
Name: Eric Chase
UNI: eac2242

COMS W4995 Project Proposal

Idea

For my project, I plan to write a Haskell implementation of the D*
Lite algorithm. Developed by Sven Koenig in 2002, D* Lite is a search
algorithm in the vein of A* search whose aim is to determine a path
between an agent’s location and a designated goal state. Unlike A*
search, however, D* Lite can importantly be used for navigation in
unknown terrain, meaning that the traversability of states are not
known ahead of time. For this reason, D* Lite is utilized
predominately in applications of robot navigation, whereby the
locations of obstacles are determined on-the-fly using the robot’s
sensors.

As a high-level description, the D* Lite algorithm initially assumes
that the state space does not contain obstacles. With this assumption
in mind, it calculates an ideal shortest path to the goal state. The
agent then follows that path until a new obstacle is encountered. At
this point, heuristic information is updated and new arc costs are
calculated between locally affected states. The shortest path is
replanned, and the search continues until the goal state is reached.

This is an algorithm that I learned of through my research with
Professor Tony Dear on multi-agent collision resolution. I believe
that writing a Haskell implementation of it would be fun, a step more
rigorous than implementing plain A* search, and most importantly, a
good candidate for parallelization like other search algorithms.

Roadmap

For the purposes of this project, I plan to make a few simplifying
assumptions about the problem setup, namely that the map adheres to a
simple grid structure and the agent is limited to 4-way movement only
(north, south, east, and west). Additionally, I intend to use
Manhattan distance as the heuristic utilized by the algorithm.

As for implementation details of my project, the priority queue of
states used by the algorithm can be modeled using a module like
Data.Heap. Furthermore, because this queue is only updated
occasionally in the case of an obstacle encounter, its state can be
maintained efficiently using the State monad. Additionally, a map
keyed by coordinate-pairs can be used to store the state-specific
statistics used by D* Lite. With exception to the details listed
above, I want to use functions from the Standard Prelude as much as
possible. For user input, the program’s top-level function will
require arguments corresponding to the size of the map, the obstacle
locations, and the start and goal states of the robot. In order to
highlight the fact that the solution returned by D* Lite changes

dynamically as new objects are discovered, the successive paths
proposed by the algorithm and the final solution (if there is one)
will be logged to the console at termination.

Finally, I will discuss some points where I believe parallelism could
benefit my project. Though D* Lite proposes a new path to the goal
with each obstacle encountered, printing these paths is not a trivial
matter. This is because, under normal execution of the algorithm,
obsolete paths are never fully revealed, as the solution is updated in
place, overwriting part of the previously proposed path. Thus, in
order to recover the proposed paths in their entirety, each must be
followed to the goal before updating the priority queue (which
effectively creates a new path). Though this added procedure is not
part of a vanilla D* Lite implementation, I believe that it is
important in order to better illustrate what the algorithm does.
Luckily, this is the kind of job that could be run in parallel
perfectly using a copy of the old priority queue, while the other
threads continue with the execution of the algorithm. There are also
some smaller optimizations within the D* Lite algorithm that
parallelism allows for. For instance, the fact that the priority queue
is formed according to a tuple means that each element of this
priority value could be evaluated simultaneously in parallel.

Additionally, when it comes to search algorithms, there is generally a
lot of room for improvement via parallelization due to their recursive
nature. For example, when a state is removed from the priority queue
in D* Lite, all of its successor states must be updated and
potentially removed as well. Each of these are operations than can
safely be performed in parallel, with a separate thread handling each
successor. I suspect that these parallelization efforts will result in
much faster execution times, especially for larger maps and maps with
many obstacles.

