

Peter Mansour (phm2122)
Shabhari Saravanan(ss5913)
Pratyush Agrawal(pa2562)

Aaron Pickard(ajp2235)

Fig 1. Software & Hardware Interface

Display:
Background:

We will have 3 background layers
Layer 1* (back): black background with stars
Layer 2*: image of trees that is 2x or 3x the width of the screen
Layer 3 (front): obstacle sprites generated by converting .jpg or .png using matlab to .mif and then to .v

files using qsys.
*Using python’s PIL library, we will generate 3D numpy matrices for layers 1 and 2 where length and
width correspond to x and y dimensions of the screen and the 3rd dimension corresponds to the R, G, and B
layers of the pixel.

Audio:
convert the audio files to .v files, then use CODEC WM8731 to output the sounds to the speaker after
configuring it using I2C multiplexer. We will trigger the audio signals by writing to a register in
/dev/vga_ball using ioctl
Sounds:

Shooting
Explosion

Sprites:

Player

Obstacles

Spaceship

Stars

Bullet (If there is sufficient memory; we can set pixel colors instead)
*** Instead of explosion sprite, we will make player and spaceship blink when destroyed

Registers in vga_ball.v:

3 registers for each pixel in the background storing R, G, and B values obtained from the software side.
2 location registers for the player
2 location registers per obstacle
2 location registers per spaceship
2 location registers for bullet
Register for triggering each audio

Communication with JoyStick:

We will be using the usb driver used for connecting the keyboard or SDL JoyStick library.

Game Logic:

Thread 1 (background layer 2):
Shift starting column left to right by 1 every couple of seconds to create background moving effect
Iterate through the 3d matrix storing background pixels’ colors from start column to column before
it and write to corresponding registers on hardware side

Thread 2 (obstacles & spaceships):

Always start at the right-hand side of the screen and move to the left at a constant speed
The time between spawning obstacles should be random

Main Thread (Player):
Spawns 3 static spaceships at the beginning of the game
Once the player presses “Up Arrow” Key, the player’s position is shifted up and the location on
screen is updated
Check if the player hit an obstacle; trigger explosion sound and sprite accordingly by writing to
appropriate register using ioctl
Gameover if all 3 spaceships are destroyed

Thread 4 (Bullet):
Limit number of bullets fired at the same time to 1
The position of the bullet is updated every couple of seconds
Check if bullet exited the screen or hit a spaceship
Trigger sound effects and the blink spaceship sprite if bullet collided with it

Questions:

How do we manage/order multiple layers on the hardware side to get the depth effect?

