
Get Statistics of 8-puzzle Problem Using Parallel MapReduce

Name: Yimin Hu
UNI: yh3052

1. Parallel MapReduce in Haskell

The basic idea of MapReduce is splitting the work and assigning them to
different workers. Each worker finishes its own task. The result will be
merged at the end of the process. In this project, I implemented a simple
version of generalized MapReduce which runs parallel on multiple cores.
Note that it’s not identical with the real world MapReduce, which a single
mapper normally is just a single machine.

MapReduce consists of these main stages: map, shuffle, reduce. It
sometimes has parse stage at the beginning and merge stage at the end.
Base on that, I implemented a simple MapReduce like this:

The idea is that map and reduce stage is compatible with parallel
computing, while shuffle usually requires the full data to run it
sequentially. By using parMap and rdeepseq, map and reduce stage will
use dynamic partitioning strategy to utilize multiple cores. For specific
applications, they only need to plug in their mapper, shuffler and reducer
to get the result.

2. A practical MapReduce problem and its performance

One of the most frequently used MapReduce application is analyzing the
http logs. I implemented a program to get the visit frequency of IP to a
server through running a MapReduce on its server log.

As each line starts with an IP address, this application is straightforward.
Parse each line and map IP to (IP, 1). After shuffle those key value pair

and group them by key. Finally sum over the value list to get the
frequency. The nature of this application is very similar to a word count
program.

The question is whether parallelization helps speed up this program. I
wrote both sequential and parallel version to test. Here’s the result of -N1
and -N2:

As we can see, although in the term of elapsed time for -N2 is indeed
shorter comparing to -N1, this doesn’t mean there’s a speedup in parallel.
A sequential version is much faster with less than 0.9s to accomplish this
task. The stats show that GC is dominant in parallel version and happens
much more in -N1 situation, which is very hard to overcome while the
application itself needs to read in a huge file whereas the computation
itself is actually very cheap. Threadscope diagrams shows how GC affect
the result, even if the work is indeed distributed over cores:

Fig 1. ipFreq -N1

Fig 1. ipFreq -N1

Fig 2. ipFreq -N2

After the experiment and some search online, I realize that I can hardly
see a speedup on a IO based MapReduce application, so I choose to solve
another problem in this MapReduce framework.

3. 8-Puzzle analysis using parallel MapReduce

8-puzzle is a game on a 3*3 board and there are 9 numbers from 0 to 8 on
it. The goal is to swap 0 and its neighbor to get to a final state. Below is
an example on it:

I implement a search based on Manhattan heuristic to solve a single
board. Each board can be presented as a list in Haskell. For example, the
left most board on the picture is [0,1,3,4,2,5,7,8,6]. By using a set as a
priority queue, I designed a BFS like algorithm to solve it in a quick
fashion.

Although the problem itself is simple, it’s not easy to compute a lot of

Fig 3. ipFreq -N1 threadscope

Fig 4. ipFreq -N2 threadscope

them and get their result efficiently. A parallel MapReduce should be able
to speed the process up and apply some analysis on the result in the
reduce step.

One thing worth investigating is for all solvable boards, what’s the
statistic of steps used. BFS can find the shortest solution while a heuristic
based search can’t guarantee this. Getting the full stats on steps used
provides a sense of how many more steps do a Manhattan heuristic uses
on 8-puzzle problem.

To generate all possible initial states we need Data.List.permutations. 8-
puzzle is solvable only when the list has even inversions, so we apply this
filter condition and get 9!/2 = 181440 solvable boards. In the map stage,
each mapper solves one boards, mapping each board to a pair (steps, 1).
The shuffle stage we group the pairs by key and made the value a list of
ones. The reduce stage simply get the sum or length of the list. The final
output will be a key value pair list, where key is steps count and value is
how many boards are solved using that many steps. This histogram like
stats can show the distribution of steps using Manhattan heuristic. I also
tried running a normal BFS for comparison. Unfortunately, the naive BFS
is too slow to get any meaningful result.

Here’s the performance test on running 1000 boards in the MapReduce
framework and sequential version.

Fig 5. puzzleSovler -N1

Fig 6. puzzleSovler -N2

Here are the threadscope diagrams for -N1 and -N2 option:

The performance test shows that this problem speeds up a lot by using
parallel strategy. The speedup factor is about 11.2 / 6.9 = 1.6. Although
ideally we should gain a factor near 2, 1.6 is still a decent speedup
consider we do have sequential steps.

Fig 9. puzzleSovler -N2 threadscope

Fig 8. puzzleSovler -N1 threadscope

Fig 7. puzzleSeq

4. Conclusion

Parallel MapReduce doesn’t guarantee a speedup on some applications: If
an application is IO heavy and has a sequential bottleneck, we can’t see a
speedup in the performance test. A lot of real world MapReduce
applications works fine because it has large enough input states and the
tasks are assigned to machines. In a single node multiple cores scenario,
this kind of application will suffer from IO and GC. In the book Real
World Haskell, one way to solve this is using ByteString to optimize the
IO and using a large text file to analyze (248 MB). To observe a speedup
directly, we have to choose a computation heavy task like some search
problem.

5. Code list

My project include these files:

mapreduce.hs: mapreduce module
ipFreq.hs: count ip visit frequency in parallel
ipSeq.hs: count ip visit in sequence
puzzleSolver.hs: parallel mapreduce on 8-puzzle solving
puzzleSeq.hs: sequential mapreduce on 8-puzzle solving
puzzle.hs: module for solving 8-puzzle
readme.txt: instruction on how to compile and run the code
access.log.txt: input file of ipFreq

References

1.Parallel and Concurrent Programming in Haskell, Simon Marlow
2.MapReduce as a Moand, Julian Porter
3.Real World Haskell,Bryan O'Sullivan, Don Stewart, and John Goerzen
Chapter 24.

Appendix: Source Code
As sequential version is trivial, they are not listed.

puzzle.hs

module Puzzle
 (solve,
)
where

import Data.Array
import Data.Maybe
import qualified Data.Set as S

data Puzzle = Puzzle (Array (Int, Int) Int) deriving (Eq, Ord)

data State = State (S.Set (Int, Puzzle, [Int])) (S.Set Puzzle)

finalState = Puzzle $ listArray ((0, 0), (2, 2)) $ [1, 2, 3, 4, 5, 6, 7, 8, 0]

-- get a number's index on the board
getIndex :: Int -> Puzzle -> (Int, Int)
getIndex n (Puzzle p) = head $ filter (\idx -> p ! idx == n) $ indices p

-- get neighbors of zero
getNeighbors :: Puzzle -> [(Int, Int)]
getNeighbors (Puzzle p) = filter (`elem` indices p) [(zx -1, zy), (zx + 1, zy), (zx, zy -1), (zx, zy +
1)]
 where
 (zx, zy) = getIndex 0 (Puzzle p)

-- swap a pos with 0
swap :: Puzzle -> (Int, Int) -> (Int, Puzzle)
swap (Puzzle p) pos = (p ! pos, Puzzle $ p // [((zx, zy), p ! pos), (pos, 0)])
 where
 (zx, zy) = getIndex 0 (Puzzle p)

-- possible next moves
getMoves :: Puzzle -> [(Int, Puzzle)]
getMoves (Puzzle p) = map (swap (Puzzle p)) $ getNeighbors (Puzzle p)

-- manhattan heurisitc for current board
manhattanSum :: Puzzle -> Int

manhattanSum p = sum $ map manhattan [0 .. 8]
 where
 manhattan num = abs (fx - x) + abs (fy - y)
 where
 (fx, fy) = getIndex num finalState
 (x, y) = getIndex num p

transfer :: State -> (Puzzle, [Int], State)
transfer (State queue visited) = (puz, moves, State nextqueue (S.insert puz visited))
 where
 ((h, puz, moves), curqueue) = fromJust $ S.minView queue
 nextmoves = S.fromList $ filter (\(_, p) -> p ̀S.notMember` visited) $ getMoves puz
 nextqueue = curqueue ̀S.union` (S.map (\(moved, p) -> (manhattanSum p, p, moved :
moves)) nextmoves)

search :: Int -> State -> Int
search i curstate
 | p == finalState = length moves
 | otherwise = search (i + 1) nextState
 where
 (p, moves, nextState) = transfer curstate

searchDebug :: Int -> State -> [Int]
searchDebug i curstate
 | p == finalState = moves
 | otherwise = searchDebug (i + 1) nextState
 where
 (p, moves, nextState) = transfer curstate

solve :: [Int] -> Int
solve l = search 0 start
 where
 start = State (S.singleton (manhattanSum p, p, [])) S.empty
 where
 p = Puzzle $ listArray ((0, 0), (2, 2)) l

solveDebug :: [Int] -> [Int]
solveDebug l = searchDebug 0 start
 where
 start = State (S.singleton (manhattanSum p, p, [])) S.empty
 where
 p = Puzzle $ listArray ((0, 0), (2, 2)) l

ipfreq.hs

import System.Environment(getArgs)
import System.IO(readFile)
import System.Exit(exitFailure)
import Data.List(sortBy)
import MapReduce (mapReduce)
import Control.Parallel.Strategies
import Control.Parallel (pseq)
import Control.DeepSeq
import Control.Exception
import Data.List
import Data.Ord
import Data.Function (on)

mapper :: String -> (String, Int)
mapper w = (w, 1)

shuffler :: (Eq a) => [(a,b)] -> [(a,[b])]
shuffler = map (\x -> (fst $ head x, map snd x)) . groupBy ((==) `on` fst)

reducer :: (String, [Int]) -> (String, Int)
reducer (w, l) = (w, (sum l))

parse :: String -> String
parse w = head (words w)

main :: IO ()
main = do args <- getArgs
 case args of
 [filename] -> do
 text <- readFile filename
 let linelist = lines text
 let dict = map parse linelist
 let mr = mapReduce mapper shuffler reducer dict
 let result = sortBy (\(_ , cnt) (_ , cnt') -> compare cnt' cnt) mr
 print result

mapreduce.hs

module MapReduce
 (
 mapReduce
) where

import Control.Parallel (pseq)
import Control.Parallel.Strategies

mapReduce :: (NFData a, NFData b, NFData c, NFData d) =>
 (a -> b) -- mapper
 -> ([b] -> [c]) -- shuffle
 -> (c -> d) -- reducer
 -> [a] -- state
 -> [d] -- result

mapReduce mapFunc shuffleFunc reduceFunc input = mapResult `pseq` reduceResult
 where mapResult = parMap rdeepseq mapFunc input
 shuffleResult = shuffleFunc mapResult
 reduceResult = parMap rdeepseq reduceFunc shuffleResult

puzzlesolver.hs

import System.Environment(getArgs)
import System.IO(readFile)
import System.Exit(exitFailure)
import Data.List(sortBy)
import MapReduce (mapReduce)
import Control.Parallel.Strategies
import Control.Parallel (pseq)
import Control.DeepSeq
import Control.Exception
import Data.List
import Data.Ord
import Data.Function (on)
import Puzzle (solve)

shuffler :: Ord a => [(a,b)] -> [(a,[b])]
shuffler = map (\x -> (fst $ head x, map snd x)) . groupBy ((==) `on` fst) . sortBy (comparing fst)

mapper :: [Int] -> (Int, Int)
mapper l = (solve l, 1)

reducer :: (Int, [Int]) -> (Int, Int)
reducer (t, l) = (t, (sum l))

inversions :: [Int] -> Int
inversions [] = 0
inversions (x:xs) = (length (filter (<x) xs)) + inversions xs
main = do
 let per = permutations [1,2,3,4,5,6,7,8,0]
 let solvable = take 1000 (filter (\l -> inversions l `mod` 2 == 0) per)
 let res = mapReduce mapper shuffler reducer solvable
 print res

