Parallel Functional Programming [COMS 4995-003]: Project Report

Parallelizing a Simple Genetic Algorithm: Robbie the Robot

The purpose of my project was to implement and parallelize a simple genetic algorithm
which searches for strategies for exploring a 2-d space in search of objects based on local
information. For the anthropomorphization of this task I refer the reader to my proposal. I
will begin with the concepts in the first code listing (Robbie.hs) which give the primitives
necessary to understand the algorithm constructed in the second code listing.

The namesake of this project, Robbie, requires three data structures: a 2-d array, a place
to store his position and level of achieved reward, and a genome mapping states to actions. I
chose to represent these things (encapsulated in the type Sim) with nested MArray’s, a non-
nested MArray, and an IntMap Label where Label is an enum which is in all cases directly
mapped to the functions its enumerations represent. This is necessary for creating the
practically required reverse mapping (we cannot have a Map (Sim -> I0 Sim) Int without
the intermediate enum because there is at least no obvious way for types Sim -> I0 Sim to
be Ord’ered).

The important capabilities provided by Robbie.hs for these data structures are the
ability to create randomly initialized Genome’s; wrap Genome’s in fresh, randomly generated
RobbieWorld’s and RobbieState’s; advance these simulations and extract scores from them;
and mutate and crossover Genome’s between generations. These behaviors are represented in
obvious enough ways by the exports of the Robbie module. The most important fact about
its internals has to do with the choice to use arrays. Arrays in Haskell are a complicated
business; I wanted to follow through on the most obvious way to make a 2-d or 1-d array
without using unsafe operations as would have been necessary with the vector package—as
far as I can tell. the array packages offers to forms of safety for MArray’s: through the I0
monad and the ST monad. The greatest benefit of the ST monad is that it is escapable, as
can be seen from the signature of the runST(U)Array functions found in Data.Array.ST.
However, there is no clear point in my program where it is possible to leave arrays to be
frozen and never thawed again, and Data.Array.ST offered no guidance—nor did any of the
obvious places to look for Haskell instruction—on how, safely, to do this. It was not clear
to me that there was in fact, a way, and escaping a monad once was not sufficient for my
algorithm’s purposes. Being familiar with the I0 monad (and it not requiring the trickery of
an uninitialized type parameter that can only appear in function signatures), I switched to
using I0Array’s and I0UArray’s. The pervasiveness of the I0 monad in the Robbie module
was somewhat convenient in the end, as it made random number generation possible from
each of the locations that needed it (rather than splitting an extensive tree of generators at
the root of the program). This choice made no difference to the sequential implementation
of the algorithm in Main.hs, but it would be very consequential for the parallel version.

First let us briefly address what is implemented in Main.hs. The section labeled ” Main
and Helpers” is command line argument pre-processing and a single core function which
unfortunately could not in any way be parallelized: the initialization of the Genomes (the
type checker did not agree with my attempt to write any combinators additional to those in
Control.Monad.Par.Combinator). The core of the algorithm is in the functions evolveS
and evolveP. Two small monadic combinators are very helpful to understand in reading this
code, which I called iterateNM(1/2/3) (almost every permutation of the arguments was con-
venient at some point). iterateNM(1/2/3) simple does what Control.Monad.Loop.Iterate

Eli Whitehouse: ebw2143 December 18, 2019

Parallel Functional Programming [COMS 4995-003]: Project Report

does but for a finite number of steps; it concatenates the execution of N monadic actions
end-to-end; it is a sure sign of the non-parallelizable components of our algorithm! Both
evolveS and evolveP begin with a core loop that runs fresh simulators around each Genome
for nSteps iterations, sampleSize times. Following some logging, rank selection is used to
repopulate. As an aside, rank selection was neatly reimplemented here (with more than
passing knowledge of the random-fu library I surely could have used a Categorical distri-
bution to do the same) by selecting uniformly from an array of numbers which, modulo a
certain number, represent each genome with the multiplicity of their rank. A mutation oper-
ation and a pairwise crossover operation are then performed on each genome and on length
genomes ‘quot‘ 2 pairs of genomes, respectively. Both evolveS and evolveP return a now
population of genomes (or the current one, if it is presently the last iteration) along with a
mock-stateful index.

The reason that the creep of the I0 monad from the previous module was worth noting is
that it severely limited the parallelism option available to the main function. To my chagrin,
it entirely ruled out the deterministic parallelism that we discussed in class. To understand
why exactly, we could look at the type of the function that seems to be our closest enabler:

withStrategyIO :: Strategy a -> a -> I0 a .

It would seem that given that the most important functions in our program are something
like
act :: Sim -> I0 Sim

or
mutateGenome :: Genome -> I0 Genome

that we could make this work. Why can we not do some kind of parMap as offered by subli-
braries of Control.Parallel.Strategies over the [Sim] or [Genome] types that occur at
all the most expensive steps of our program? The reason is that what we really need is not
just a parallel map, but a parallel mapM. While it is simple enough to parMap a function such
as act to produce [I0 Sim] or [I0 Genome], withStrategyIO or usingIO allow us to paral-
lelize the reduction to normal form of the type within the I0 monad, which is entirely sequen-
tiall We really want to parallelize the bind operation, which Control.Parallel.Strategies
offers us no way to do; there is nothing that helps us with the transformation from [I0 a] ->
I0 [a]. The Par monad as such does not help us here either; but Control.Monad.Par.I0
does offer an I0 transformer monad applied to Par, whose crucial capability is encapsulated
in the combination of runParI0 :: ParI0 a -> I0 aand the associated MonadIO instance
providing 1iftI0 :: I0 a -> ParI0 a. With a bidirectional translation between monads
available to us, the parMapM operation offered by both the Par and ParI0 monads can be
grafted onto all of the obvious places by composing any mapping function with 1iftI0 and
composing the output of the map itself with runParIQ. In our case, the non-determinism
this introduces is not a problem since we are guaranteed that no dependence exists between
Genomes; at most, there is a dependence between two Genomes which are being recombined,
in which case the pair is the atomic unit.

Unfortunately, the parallel performance comparison was underwhelming. As a mixed
Windows/Linux user I encountered insurmountable difficulties attempting to view thread-
scope evaluations, so the best data I had are anecdote and the short reports emitted by the

Eli Whitehouse: ebw2143 December 18, 2019

Parallel Functional Programming [COMS 4995-003]: Project Report

program itself such as the following on two runs with identical settings, the first with the
--par flag and the second without.

Listing 1: compiled with stack ghc -- -02 -Wall src/Robbie.hs app/Main.hs
-threaded -rtsopts -eventlog:

bash\$./Main 100 10 20 5 0.5 0.001 0.8 1 log.txt —par
+RTS —N8 —s —1s —RTS
464,222,320 bytes allocated in the heap
16,158,472 bytes copied during GC
1,163,408 bytes maximum residency (6 sample(s))
122,736 bytes maximum slop
1 MB total memory in use (0 MB lost due to fragmentation)

Tot time (elapsed) Avg pause
Max pause

Gen 0 71 colls 71 par 0.328s 0.055s 0.0008s
0.0060s

Gen 1 6 colls , 5 par 0.078s 0.008s 0.0013s
0.0030s

Parallel GC work balance: 34.93\% (serial 0\%, perfect 100\%)
TASKS: 18 (1 bound, 17 peak workers (17 total), using —N8)
SPARKS: 0(0 converted, 0 overflowed, 0 dud, 0 GC'd, 0 fizzled)

INIT time 0.000s
MUT time 7.734s
GC time 0.406s
EXIT time 0.000s
Total time 8.141s

0.004s elapsed)
8.409s elapsed)
0.063s elapsed)
0.009s elapsed)
8.485s elapsed)

P P

Alloc rate 60,020,663 bytes per MUI second
Productivity 95.0\% of total user, 99.1\% of total elapsed

Listing 2: compiled with stack ghc -- -02 -Wall src/Robbie.hs app/Main.hs
-threaded -rtsopts -eventlog:
bash\$./Main 100 10 20 5 0.5 0.001 0.8 1 log.txt +RTS —
N8 —s —1s —RTS

371,853,112 bytes allocated in the heap

33,945,088 bytes copied during GC

1,556,792 bytes maximum residency (13 sample(s))
495,304 bytes maximum slop
1 MB total memory in use (0 MB lost due to fragmentation)

Eli Whitehouse: ebw2143 December 18, 2019

0O Utk WN

Parallel Functional Programming [COMS 4995-003]: Project Report

Tot time (elapsed) Avg pause
Max pause

Gen 0 345 colls , 345 par 0.250s 0.051s 0.0001s
0.0013s

Gen 1 13 colls , 12 par 0.000s 0.012s 0.0009s
0.0025s

Parallel GC work balance: 29.00\% (serial 0\%, perfect 100\%)
TASKS: 18 (1 bound, 17 peak workers (17 total), using —N8)
SPARKS: 0(0 converted, 0 overflowed, 0 dud, 0 GC'd, 0 fizzled)

INIT time 0.000s
MUT time 0.406s
GC time 0.250s
EXIT time 0.000s
Total time 0.656s

0.013s elapsed)
0.244s elapsed)
0.063s elapsed)
0.002s elapsed)
0.322s elapsed)

P P

Alloc rate 915,330,737 bytes per MUTI second

Productivity 61.9\% of total user, 75.9\% of total elapsed

It is thoroughly puzzling to me why the opaque facilities of the ParI0 monad did not do
the program any service here. It appears that however poorly-grained the load balancing
may be (Control.Monad.Par.Combinators does not provide a lot of chunking faculty that
I understood how to use) there simply was no forking of tasks beyond one processor, and
no sparks were created even though threading is enabled and all cores were made available.
Sometimes when directly using stack run, it appears that the parallelized version completes
faster, though this is very hard to measure with the overhead tasks building seems to incur,
but neither the messages shown above nor the eventlog appear in any place I can locate.
While ultimately as far as coding style is concerned, the algorithm was parallelizable in a
very modular way, it appears to have failed to generate any benefit in this case, largely due
to the restrictions of such pervasive work in the I0 monad, out of necessity.

Listing 3: Robbie.hs (datastructures and transformations)

module Robbie (
Sim

, Genome

, mkSimWithGenome

, mkGenome

, act

, crossGenomes

, mutateGenome

, readScore

, ratioFromFloat
) where

Eli Whitehouse: ebw2143 December 18, 2019

Parallel Functional Programming [COMS 4995-003]

: Project Report

{,
-}

import System.Random(randomRs, randomR,

getStdRandom, randomRIO,

newStdGen)
import Data.Array.MArray(readArray, writeArray,

newArray_, newListArray)

import Data.Ratio(approxRational, numerator, denominator)
import Control.Monad(guard, forM.)
import Data.Maybe(catMaybes, fromJust)
import Data.List(foldl’)

function imports:

type imports:

import Data.Array.IO(IOUArray, IOArray)
import Data.Word(Word8)

import Data.IntMap. Strict (IntMap)
import Data.Map(Map)

import Control.DeepSeq(NFData(..))

qualified imports:

import qualified Data.IntMap as IM
import qualified Data.Map as M
import qualified Data.IntSet as IS

{— Types, Instances, Type Synonyms —}

data Sim = Wrap RobbieWorld Genome RobbieState
data Label = MvRand

| North

| South

| East

| West

| Stay

| Collect
deriving (Eq, Ord, Show)

instance NFData Label where

rnf a = a ‘seq‘ ()

instance NFData Sim where
rnf (Wrap rw gnm rs) = rnf gnm ‘seq‘ rw ‘seq‘ rs ‘seq‘ ()

type Action = (Sim —> IO Sim)

type RobbieWorld = IOArray Int (IOUArray Int Word8)
type Genome = IntMap Label

type RobbieState = IOUArray Word8 Int

{— Constants —}

mistakePenalty :: Int
mistakePenalty = 5

rewardCollect :: Int
rewardCollect = 1
globalEps :: (RealFrac c) => ¢

globalEps = 0.001

Eli Whitehouse: ebw2143

December 18, 2019

Parallel Functional Programming [COMS 4995-003]: Project Report

82

83 labels :: [Label]

84 labels = [MvRand, North, South, East, West, Stay, Collect]
85

86 actions :: [Action]

87 actions = [mvRand, north, south, east, west, stay, collect]
88

89 hashes :: [Int]

90 hashes = do

91 let vs = [0..2]

92 n <— vs

93 s <— vs

94 e <— vs

95 w <— Vs

96 h <— vs

97 guard (h /= 0)

98 guard ((length $ filter (==0) [n, s, e, w, h]) < 3)
99 return $§ hashLoc h s n e w

101 actMap :: Map Label Action
102 actMap = M. fromList $ zip labels actions

104 labelMap :: IntMap Label
105 labelMap = IM.fromList $ zip [1..7] labels

107 rLabelMap :: Map Label Int
108 rLabelMap = M. fromList $ zip labels [1..7]

109

110

111 {— Ewolution —}

112

113 mutateGenome :: (RealFrac c) => ¢ —> Genome —> IO Genome

114 mutateGenome frac gnm = do

115 let size = IM.size gnm

116 (nm, dnm) = ratioFromFloat frac

117

118 rs <— sequence $ replicate size $ randomRIO (1,dnm)

119 g <— newStdGen

120

121 let keys = map snd $ filter dropRatio $ zip rs $ IM.keys gnm
122 dropRatio (r,-) = if r > nm then False else True

123 vs = noNothingLkup rLabelMap M.lookup $ noNothingLkup gnm IM.lookup keys
124 mutns = mapMutants vs $ randomRs (1,7) g

125 newIMap = foldl’ mdf gnm $ zip keys $ noNothingLkup labelMap IM.lookup mutns
126

127 return newlIMap

128

129 mapMutants :: (Eq a) = [a] —> [a] —> [a]

130 mapMutants e@(b:bs) (c:cs) | ¢ /= b = ¢ : mapMutants bs cs
131 | otherwise = mapMutants e cs

132 mapMutants [] - = []

133 mapMutants - [] = []

134

135 mdf :: Genome —> (Int, Label) —> Genome

136 mdf gnm (k,a) = IM.update (\- —> Just a) k gnm

137

138 crossGenomes :: Genome —> Genome —> IO (Genome, Genome)

139 crossGenomes gnmA gnmB = do

140 let n = IM. size gnmA

141 r <— randomRIO (1, n — 1)

142 let part = IS.fromAscList $ take r $ IM.keys gnmA

143 (btmA, topA) = IM.partitionWithKey (\k - —> IS.member k part) gnmA
144 (btmB, topB) = IM.partitionWithKey (\k - —> IS.member k part) gnmB
145 return (btmA ‘IM.union‘ topB, btmB ‘IM.union‘ topA)

146

147

148 {— Stepping Simulations Forward —}

149

Eli Whitehouse: ebw2143 December 18, 2019

150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217

Parallel Functional Programming [COMS 4995-003]

: Project Report

act :: Action
act sim@(Wrap rw gnm rs) = do
sur <— sense rw rs
let step = fromJust $ M.lookup lbl actMap
1bl = fromJust $ IM.lookup sur gnm
step sim

sense :: RobbieWorld —> RobbieState —> IO Int
sense rw rs = do
x <— readArray rs 1
y <— readArray rs 2
hashLoc <$> access2d (x,y) rw
<> access2d (x+1, y) rw

<#> access2d (x—1, y) rw
<> access2d (x, y+1) rw
<#> access2d (x, y—1) rw
access2d :: (Int, Int) —> RobbieWorld —> IO Word8

access2d (x, y) rw = do
row <— readArray rw x
readArray row y

mvRand :: Action
mvRand sim = do
r <— getStdRandom $ randomR (2,5)
let go = fromJust $ M.lookup 1bl actMap
Ibl = fromJust $ IM.lookup r labelMap
go sim

collect :: Action
collect sim@(Wrap rw gnm rs) = do
x <— readArray rs 1
y <— readArray rs 2
h <— access2d (x,y) rw
if h /= 2
then return sim
else do
row <— readArray rw x
writeArray row y 1
score <— readArray rs 0
writeArray rs 0 $ score + rewardCollect
return $ Wrap rw gnm rs

stay :: Action

stay sim = return sim

north :: Action

north = move (1,0)

south :: Action

south = move (—1,0)

east :: Action

east = move (0,1)

west :: Action

west = move (0,—1)

move :: (Int, Int) —> Sim —> IO Sim

move (i,j) (Wrap rw gnm rs) = do
let idx = if i = 0 then 2 else 1
ent <— fetchRel (i,j) rs rw
if ent /= 0

then do cur <— readArray rs idx
writeArray rs idx $ cur + i + j
return $§ Wrap rw gnm rs
else do cur <— readArray rs 0
writeArray rs 0 $ cur — mistakePenalty

Eli Whitehouse: ebw2143

December 18, 2019

Parallel Functional Programming [COMS 4995-003]: Project Report

218 return § Wrap rw gnm rs

219

220 fetchRel :: (Int, Int) —> RobbieState —> RobbieWorld —> IO Word8
221 fetchRel (i, j) rs rw = do

222 x <— readArray rs 1

223 y <— readArray rs 2

224 access2d (x + i, y + j) rw

225

226

227 {— ”Constructors” —}

228

229 mkSimWithGenome :: Int —> Float —> Genome —> IO Sim

230 mkSimWithGenome n frac gnm = do
231 rw <— makeRW n frac

232 rs <— mkRobbieState n

233 return $ Wrap rw gnm rs

234

235 mkRobbieState :: Int —> IO RobbieState

236 mkRobbieState n = do

237 rs <— sequence $ replicate 2 $ randomRIO (1,n)
238 let es =0 : (rs ++ [0])

239 newListArray (0,2) es

240

241 mkGenome :: IO Genome

242 mkGenome = do

243 rs <— sequence $ replicate (length hashes) $ randomRIO (1,7)
244 let gnm = IM. fromList $ zip hashes 1bls

245 Ibls = noNothingLkup labelMap IM.lookup rs
246 return gnm
247

248 makeRW :: (RealFrac c¢) => Int —> ¢ —> IO RobbieWorld
249 makeRW n frac = do

250 outer <— newArray_ (0,n+1)

251 forM_ [0..n+1] $ \i — do

252 row <— newArray_ (0,n+1)

253 writeArray outer i row

254 if i=—0] i =mn+1

255 then do

256 forM_. [0..n+1] $ \j —> writeArray row j 0
257 else do

258 writeArray row 0 0

259 writeArray row (n+1) 0

260 forM_ [1..n] $§ \j — do

261 r <— shift nm <$> getStdRandom (randomR (1,dnm))
262 writeArray row j r

263 return outer

264 where

265 shift s x = if x > s then 1 else 2

266 (nm, dnm) = ratioFromFloat frac

267

268

269 {— Utilities & Abbreviations —}

270

271 noNothingLkup :: b —> (a —> b —> Maybe ¢c) —> [a] —> [c]
272 noNothingLkup m lkup ks = catMaybes $ map (flip lkup m) ks
273

274 hashLoc :: Word8 —> Word8 —> Word8 —> Word8 —> Word8 —> Int
275 hashLoc h n s e w = sum $ zipWith (%) integralLoc powersOf3 where

276 integralLoc = map fromIntegral [h,n,s,e,w]

277 powersOf3 = iterate (3x) 1

278

279 readScore :: Sim —> IO Int

280 readScore (Wrap - _ rs) = readArray rs 0

281

282 ratioFromFloat :: (RealFrac ¢) => ¢ —> (Integer, Integer)
283 ratioFromFloat frac = (numerator rt, denominator rt)

284 where rt = approxRational frac globalEps

285

Eli Whitehouse: ebw2143 December 18, 2019

286
287
288
289
290

Parallel Functional Programming [COMS 4995-003]: Project Report

Fin

Eli Whitehouse: ebw2143

December 18, 2019

0O Utk WN -

Parallel Functional Programming [COMS 4995-003]: Project Report

Listing 4: Main.hs (parallel and sequential evolutionary algorithm implementations)

module Main where

import Robbie

{-

-}

import System.Random(randomRIO)

import System.Environment(getProgName, getArgs)
import System.IO(openFile, hClose, hPutStrLn)

import Data.List(partition, isPrefixOf, sortBy)
import Data.Time. Clock(getCurrentTime)

function imports:

import Data.Time.LocalTime(getCurrentTimeZone, utcToLocalTime)

import Data.Array(array)

import Data.Random(runRVar)

import Data.Random. Extras(choicesArray)
import Data.Maybe(catMaybes)

import Control .Monad(sequence)

import Control.Monad. Loops(concatM)

import Control .Monad. Par.IO()

import Control .Monad. Par.IO(runParIO)
import Control .Monad. Par. Combinator (parMapM)
import Control.Monad. Trans(1iftIO)

{-
type imports:
import System.IO(Handle, IOMode(..))
import Data.Random(StdRandom (..))
{-

qualified imports:

import qualified Data.IntMap as IM

{— Constants —}

sampleSize :: Int
sampleSize = 10

{— Main & Helpers —}

main :: IO ()
main = do
pn <— getProgName
(flags , params) <— fmap (partition (isPrefixOf
let (psize, dim, nStep, nGen, canDensity ,
mutRate, crossRate, logFreq, logFile)
evolve = case filter (=="——par”) flags of
[?—par”] —> evolveP
- —> evolveS
h <— openFile logFile AppendMode
ut <— getCurrentTime
tz <— getCurrentTimeZone
let header = show (utcToLocalTime tz ut) ++ 7:
pn ++ 7 7 4+ unwords params —++
hPutStrLn h header
gnms <— initGenomes psize

let ev = evolve dim nStep logFreq canDensity mutRate crossRate h

Eli Whitehouse: ebw2143

7—7)) getArgs

= parseParams pn params

7o+

» 9

++ unwords flags

December 18, 2019

Parallel Functional Programming [COMS 4995-003]: Project Report

67 _ <— iterateNM1l ev nGen ((0, nGen), gnms)

68 hClose h

69

70 parseParams :: String —> [String] —> (Int,Int,Int, Int,Float,h Float,6 Float,Int, String)
71 parseParams pn (ps:dim:ns:ng:cd:mr:cr:1f:fp:_) | test =rd

72 | otherwise = err pn

73 where rd :: (Int,Int,Int,Int,Float,Float, Float,Int,String)

74 rd = (read ps, read dim, read ns, read ng, read cd, read mr, read cr, read 1f, fp)
75 test = and $ (map (>0) [p,d,s,g,l]) ++ (map (\x —> x > 0 && x <= 1) [c,m,0])
76 where (p,d,s,g,c,m,0,l,_) = rd

77 parseParams pn - = err pn

78

79 err :: [Char] —> a

80 err pn = error $ “usage: ” ++ pn ++ 7 7 4+ errString where

81 errString = ”"pop—size dim nstep ngen can—density mutn—rate crossover—rate log—frequency 7 4+
82 "log—file —par\n” 4++ 7 b

83 ?:: Int Int Int Int Float Float Float Int FilePath”

84

85 initGenomes :: Int —> IO [Genome]

86 initGenomes = sequence . flip replicate mkGenome

87

88

89 {— Core Step of the Algorithm (Sequential and Parallel) plus a helper —}

91 evolveS :: Int —> Int —> Int —> Float —> Float —> Float —> Handle

92 —> ((Int, Int), [Genome]) —> IO ((Int, Int), [Genome])

93 evolveS dim nstep If dens mutr crossr h ((i, lastRun), gnms) = do

94 let initScores = replicate (length gnms) 0

95 scores <— iterateNM3 initScores sampleSize $ \scores’ —> do

96 sims <— mapM (mkSimWithGenome dim dens) gnms

97 steppdSims <— iterateNM2 nstep (\sms —> mapM act sms) sims

98 newScores <— mapM readScore steppdSims

99 return $ zipWith (4) scores’ newScores

100 let sortedGnms = sortBy (\(j,-) (k,-) — compare k j) $ zip scores gnms
101 logMsg = show i ++ ”: average, ” 4+ show avgScore 4++ ”7; ”

102 ++ "top, ” 4++ show topScore ++ 7; 7

103 ++ ”approx. median, ” ++ show medScore ++ 7.7

104 avgScore = sum sortScores ‘div‘ length sortScores

105 topScore = head sortScores

106 medScore = sortScores !! (length sortScores ‘quot‘ 2)

107 sortScores = map fst sortedGnms

108 1 = length sortedGnms

109 if i ‘mod‘ 1f = 0 || i = lastRun

110 then hPutStrLn h logMsg

111 else return ()

112 selGnms <— rankSel $ zip [1,1—-1..1] $ snd $ unzip sortedGnms

113 mutants <— mapM (mutateGenome mutr) selGnms

114 let (crssNm, crssDnm) = ratioFromFloat crossr

115 cross r = if r <= crssNm then uncurry crossGenomes else return

116 crossDraw <— sequence $ replicate (length mutants ‘quot‘ 2) $ randomRIO (1,crssDnm)
117 exchanged <— fmap mapUnpair $ sequence $ zipWith cross crossDraw $ mapPair mutants
118 let newGnms = if even (length mutants) then exchanged else (last mutants) : exchanged
119 return $ if i /= lastRun

120 then ((i+1,lastRun), newGnms)

121 else ((lastRun,lastRun), map snd sortedGnms)

122

123 evolveP :: Int —> Int —> Int —> Float —> Float —> Float —> Handle

124 —> ((Int, Int), [Genome]|) —> IO ((Int, Int), [Genome])
125 evolveP dim nstep 1f dens mutr crossr h ((i,lastRun), gnms) = do

126 let initScores = replicate (length gnms) 0

127 scores <— iterateNM3 initScores sampleSize $ \scores’ —> do

128 sims <— runParIO $§ parMapM (liftIO . mkSimWithGenome dim dens) gnms
129 steppdSims <— runParIO $ parMapM (1iftIO . iterateNM2 nstep act) sims
130 newScores <— runParlO $ parMapM (liftIO . readScore) steppdSims

131 return $ zipWith (4+) scores’ newScores

132 let sortedGnms = sortBy (\(j,-) (k,-) — compare k j) $ zip scores gnms
133 logMsg = show i ++ ”: average, ” 4+ show avgScore 4++4 ”7; ”

134 ++ "top, ” ++ show topScore ++ 7; 7

Eli Whitehouse: ebw2143 December 18, 2019

135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192

Parallel Functional Programming [COMS 4995-003]: Project Report

9

++ ”approx. median, ” 4+ show medScore 4++ 7.

avgScore = sum sortScores ‘div‘ length sortScores
topScore = head sortScores
medScore = sortScores !! (length sortScores ‘quot‘ 2)

sortScores = map fst sortedGnms
1 = length sortedGnms
if i ‘mod‘ 1f = 0 || i = lastRun
then hPutStrLn h logMsg
else return ()
selGnms <— rankSel $ zip [1,1—1..1] $§ snd $ unzip sortedGnms
mutants <— runParIO $ parMapM (1iftIO . mutateGenome mutr) selGnms
let (crssNm, crssDnm) = ratioFromFloat crossr
cross (r, (gl,g2)) = if r <= crssNm then crossGenomes gl g2 else return (gl,g2)
crossDraw <— sequence $ replicate (length mutants ‘quot‘ 2) $ randomRIO (1,crssDnm)

let rsWMuts = zip crossDraw (mapPair mutants)
exchanged <— fmap mapUnpair $ runParIO $ parMapM (1liftIO . cross) rsWMuts
let newGnms = if even (length mutants) then exchanged else (last mutants) : exchanged

return $ if i /= lastRun
then ((i+1,lastRun), newGnms)
else ((lastRun,lastRun), map snd sortedGnms)

rankSel :: [(Int, a)] — IO [a]
rankSel rankedIt = do
chs <— flip runRVar StdRandom $ choicesArray (length rankedIt) opts
return $ catMaybes $ map (flip IM.lookup m . flip mod top) chs
where
m = IM. fromList rankedIt
is = map fst rankedIt
top = 1 4+ head is
nmods n = take n [x + n | x <— [0,top..]]
ns = zip [1..] $ concat $ map nmods is
opts = array (1, length ns) ns

{— Monadic Combinators & Utilities —}

mapPair :: [a] — [(a,a)]

mapPair (a:b:rs) = (a,b) : mapPair rs

mapPair - = []

mapUnpair :: [(a,a)] —> [a]

mapUnpair ((a,b):rs) = a : b : mapUnpair rs

mapUnpair [] = []

iterateNM1 :: (Monad m) => (a —> m a) —> Int —> a —> m a

iterateNM1 f n = concatM $ replicate n f

iterateNM2 :: (Monad m) => Int —> (a —>m a) —> a —> m a
iterateNM2 = flip iterateNM1

iterateNM3 :: Monad m => a —> Int —> (a —> m a) —> m a
iterateNM3 a i f = iterateNM1 f i a

{- Fin -}

Eli Whitehouse: ebw2143 December 18, 2019

