bytes of data are sent. Finally, in order to put it into an end, pulling the clock line High, while

the data line is kept LOW.

As for our case, we assume that a sample rate of 40kHz is adequate, which means for one second there

are 40000 sample points. And one sample contains two bytes. Therefore, in the end for one second, we

need 80K Bytes. In our design, we have several sound in the game: 0.3s bullet sound,0.3s hit sound,

0.5s destroy sound, 0.5s upgrade sound, 0.3s tank moving sound, 1s game over sound. So, in total, we

need 2.9s sound requiring at most 232,000 Bytes space.

Fig.8 Audio Module Block Diagram

The whole structure and details are shown in Fig.8. The first columns are audio stored in on-chip Rom

IP Core，after converting original file to .mif file and finally to .v file. The main function tells the

tongen.v which audio to choose. Afterwards, what tonegen does is to pick the data from the Rom using

FIFO at a certain frequency and feed the data to WM8731. The WM8731 configuration can be

accomplished by Qsys built-in IP core to automatically configure the audio chip. The audio pill will

offer 12.88MHz driving clock.

(c)ROM Storage

We will store all used tile and sound information in FPGA Rom IP Core module. The IP Core can be

directly access in Main.sv without claim in top.v. And the length and size can be set arbitrarily.

Table 7 Rom Size Caculation

 Number Color Length each(bit) Total length (Byte)

Color 21 / 24 63 Byte

Tank 144 4
Pixel: 16*16*2

Color Map 4*8
9792 Byte

Block 8 4 Pixel: 16*16*2 544 Byte

Color Map 4*8

Explosion 3 4
Pixel: 16*16*2

Color Map 4*8
204 Byte

Number & Character

&Tank_count_icon
30 2 Each pixel 8*8 240 Byte

Base Icon 2 4
Pixel: 16*16*2

Color Map 4*8
136 Byte

Enemy show up tile 4 2 Pixel: 16*16 128 Byte

Destroy Score 5 2 Pixel: 16*16 160 Byte

Gadget 6 4
Pixel: 16*16*2

Color Map 4*8
408 Byte

Bullet 4 2 Pixel: 8*16 64 Byte

Total tile 11,739 Byte

Audio 232,000 Byte

Total 243,739 Byte

We need about 250kB to store the data we need, which is Ok for the FPGA. If there is no enough space,

we will tired to limit the music size.

5. Software Implementation

(a) Joystick Control

We will use Joystick to control the game. The Joystick we used is shown in Fig.9

Fig.9 INNEXT gamepad

The function of each button is list in Table 8.

Table 8 Button Function of Joystick

Button Function Button Function

Up Tank move up Start /

Down Tank move down Enter Pause and Confirm

Left Tank move left A Shoot & Select Stage

Right Tank move right B Select Stage

At each interrupt, the gamepad will send 8 bytes data to the master device through USB interface. The

data is shown in the following table.

(b) Avalon bus Data Table

This table specify the data than transfer from software to hardware at each software cycle. We use

‘iowrite16()’ to transfer.

Table 9 Avalon Bus Data Table

(b) Calculate Game logic

Software will compute the game logic and send the result to hardware. The game logic is described

previously. Software will calculate the position of tank and wall on the screen. It will also control the

show up of enemy tank and their movement. The software will also send correspond audio control signal

to hardware.

(c) Count Score

There will be a score board display after each stage. To show how much score the player scores this

stage and add up with the previous score.

6. Milestone Plan

Milestone 1:

Accomplishment using a joystick gamepad control a single tank move on the VGA Monitor. Add simple

song when triggered.

Milestone 2:

Add map display. Create a simple map. And add one enemy tank and one gadget. Achieve fire bullet

and destroy logic both for the tank and wall. Add more sound to the game.

Milestone 3:

Add more enemy tank and gadget. Also, create more maps. Add a score phase when players finish each

stage. And edit other details to make it more like the 1985 ‘Battle City’ tank game.

7. Reference:

1. Battle city online game

https://www.retrogames.cz/play_014-NES.php

2. Battle city General Sprite

http://mirrors.pdp-11.ru/_sprites/www.spriters-resource.com/nes/batcity/sheet/60016/index.html

3. DE1-SoC User Manal

4. ROM IP Core usage

https://blog.csdn.net/weixin_41445387/article/details/86835663

5. Audio CODEC

https://www.cl.cam.ac.uk/teaching/1617/ECAD+Arch/optional-tonegen.html

https://www.retrogames.cz/play_014-NES.php
http://mirrors.pdp-11.ru/_sprites/www.spriters-resource.com/nes/batcity/sheet/60016/index.html
https://blog.csdn.net/weixin_41445387/article/details/86835663
https://www.cl.cam.ac.uk/teaching/1617/ECAD+Arch/optional-tonegen.html

