Allison Costa
Manager
Arc2211

Tree++

A Tree Manipulation Language

By:
Laura Matos Jacob Penn Laura Smerling
Tester System Architect Language Guru

Im3081 jp3666 les2206

Table of Contents

Table of Contents

Introduction
Abstract
Motivation
Problems

Language Tutorial
Basic Syntax
Simple Examples to lllustrate Syntax

Language Manual: Tree++

Project Plan
Planning Process
Development Process
Project Timeline
Software Development Environment
Style Guide
Roles and Responsibilities
Allison Costa: Manager
Laura Matos: Tester
Jacob Penn: System Architect
Laura Smerling: Language Guru
Project Log

Architectural Design
Components
Interfaces Between Components

Test Plan
Unit Testing
Regression Testing
Testsin C
Tests to Decl Branch

Lessons Learned
Allison Costa
Laura Matos

o O o o a ~ MDA DN

N NNMNNMNNMNNMNNOMNRNODDN
AR B BPOOWWWWDN-=0®©

N NN
[$2 IS IS |

N NDNDNNDN
o N N O o

N NN
© © ©

Jacob Penn 29

Laura Smerling 29
Advice 30
Appendix: Tree++ 30
Appendix: MicroC+ 68
Appendix: MicroC+ C-Code: 68
Appendix: MicroC+ Code: 92
Appendix: Original Tree++ Code 126
Appendix: Other Info 139
Project Log Based On GitHub 139

Introduction

Abstract

Tree algorithms are relevant to Al, CS theory and data manipulation. Tree++ is a language that
uses the underlying data structure of a tree in order to simplify complex tree based algorithms.
Like in most languages, the trees can be used for a number of sorting and search algorithms,
such as Breadth First Search or Binary Search; however, in the Tree++ structure, trees can also
be used for applications such as managing temporary results, which in other languages is
typically allocated to the stack data structure. By limiting the user to trees, the hope is to allow
programmers to realize their efficiency and effectiveness, even when implementing programs
more typically coded with other data structures (such as lists, graphs, queues, stacks, etc).
Narrowing the scope of the language to trees also provides a quick and intuitive way to
manipulate data. Often new programmers are wary or confused by the wide a way of data
structures, not all of which are very straightforward, thus Tree++ helps narrow the focus and
expand the typically scope of trees in other languages such as Java, C, and C++. Overall, our
implementation increases the efficiency and intuitiveness of typical tree-based algorithms and
can be effectively used to program other algorithms, which are usually allocated to different data
structures.

Motivation

The motivation for our language arose from our confidence in the tree data structure to
effectively solve complex and interesting algorithms and yet our frustration with the current set
up of trees in Java and C where search and sorting algorithms force the user to utilize multiple
loops and traverse through the tree in a fairly inefficient manner. We plan to both allow the user
to decide a great deal about the layout and balancing of the tree; however, we also want to
provide general structural information about child, parent, and level of node, which will prove
useful when implementing search and sorting algorithms. These features make our language
ideal for performing a number of programs including and beyond those typically allocated to
trees in object-based programming languages. Like in most languages, our trees can be used
for a number of sorting and search algorithms, such as Breadth First Search or Binary Search;
however, our tree structure can also be used for applications such as managing temporary
results, which in other languages is typically allocated to the stack data structure. Overall, our
implementation increases the efficiency and intuitiveness of typical tree-based algorithms and
can be effectively used to program other algorithms, which are usually allocated to different data
structures.

Problems

The major problem with Tree++ is that it does not create main correctly. This was
partially because of our design decisions against creating main in the typically way. We wanted
inline declaration and a hidden main that would not force the user to create main for every
program. In order to do this, we decided (partially because of seeing the successful
implementation in BURGer and PLTree) to pass all of our functions as statements, then check
to make sure no functions were called main and create our own hidden main in codegen.
Although it is technically possible, we have since learned that it is far better to create main in
either ast or semant so that the generated file of semant has a main, rather than having to go
back into functions and add the main in codegen after the code has already been semantically
checked. This created a major error in our code (shown below), which would not let us
implement the basic blocks required for LLVM. Ideally, we would have been able to fix this
problem and change our code so that the ast was wrapped in a main; however, our original
implementation was too entrenched to change without completely rewriting most of our codegen
and semant, which we did not have time for once we realized the severity and consequences of
our design decision.

File Edit View Search Termin
hl@numel:~/project/Tree oc$./microc.native test2.mc > test2.bc
erminator found in the mid of a basic block!

nd, cimpi_lati_on aborted!
ocS

When we tried to put some of our implementation into past project’s stable code, we
encountered many more errors. This emphasized how unique each person’s code is and how
difficult it is to translate between languages; however, it also made it very difficult to
demonstrate the working code we had despite our language’s broader problems. We finally
decided to go back to a very early implementation of MicroC, before it was greatly modified by
our group and try to show some of the very basics we learned/programed through this process,
including some of the interaction with the C-code that controls nodes.

After presenting to Professor Edwards, he gave us some suggestions on how to fix the
problem that was breaking our basic blocks. We went back to our Tree++ code and were able to
fix quite a few of the issues. Our main is still hidden in codegen; however, it now allows Tree++
to compile and display code. All of our types besides string work, our operators, if statements
and blocks, inline assignment and declaration, and functions all work. While we would have
loved to add more features, especially including nodes, we were unable due to time constraints.

Language Tutorial

Basic Syntax

Our program uses a mix of C and Python-esque syntax. Our language supports types int, float,
bool, string, void. Nodes can be of any of these specific types, but nodes must be of the same
type as their children and ancestors. All types (including nodes) allow for inline declaration and
assignment. Code should not be need to be wrapped in a main function, but rather supports
code outside of functions as well as function declaration.

Simple Examples to lllustrate Syntax

Control Flow:

node<string> hello_world = ("root");
hello_world.root;

node<string> n = ("hello");
hello_world.add_child(n);
node<string> m = ("world");
hello_world.add_child(m);

printn(hello_world);

int x = 0;

while(x<1){

hello world <<; /* shifts the child nodes left*/
X+1;

printn(hello_world);

Output: root hello world root world hello

Versus Function Declaration:

node<string> h ("hello");

h.root;
node<string> m = ("world");

h.add_child(m);

def node<string> rotate(node<string> root, node<string> child){
root”~child;
return root;

}
printn(rotate(h));

Output: world hello /*the root is now the child and the child is now the root*/

Tree++ Features:

| "node" { NODE }

| ".root" { ROOT }

| ".data" { DATA }

| ".depth" { NODE_DEPTH }
| "< { LSHIFT_NODE }
|

|

|

|

"y { RSHIFT_NODE }
nAn { SWAP_NODE }

".add_child" { ADD_CHILD }
".delete_node" { DELETE_NODE }

C-Functions:

void init_root(struct Node *node); // done

struct Node *create_int _node(int data); // done

struct Node *create_char_node(char data); // done

struct Node *create_float_node(float data); // done

void delete node(struct Node *node); // done

void add_child(struct Node *parent, struct Node *child); // done
void deep_swap(struct Node *node_a, struct Node *node_b); // done
void shift left(int index, struct Node *child); // done

void shift_right(int index, struct Node *child); // done

int is_root(struct Node *node); // done

int is_empty(struct Node *node); // done

void add_child(struct Node *parent, struct Node *child); // done

int is_root(struct Node *node); // done

int is_empty(struct Node *node); // done
int get_depth(struct Node *node); // done

struct Node *get root(struct Node *node); // done

Language Manual: Tree++

Lexical Conventions
If a sequence of characters can be split into tokens ambiguously, the one with the longest first token will
be adopted.

Whitespace
Whitespace consists of spaces, tabs, and newline characters. Whitespace characters separate tokens, but
are otherwise ignored by the compiler.

Comments
Comments begin with the character combination (* and end with *). Any text in between the beginning
and end of a comment is ignored by the compiler. Comments can be nested and multiline.

Identifiers
An identifier is any sequence of letters, numbers, or the underscore character _. Identifiers are case
sensitive and must not begin with a numerical digit.

Literals
Boolean Literals
A boolean literal can take on the value true or false.

Integer Literals
An integer literal is a sequence of digits, representing a number in base 10.

Floating-point Literals

A floating-point literal consists of two sequences of digits separated by ., a decimal point. The sequence
to the left of the decimal is the integral component, while the sequence to the right is the fractional
component. The integral component must not be empty but the fractional component may.

?String Literals
Any sequence of characters surrounded by double quotes (excluding the " double quotation character)
constitues a string literal. Certain characters may also be expressed with an escape sequence:

n newline character
" double quote
" single quote

|
|
|
\t tab

Keywords
The following is a list of reserved keywords and may not be used otherwise:
int void true
false bool if else
float for while parent
func return empty node<type>
print NULL data

Data Types

Tree++ uses a variety of standard data types from C, with an addition of type that is mathematically
expressive, such as node. Functions are first-class objects in Tree++, so a function type (func) is also
present. The operators that can be used with each datatype are explained in the next section on
expressions and operators.

int

We support a 32-bit integer data type, int. It might be declared as. All declarations are inline and
assignments are inline.

intbar = 5;

float
The float type is a floating-point data type used to store real values. It might be declared as:
float bar = 5.5;

bool
The bool type is a boolean type taking on two values, true and false. It might be declared as:
bool bar = false;

(*string
The string type is a type used to store and manipulate strings of ASCII characters. It might be declared as:

string bar = "Hello World!"; *)

void
The void data type represents an empty type, behaving just as it does in C.

function

Functions in Tree++ are first-class objects: they can be passed as arguments and returned from other
functions. Therefore, Tree++ supplies a function type, func. Refer to subsection 9 for more in-depth
information on functions.

Expressions and Operators

We describe expression in order of precedence below, starting with those with the highest level of
precedence. Any expression can be disambiguated by parentheses. Consider the following example:
10*3 +4;(*34 %)

10*(3+4);(*70 %)

Also note that each unary and binary operator is only allowed for the data types which have it defined
(definitions of various operators can be found in the previous subsection).

Primary expressions

Identifiers:

Identifiers are named variables including function, and they have a strict type assigned at declaration.
Literals The literals are as specified in the Lexical Convention subsection.

Negation Operators:
For an expression, expr, which is of type int or float, (-expr) returns the negated value. On the other hand
if expr is of type bool, (!expr) returns the negated value.

Assignment Operators

Variables are assigned using the = operator. The left hand side must be an identifier while the right hand
side must be a value or another identifier. The LHS and RHS must have the same type, as conversions or
promotions are not supported. The variable assignment operator groups right-to-left.

In the format below, 1_val is any identifier and r_val is any expression. The following assignment
operators are right associative.

Assigns r_val to 1 _val then the entire expression takes on the new value of 1_val:

(I val =r val)

Computes |_val * r_val and assigns it to | val then the entire expression takes on the new value of 1 val:
(I val *=r val)

Computes |_val /r_val and assigns it to |_val then the entire expression takes on the new value of | _val:
(I val /=r val)

Computes 1_val % r_val and assigns it to | val then the entire expression takes on the new value of 1 val:
(I_val %=r_val)

Computes |_val + r_val and assigns it to 1_val then the entire expression takes on the new value of 1 _val:
(I val +=r val)

Computes |_val - r_val and assigns it to | val then the entire expression takes on the new value of 1 val:

10

(I val -=r val)

Multiplicative Operators:

The multiplicative operations are left associative and the return value matches the type of the operands.
The operands must match type. The * and / operations exist for int and float types, while the * operation
only exists for int.

Computes exprl * expr2 and the entire expression takes on the resulting value:

(exprl * expr2)

Computes exprl / expr2 and the entire expression takes on the resulting value:

(exprl / expr2)

Computes exprl % expr2 and the entire expression takes on the resulting value:

(exprl \% expr2)

Additive Operators :

Additive operators are left associative and the return value matches the type of the operands. The
operands must match type. The + operation exists for int, float, and string (concatenation) types while the
- operation only exists for int and float types.

(exprl + expr2)

Computes exprl + expr2 and the entire expression takes on the resulting value.

(exprl - expr2)

Computes exprl - expr2 and the entire expression takes on the resulting value.

Relational Operators:

The relational operators are left associative and evaluate to a boolean. These operations exist for int and
float types.

Compares exprl to expr2 and if exprl is strictly less than expr2 it returns true; otherwise false:
(exprl < expr2)

Compares exprl to expr2 and if exprl is strictly greater than expr2 it returns true; otherwise false:
(exprl > expr2)

Compares exprl to expr2 and if exprl is less than or equal to expr2 it returns true; otherwise false:
(exprl <= expr2)

Compares exprl to expr2 and if exprl is greater than or equal to expr2 it returns true; otherwise false:
(exprl >= expr2)

Equality Operators:

The equality operators are left associative and evaluate to a boolean. These operators exist with any type,
and can also be used with NULL to test whether a variable is null. For strings, == is structural
(lexicographical) equality. For nodes, == is physical equality.

Compares exprl and expr2 and returns true if the two expressions have the same value:

(exprl == expr2)

Compares exprl and expr2 and returns true if the two expressions do not have the same value:

11

(exprl = expr2)
Logical Operators

Logical operators on booleans are left associative and evaluate to a boolean. Returns false if exprl and
expr2 are both false; otherwise returns true:

(exprl && expr2)

Returns true if exprl and expr2 are both true; otherwise returns false:

(exprl || expr2)

Function Expression

In Tree++, functions are treated as a kind of expression. We allow for inplace anonymous functions as
follows:
function type name(argl, arg2,...){

statement] ;

statement2;...

The arguments, arg, are of the form type identifier indicating the type and local name of the function’s
arguments. The statements, statementl, statement2... are specified in the next subsection and ends in a
return statement returning a value of the specified return type. For more information, refer to the section
dedicated to functions.

Function Calls

A call to a function is an expression that takes on the same value as the return value of the function called
with the given arguments. For example:
func add<int>(int a,int b) {
return a+b;
},’
print(add(2, 4)); (* 6 *)

Statements
Expression statements

A statement is defined as any expression followed by a semi-colon. Below are several examples:
31;

1==(3-2);
xt++;
y=10;

12

The first two statements are evaluated but are generally not useful since they have no side effect. On the
other hand, the last two will alter the variables x and y respectively.

Control Flow

Conditionals

If-else statements use the following formats:

if (condition) {statements}

if (condition) {statements} else {statements}

Each condition is evaluated to either true or false, and the corresponding set of statements is executed
accordingly. The braces are optional if there is only one statement; a sequence of statements must be
enclosed within corresponding braces.

Loops

C-style while loops and for loops are provided, such as the following:
while (condition) {statements}
for (initialization; condition; update) {statements}

Block Statement

A block statement is a list of zero or more statements, enclosed within corresponding braces.

{

int x;

x =35

/

As in C, blocks are often used as the body in conditional statements or loops and can be nested inside a
bigger block. See subsection 8 for more information on rules on scope related to block statements.

{

intx =25;
{
intx=2;
x == 5, (* this evaluates to false *)
/
x == 5, (* this evaluates to true *)
/

Return statement

Return statements take the form of:

return expression;

The return expression can be any single expression or omitted. The type of the expression must match the
return type of its enclosing function.

13

Functions

Function definition
The general form for function definition is:

func function-name<return_type>(arguments) {statements, return-type return};
where return-type can be of any data type discussed above. If no value is returned from the function, then
one can use the return type void. Arguments are separated by comma, with each having its own type and
identifier. The number of arguments can be zero or more. An example of a function definition is:
function int add(int a, int b)

{

return(a + b);

}

Note that return-type and type of arguments need to be given.

Calling functions

A function can be called using its name and any necessary parameters. The number and type of
parameters must match with the function definition. As with function declaration, function parameters are
separated by a comma. Continuing with the example above, we can call add as follows:

add(3, 6); (* this will return 9 *)

Program Structure and Scope
A Tree++ program must exist within a single source file. As with scripting languages, Tree++ programs
start execution from the beginning of the file.

Scope

Tree++ follows scoping rules similar to those in C. Variables declared in the outer body of the program
(i.e., not within any enclosing set of braces) are considered global and can be accessed throughout the
entire program, but not outside the file in which they reside. Local variables can only be accessed within
the block in which they were declared, and will shadow any existing variables with the same names in the
outer scope. Formal variables of functions are only visible within their corresponding functions.

A declaration is not visible to statements that precede it. For example:

int x =y; (* error: y is not yet declared at this point *)

inty==6;

Built-in Functions
We include the following built-in functions:

Printing

The print function prints the formal argument (either a string, int, or float) to standard output.
printbig("hello"); (* prints "HELLO" followed by a newline *)

print(5); (* prints 5 followed by a newline *)

print(3.5); (* prints 3.5 followed by a newline *)

14

TODO:

The rest of the LRM includes code for nodes that we have written and partially
implemented with MicroC+, but were unable to integrate properly with Tree++. As a
result, for our final turned in assignment, we decided to remove Node, but some of the
node functions are still visible throughout Tree++, as we fully extended to incorporate it
once our code started to work.

Enhanced for loops

They can either be followed by a single statement to be looped, or by a sequence of statements enclosed
within brackets. Tree iteration over nodes and children is also allowed, using "for each" loops, which take
the following format:

for value in range(augl, aug?){statement} - Iterates through the nodes based on the bfs numbers in the
tree

for value in newNode{statement} - Iterates through all of the nodes in the entire tree according to BFS

for x in functionOrder() range(augl, aug2){statement } - One can write their own iterative function if
they desire with their desired order and iterate through this function through the for loop

for x in functionOrder() newNode{statement } - One can write their own iterative function if they desire to
iterate through all the nodes in the entire tree
The braces are optional if there is only one statement; a sequence of statements must be enclosed within
corresponding braces.
node
The node data type is a generic types that can be used in the following manner:
Node<type> foo;
where foo can only hold values of type T. A node consists of parent, a list of children and a data value.

8 Operators

Node Operators:

Node operators are very important for shifting the information from one direction to another. A node
operator used multiple times groups left to right. Combining different node operators in one statement
must have the parent node first and the preceding children second. The node operators are left associative
when they are stacked. Complete the operation to the left first and then continue to the preceding

operations. Exprl is the parent expression and Expr2 is the child.
A

Deep swap node and node (can be parent and child or child and child)

15

o Ifyou deep swap node and parent then the child becomes the new parent node and the parent
becomes a child of the original child. All children of the original parent remain attached to the
parent, which is now the new child of the original child.
o This is present to write percolating logic easily
o exprl”
- The first child is swapped with the parent
- <<
o Shift children left
o Ifyou want to specify the exact number of children to shift left you can add an index in [] at
the end of the operators used. The index is counted from left to right starting at 0.
o exprl<<
- If the children are shifted without an addition or subtraction than the first child becomes
the last child and the last child becomes the second to last child.
- Ifthe index is out of range for the child, then an error is printed
- >>
o Shift children right
o Ifyou want to specify the exact number of children to shift right you can add an index in [] at
the end of the operators used. The index is counted from right to left starting at 0.
o exprl>
- If the children are shifted without an addition or subtraction than the first child becomes
the second child and the last child becomes the first child.
- Ifthe index is out of range for the child, then an error is printed

Shift and swap operators explained:
a

/o

b ¢

exprl is the parent, expr2 is the input:

exprl <<+expr2 shift children left and add node in tree last
char new_data = ‘d’;
root(newNode)<<+ new_data;

a
/7
bec d
exprl >>+ expr2 shift children right and add node in tree first
char new_data2 = ‘e’;
root(newNode)>>+ new data2;

16

exprl <<- shift left and delete last node in tree
root(newNode)<<-;

expr2 >>- shift right and delete first node in tree
root(newNode)>>-;

exprl<<” shift left and swap parent node and child in tree
root(newNode)<<"\;

exprl >>" shift right and swap parent node and child in tree

root(newNode)>>""
c
|
a
/
b
- If'there is no node to the left to swap, the only remaining child will swap with the parent
a
/
c b

- If there are no children then the program will throw an error when one tries to shift

exprl is the parent, expr2 is the input, expr3 is the counter to specify exact location of transition:
exprl <<+ [expr3] expr2 shift children left and add node in tree last
exprl >>+ [expr3] expr2 shift children right and add node in tree first
exprl <<- [expr3] shift left and delete last node in tree
expr2 >>-[expr3] shift right and delete first node in tree
exprl<<~[expr3] shift left and swap parent node and child in tree
exprl >>" [expr3] shift right and swap parent node and child in tree
If expr3 is not present in the tree then the program will throw an error

17

Node Literal
A node can be expressed as [exprl, expr2] where exprl corresponds to the parent of the node and expr2
corresponds to the data. There are no declarations without assignment.

node<exprl> newNode = (expr2, expr3),;

4 Manipulation of Nodes
Built-ins
We provide built-in operations in order to allow for easy manipulation of the node type:
Node<type> newNode = (data) Declares a new node with parent and data
newNode.parent Returns the parent node
newNode.data Returns the data stored in the node
newNode:n Returns the nth node of the tree according to BFS ordering
The head of the tree is 0, the first child is 1 ...n If there are no nodes in position n the language
will throw an error
newNode:n(newNode.i) Returns the grandchild in position i according to bfs where the head is reset to
position n. This allows index access of sub-trees.

5 Node Internals
5.1 Mutability and References

Nodes are mutable data types, so the members of an instance of each type (node.parent, node.data) can be
updated. This allows for nodes to be easily manipulated after construction.

Node variables are treated as data values. Therefore, one variable must refer to the same node.
Assignments, for instance, will act as tree copying and data swapping:

node<string> newNode =(“hello”),

node<string> secondNode = newNode;

newNode = (“test”);

print(newNode.data), (*test*)
print(secondNode.data), (*hello*)

All behavior must be clearly defines as the results will change for every assignment. Additionally this
only works if the nodes are the same type as the type is specified during declaration.

5.2 Indices

Integer indices are used to identify location of nodes with in trees based on the head of the node. The
ordering of the nodes is BFS where the head node is 0 and the first child is 1. If a new child is added in

18

the center of the tree the indices will shift. Nodes are not added based on index they are added by
referencing parents and shifting children. Consider the example below:

print(newNode.data); (*c*)

charin= d’;
newNode.parent >> + in;
print(newNode:2.data); (*b*)
a
/7
d b c

5.3 Invalid Nodes
When a node is added to a tree with a parent that does not correspond to a node in the tree, an error will
occur. For example:

a

/)
b ¢
node<char> newNode = [newNode:3, ‘e’];

/ferror this is an invalid parent argument, check your index

Hence, it is recommended to make sure that a tree contains all necessary parent nodes before adding a
new child node.

5.4 Adjacency Linked Lists
Adjacency linked lists are internally updated within a tree. Each time an child is added or removed, the
adjacency linked lists of the corresponding children will be updated accordingly.

5.5 Removing Parent Nodes from a tree
When a parent node is removed from a tree, all children involving that node will also be removed from
the tree.

Node functions
The built-in node functions are explained in more detail under the subsection of the manual on the graph
datatype. They are listed below:

empty(node)
height(node)

19

depth(node)
root(node)

Project Plan
style guide

Group's Availability

Planning Process e

Mouseover the Calendar to See Who Is Available

eay Sun_Mon Tue Wed Thu Fri _Sat

Our team met once a week on Thursdays from 2:30-4:00pm to work on the

project. Our meeting schedule with Justin, our TA, was unfortunately much

more erratic. At the beginning of the semester we met once a week on

Wednesdays from 7:30-8:30/9:00pm. This worked well because it gave us

all time to work on the code and figure out what questions we still had by

our meeting the next day. By mid October, a number of obligations and

commitments from each person in the group and some health trouble with

one group member, made meeting much more difficult and our original time

impossible. Allison, as the manager of the group, sent out a When2Meet to

try to find a time that worked for everyone. With such limited results, it was :!—H

agreed that Wednesday from 10:30-11:30pm would be our meeting time. S
Unfortunately this was also not the most consistent time and so we also

met on multiple Sundays (both just as a group and with Justin) especially during
November/December.

| think this struggle to find times that worked for everyone was particularly detrimental to our
progress. It also took us a while to truly understand what it meant to code in vertical slices. We
first broke up the assignment based on files (two of us working on codegen and two on
semantic). This was not productive to testing because you could not test until everyone had
pushed their separate parts to GitHub. Without testing across programs, our progress felt like it
was going quite well when in actuality there were many inconsistencies and bugs when
integrating the full program. Thus despite the fact each group member spent roughly 3-5 hours
on this project per week (with some inconsistencies of course), our progress as a team was
quite slow. We later decided to code by language concept instead of by coding concept, so
everyone was forced to become fairly familiar with all parts of the code, but you could also test
on your own branch independently from any other updates. The sped coding up quite a bit, but
also made it difficult to help one another when people became more experienced in very neash
sections of the code.

Ultimately, our planning process failed, as we were unable to generate a complete project.

While we hope this documentation helps illuminate the amount of work we put into the project,
we clearly did not allocate enough time. While all of us are quite independently busy and we are

20

all guilty of not better handling that work load, | do believe our group’s trouble with finding time
to meet up and work together or with guidance from the TA greatly contributed.

Development Process

When we began concept and code development, we would tend to meet up to discuss specific
problems or questions, but we would usually code independently. | believe our progress was on
track throughout the turn in deadlines of our proposal, language reference manual, and
LRM/Parser. Unfortunately, once MicroC was released, it took us a while to realize we were
supposed to create our code off of MicroC. Once Justin made it clear this was probably the best
way to create this language, we started a new repo with just MicroC code and used what we
had already done to update it. In some ways this was useful because MicroC had many things
we did not know how to implement yet, but it also was quite challenging starting over. For
HelloWorld turn in assignment, we just barely had figured out MicroC and were still struggling to
implement some elements that our original independent code had.

| think part of what made this project challenging was that we had very specific ideas about what
we wanted out language to do. As a result, we did not have a good language to base our code
off of or to see how they implemented things. There are surprisingly few tree languages
published throughout the years of PLT and many of them do not have codegen. Although some
graph languages (such as Justin’s group’s workspace or Giraph or yeezyGraph) were fairly
useful, it was quite difficult to find a good model. All of these projects and others, such as
BURGer and PLTree, were useful but ultimately incredibly different from our code. This led us to
have multiple iterations of our project each implementing certain things (primarily functions and
nodes) slightly differently. | think because all of these code examples are so different (some use
the sast in codegen and others do not, some have weighted edges and other laura counts,
some cast and others do not, etc.), it was challenging to come up with a cohesive design idea
between all of us.

Ultimately, our Tree++ code has stayed very similar to our original LRM (other than removing
tuples for increased simplicity); however, this code did not work correctly until the day of the
presentation. There is a major design flaw in how we wrap our system with a main function,
leaving this to codegen (as exemplified in the BURGer code). As we were not able to get this
code, that more accurately displayed our language concept, to work, we tried a number of
approaches to fixing it. Jacob, mainly, stayed trying to work out many of the bugs, whereas
Laura S and Allison tried implementing many of our distinct functionalities in the stable
environment of BURGer, which is the code we first based many of our implementations off of.
When this was also not working, mainly because of BURGer’s lack of sast and thus a huge
re-working of codegen and semant, we reverted back to a very early version of our modification
of MicroC, which is mainly MicroC but with a few added elements, such as String and Mod. This
MicroC+ version is similar to what we turned in for Hello World, however, it also includes strings
and some node implementation that includes the C code backend. However, it does not

21

accurately reflect the time and progress we feel we have made in coding and understanding

how to code a language.

After presenting to Professor Edwards, we were able to make quite a few big changes and get
our Tree++ code to work for a number of implementations. Currently, the main is still hidden in
codegen; however, it now allows Tree++ to compile and display code. All of our types besides
string work, our operators, if statements and blocks, inline assignment and declaration, and
functions all work. While we would have loved to add more features, especially including nodes,
we were unable due to time constraints. We focused on getting some of these features working
and creating test cases for them rather than try to include nodes, which took such a significant
amount of time to implement them even partially in MicroC+.

Project Timeline

Dates

Goals

September 8-25

Assemble members of team, create established meeting
times, develop idea for language, write proposal

September 26

Submit proposal

September 27-October 15

Work on developing language from conceptual state to having
a significant chunk of code written

October 16

Submit LRM and Parser (also included scanner and ast)

October 16-November 11

Work on developing our program with MicroC as reference

November 11

Created new git repo after realizing we were supposed to start
with MicroC as our basis code

November 11-14

Work on HelloWorld with MicroC

November 14

Turn in HelloWorld for MicroC + mod

November 15-December 15

Working on Tree++ code: changing from MicroC to our
language

December 15-18

Got major error in Tree++ code because of main and started
to work on fixing project/adding implementations to first
BURGer code and then MicroC from HelloWorld turnin

December 19

Present Final Presentation and submit Final Report

22

Software Development Environment

To build giraph, we used these languages and development tools:
* OCaml version 4.07.0: for scanning, parsing, and semantic checking
* llvm version 7.0.0
+ C: for building and manipulating nodes
» Makefile: for compiling and linking
+ Git and Github for version control and hosting our git repository, respectively
* Bash Shell scripting: for automating testing

Style Guide

We used the following conventions while programming our Tree++ compiler, in order to ensure
consistency, readability, and transparency.
e OCaml editing and formatting style to write code for compiler architecture
e C language editing and formatting style for inspiration for Tree++ program code
e C language editing and formatting for the c-integration code
e Comments for the OCaml code should be consistent and explanatory, the structure is file
dependent

A few other style guidelines to note:

File names end in .mc

The file structure should remain the same as microc to limit confusion
Variable identifiers begin with a lowercase letter and are camelcase

Function identifiers begin with a lowercase letter and are camelcase
Never include a main function in Tree++ program

Some past group’s projects that were particularly inspiring:
e \Workspace
e Giraph
e BURGer
e PLTree

Roles and Responsibilities

Allison Costa: Manager

My responsibility was to help manage the group, organize us, and keep us on time for
deliverables. | did this mostly by facilitating most of the emails and meeting times for our group
to meet with Justin (our TA) and to make clear and give reminders about when things were due
and what people’s different responsibilities were for each section. With the help of my

23

teammates | also helped code some of the scanner and ast for our initial code as well as some
of the first extensions of the MicroC code. | mostly focused on the codegen, sast, and parser.

Laura Matos: Tester

My responsibility was to create tests for the project to run to see if everything is working
fine. We had many limiting factors because of the roadblocks we stumbled upon. | also did most
of the C backend to provide an API for the project to use to for manipulating nodes. In addition, |
created the tests for the C backend, and functions as well as worked vertically to try to iron out
problems in in the ast, codegen and parser.

Jacob Penn: System Architect

In this project | was the point person on the semant, and become extremely familiar with
what it does as well on how to translate parameters so that code translation works from the ast
-> semant -> sast -> codegen. Although this was my main focus, | also made numerous
changes to ast, parser, sast, and codegen. | also integrated the ¢ functions into our language.

Laura Smerling: Language Guru

My responsibility was to decide the parameters and specifications for our language. With
the help of my teammates | wrote the language reference manual. Throughout the project |
modified the manuel to continue to fit our continuously changing program. | then moved on to
defining our language in the scanner, parser and ast. After adding some basic features to
scanner, parser and ast, as we starting working in vertical slices | moved on to working on the
codegen. | mostly focused on adding in the node features to those portions of our project and
making sure there there were no shift reduce errors. With the way our project was implemented
we broke our connection to node in the codegen and decided to remove it from our final code
repository. | also created the sample programs, the power point and the final report.

Project Log

See appendix for our project log.

24

Architectural Design

Components

SCANNER ., PARSER __p, SEMANTIC CHECKING

CODE GENERATION . LLVM IR

TREE++
EXECUTABLE

Interfaces Between Components

At the beginning of our project we broke the files up by person writing them. With Jacob Penn
working on the parser, Allison Costa working on the scanner and Laura Smerling working on the
language reference manual. We then decided to work on our language through vertical slices so
we all worked on many of the files specifically implementing features.

Scanner.mll (AIIison Costa, Laura Smerling,Jacob Penn, Laura Matos)

As having a basis from the microc source file, scanner reads the source Tree++ code and does
lexical analysis. We created tokens for all of the different objects that would appear in our input
source code. This is the alphabet for our language as it does not allow any illegal characters to
pass. If there are illegal tokens then the program will throw a parsing error.

microcparse.mly(Allison Costa, Laura Smerling, Jacob Penn, Laura Matos)

The parser reads tokens from the scanner and makes sure that they are syntactically correct.
The parser is the spell checker of our language. If the process of parsing has no errors it will
successfully create an Abstract Syntax Tree.

Ast.ml (AIIison Costa, Laura Smerling, Jacob Penn, Laura Matos)
The abstract syntax tree provides the basic syntax for our language.

25

Semant.ml(Allison Costa, Jacob Penn)

Our Semantic Checker provides many of the same checks as MicroC. The semantic checker is
responsible for walking through the AST that was generated by the parser and make sure that
the input file doesn’t violate any syntactic rules. Where the parser was able to complain when it
found a missing bracket or brace, the semantic checker is able to tell the user when they are
doing something that is not supported by the user such as assigning a string literal into a int
type. It is also responsible for a table of variable names and functions (symbol table) that we
combined into items so that it can complain if a program is trying to access an undeclared
variable or function. It also contains a list of all predefined functions in the language and will
complain when the parameters don’t match in a function call.

codegen.ml(AIIison Costa, Laura Smerling, Jacob Penn, Laura Matos)

Codegen “translates” functions and statements given to it from the semantic checker and
returns a program that can be read by the toplevel and allows for the implementation of a great
deal of our code.

toplevel.ml(Allison Costa, Jacob Penn)
The toplevel of Tree++ is taken almost completely from MicroC. It importantly prints out the

LLVM code, but comments out some of the checking.
C_files(Laura Matos)

The backend C code that basically gives the tree functionality to the language. It implements a
node structure and provides the API that is integrated/defined in the codegen file.

Test Plan

Unit Testing

Early stages of parser testing were carried out with using ocamlyacc -v and looking
through the resulting .output files. We found looking at which states threw errors particularly
helpful when first trying to understand how different elements were going to fit into the larger
scope of the program (for instance, deciding whether assign should be an expr, a stmt or both,
was decided by looking at how the parser implements it). We also ran short programs with the
parser trace option ocamlrunparam=p. We continued with unit testing for all of our programs
especially when we were delinating work via program rather than idea/component.

26

Reqgression Testing

Our test cases main consisted of the tests that MicroC runs automatically with make.
These were a general design for any changes to them we made as we tried to implement new
functionality. Unfortunately, due to not getting our code working correctly, we have very limited
testing, as the vast majority of our work was focused on getting all of our files to compile
together without any errors.

We were able to make a couple of tests for the final MicroC+ code we presented, but our
testing for Tree++ is incredibly limited, which (in retrospect) should have made us more aware of
the danger of not integrating all of our code sooner.

Tests in C

Unlike the tests for the rest of the project, there was a separate directory for the C code
in the backend. We kept the tests exclusive to that branch to be compiled and run through a
Makefile so there is little confusion. The tests for this section of the repository are unit tests
since we were not able to get far enough to link the C backend code with the rest of the project
for regression testing. The tests for part of the project could be more verbose since they were
unit tests and they demonstrated whether tests for the tree structure were an issue could not
reach the end of the tree.

--create_int_node
Data: 5
Data: 11

create_char_node
Data: c
Data: a

create_float_node
Data: 5.500000
Data: 11.500000 shift_left_three
Data:
DEREN
init_root Ao
T g Data:
== 1 o Data:
DEREN
-add_child---

Data: o 2
Data: 11 . g:z::
Data: 77 B
Data: 71 : Data:
Data: 21 : Data:
DEREN
deep_swap_same_level = Data:
Data: 5
Data: 77
Data: 11

Data: 11 get_root

DEREN
Data: 5 2 Data:
Data: 11 . Data:
Data: 77
ke is_ancestor
Data:'5 ancestor 1 == 1
Data: 77 ancestor 1
Data: 11 ancestor 1
Data: 11 ancestor 0

nnni

1
it
(0]

27

Representative Language Programs with Target Language Programs
Source Program (sample_hello_node.mc):
int main()
{
string i;
i = "hello world!";

node<string> hello_world = (“root”);
hello_world. root;

node<string> n = "Hello";
hello_world.add_child(n);
node<string> m = ("world");
hello_world.add_child(m);

printn(hello_world);
return 9;

Unable to show output

Tests to Decl Branch

" . . " File Edit view Search Terminal Hel
File Edit View Search Terminal Help T —

f* testz.bc *f source_filename =

int 1 10; = global i32

- e = global i32 o

int n 3 gz - global 132

i = . @test = global 132

}J1t “ z @fmt = private unnamed_addr constant [4 x 18] c

int test = z * 1; @fmt.1 = private unnamed_addr constant [4 x i8] c
declare 132 @print(is*, ...)
declare 132 @printf(is*, ...)

declare 132 @printbig(i3z, ...)

define 132 @main() {
entry:

ret i32
}

d c U .
al@numel:~/project/Tr $./microc.native test2.mc > test2.bc
Terminator found in the middle of a basic block!

label %entry

LLVM ERROR: odule found, compilation aborted!

al@numel:~ 0" I S

Luckily after presenting and getting some advice from Professor Edwards, we were able to fix at
least some of the problems with the decl branch, which is closest to our Tree++ language, but

28

still unfortunately without a lot of the features we planning and have coded, despite not being
able to integrate.

Lessons Learned

Allison Costa

| think | truly gained a new appreciation for how difficult and complex creating a new language is
because to make a new language you have to put together parts of multiple different languages.
This is a very tricky process and complex to navigate especially when unexperienced in a
number of the key languages. | think, especially because my group was stuck on some of our
code, | learned a great deal about debugging and editing a language. | also was amazed by
how little the unit tests mattered once the code was compiled. While | head Prof. Edwards say
this when introducing the project, it did not really sink in until my group was faced with this
problem.

Laura Matos

Although the code that works individually is good and usually indicates the code is good, more
regression testing is always necessary because passing unit tests leads people to a false sense
of security. On the other hand, I've realized that while not being too attached to code helps you
with flexibility, creating and abandoning branches every time you run into another error is not a
viable way to solve your problems as it leads you to repeat yourself and usually go down
avenues that lead to even harder problems and errors to move through.

Jacob Penn

Untested code is broken code. On the other hand, hours of error testing make you a whole lot
more familiar with the code in question. | have attained a deep respect for ocaml and the
exciting complexity of the language design / compiler process.

Laura Smerling

A huge portion of the project was to learn how to work on a team and be on top of
changing schedules. Although each member was working on a different task all of the code
needed to integrate properly. This integration | realized is the most important part of the project
and took up the most allotment of time. The sooner you integrate the better. Additionally |
learned a lot about the way in which programming languages are designed and how compilers
are built. | realized that error checking is different when writing a compiler. While unit tests in
other cases are helpful they do not register integration.

29

Advice

Start early and do not be afraid to ask questions until you really understand what is going on in
the code and what advice the TAs/Professor is giving you to fix it. It is much better to ask lots of
questions and then feel confident in your work, than not ask questions and have more questions
later when it is harder to change things.

Appendix: Tree++

Scanner.mll

(* Ocamllex scanner for

MicroC *)
{ open Microcparse }

let digit = ['@' - '9']

let digits = digit+

rule token = parse

[' " "\t" '\r" "\n'] { token lexbuf } (* Whitespace *)
(VA { comment lexbuf } (* Comments *)
| ¢ { LPAREN }

[") { RPAREN }
| {' { LBRACE }
["} { RBRACE }
| [{ LBRACK }
[1" { RBRACK }
|5 { SEMI }

[e { COLON }

| ', { COMMA }

30

L { PLUS }

o { MINUS }
e { TIMES }
%" { MoD }
A { DIVIDE }
= { ASSIGN }
{ EQ }
"1=" { NEQ)
<! { LT }

"= { LEQ }
R {67}

">= { GEQ }
"g&" { AND }
"l { OR }

e { NOT }
"if" {IF }
"then" { THEN }
"else" { ELSE }
"for" { FOR }
"while" { WHILE }
"return” { RETURN }
"string" { STRING }
"int" { INT }
"bool" { BOOL }
"float" { FLOAT }

"void" { VvOID }
"node" { NODE }
".data" { DATA }
".parent"” { PARENT }

".level" { NODE_LEVEL }

31

Semant.ml

(* Semantic Checker for the

Tree++ Programming Language

I
{
I
{
I

e { LSHIFT_NODE }
"yt { RSHIFT_NODE }

man { SWAP_NODE }
".find_node" { FIND_NODE }
".add_node" { ADD_NODE }
".remove_node" { REMOVE_NODE }
"bfs" { BFS }

"dfs" { DFS }

"function" { FUN }

"true" { BLIT(true) }

"false" { BLIT(false) }

digits as 1xm { LITERAL(int_of_string 1xm) }

as 1xm

digits '.' digit* (['e" 'E'] ['+" '-']? digits)? as 1lxm
FLIT(1xm) }

['a'-"z" '"A"-"Z"]['a'-"2z" 'A'-"Z" '@'-'9" '_']*

ID(1xm) }

eof { EOF }

as char { raise (Failure("illegal character

Char.escaped char)) }

and comment = parse

"k/" { token lexbuf }

| _ { comment lexbuf }

PLT Fall 2018
Authors:
Allison Costa
Laura Matos

Laura Smerling

N

32

Jacob Penn

*)

open Ast

open Sast

module StringMap = Map.Make(String)

(* Semantic checking of a program. Returns void if
successful,

throws an exception if something is wrong.

Check each global variable, then check each function *)

let check_program program =

(* Raise an exception if the given list has a duplicate *)
let report_duplicate exceptf list =
let rec helper = function
nl :: n2 :: _ when nl1 = n2 -> raise (Failure
(exceptf n1))
| _:: t -> helper t
| [1->0

in helper (List.sort compare list)

in

(* figure out which items are statements and make a list
of statements *)

let stmt_list =

33

let stmts_as_items =
List.filter (fun x -> match x with
Ast.Stmt(x) -> true
| _ -> false) program
in List.map (fun x -> match x with
Ast.Stmt(x) -> x

| _ -> failwith "stmt casting didn't work")
stmts_as_items

in

(* after you figure out which items are statements, you
need to go through the statements
and figure out which ones contain the variable
declarations and

variable decl+assignment statements *)
let globals =
let global_list = List.filter (fun x -> match x with
Ast.VarDec((_, x),) -> true
| _ -> false) stmt_list
in List.map (fun x -> match x with
Ast.VarDec(x, _) -> X
| _ -> failwith "not turned into global") global list

in

let functions =

let functions_as_items = List.filter (fun x -> match x
with

Ast.Function(x) -> true
| _ -> false) program
in

let all_functions_as_items = functions_as_items

34

in List.map (fun x -> match x with
Ast.Function(x) -> x

| _ -> failwith "function casting didn't work")
all functions_as_items

in

(* let function_locals =
let get_locals_from_fbody fdecl =
let get _vdecl locals_list stmt = match stmt with

Ast.VDecl(typ, string) -> (typ, string) ::
locals_1list

| _ -> locals_list
in
List.fold_left get_vdecl [] fdecl.Ast.body

in List.fold_left get_locals_from_fbody (List.hd
functions) (List.tl functions)

in *)

let symbols = List.fold_left (fun var_map (varType,
varName) -> StringMap.add varName varType var_map)

StringMap.empty (globals)

in

let type_of_identifier s =
try StringMap.find s symbols

with Not_found -> raise (Failure ("undeclared identifier

" rs))

in

(* Raise an exception of the given rvalue type cannot be

assigned to

35

the given lvalue type *)
let check_assign lvaluet rvaluet err =
if lvaluet == rvaluet then lvaluet else raise err

in

(* Raise an exception if a given binding is to a void type
*)
let check_not_void exceptf = function
(Void, n) -> raise (Failure (exceptf n))
>0

in

let built_in_decls = StringMap.add "println"

{ typ = Void; fname = "println"; formals = []; body =

(1}
(StringMap.singleton "printbig"

{ typ = Int; fname = "printbig"; formals = [(Int,"x")];
body = [] })

in

let function_decls = List.fold_left (fun m fd ->
StringMap.add fd.fname fd m)

built_in_decls functions

in

let function_decl s = try StringMap.find s
function_decls
with Not_found -> raise (Failure ("unrecognized

function " ~ s))

36

in

(*checks to see if any library functions are defined by
user - not allowed *)

let check_function func =

report_duplicate (fun n -> "duplicate formal " ~ n ~ "
in " ~ func.fname)

(List.map snd func.formals);

if List.mem "print" (List.map (fun fd -> fd.fname)
functions)
then raise (Failure ("function print may not be
defined")) else ();

if List.mem "println" (List.map (fun fd -> fd.fname)
functions)
then raise (Failure ("function println may not be
defined")) else ();

if List.mem "printf" (List.map (fun fd -> fd.fname)
functions)
then raise (Failure ("function printf may not be
defined")) else ();

report_duplicate (fun n -> "duplicate function " ~ n)

(List.map (fun fd -> fd.fname) functions);

if List.mem "main" (List.map (fun fd -> fd.fname)
functions)
then raise (Failure ("function main may not be
defined")) else ();

37

List.iter (check_not_void (fun n -> "illegal null formal
"/\n/\

in " ~ func.fname)) func.formals;

(* List.iter (check_not_void (fun n -> "illegal void
local " A~ n

" in " 2~ func.fname)) func.locals; *)

(* report_duplicate (fun n -> "duplicate local " ~ n "~ "
in " ~ func.fname)

(List.map snd func.locals); *)

in

let rec expr = function
Literal 1 -> (Int, SLiteral 1)

| Fliteral 1 -> (Float, SFliteral 1)

BoolLit 1 -> (Bool, SBoolLit 1)

Sliteral 1 -> (String, SSliteral 1)

| Id s -> (type_of_identifier s, SId s)

Assign(var, e) as ex ->
let 1t = type_of_identifier var
and (rt, e') = expr e in
let err = Failure("illegal assignement " ~

string of_typ 1t ~ " =" ~
string_ of_typ rt ~ " in " ~ string_of_expr ex)
in (check_assign 1t rt err, SAssign(var, (rt,
e')))
| Binop(el, op, e2) as e -> let (t1l, el') = expr el and
(t2,e2') = expr e2 in
let ty = match op with

38

Add | Sub | Mult | Div | Mod when t1 = Int && t2 =
Int -> Int

| Equal | Neq when t1 = t2 -> Bool

| Less | Leq | Greater | Geq when t1 = Int && t2 =

Int -> Bool
| And | Or when tl1 = Bool && t2 = Bool -> Bool

| _ -> raise (Failure ("illegal binary operator " ~
string_of_typ t1 ~ " " ~ string of op op ~ " " *
string of_typ t2 ~ " in " ~ string_of_expr e))
in
(ty, SBinop((tl, el'), op,(t2, e2')))

| FunCall(fname, actuals) as call -> let fd =

function_decl fname in

if (fname = "print" || fname = "println")

then

let sactuals = List.map (fun e -> expr
e) actuals in (fd.typ,SFunCall(fname, sactuals));

else

(if List.length actuals != List.length fd.formals
then

raise (Failure ("expecting " ~ string_of_int

(List.length fd.formals) ~ " arguments in " *
string_of_expr call))

else

List.iter2 (fun (ft, _) e -> let (t, et) = expr e
in
ignore (check_assign ft t

(Failure ("illegal actual argument: found "

A string of_typ t 7

" ; expected " ~ string_of_typ ft ~ " in " ~
string_of_expr e))))

fd.formals actuals;

let sactuals = List.map (fun e -> expr e)
actuals in

(fd.typ,SFunCall(fname,sactuals))) (* this is
pretty sketch *)

39

| Unop(op, e) as ex -> let (t, e') = expr e in
(match op with
Neg when t = Int -> (Int, SUnop(op,(t, e')))

| Not when t = Bool -> (Bool, SUnop(op, (t,
e')))
| _ -> raise (Failure ("illegal unary operator "
~ string_of_uop op *
string of_typ t ~ " in " 7
string_of_expr ex)))

| Noexpr -> (Void,SNoexpr)

in

let check_bool_expr e = if fst (expr e) != Bool

then raise (Failure ("expected Boolean expression in " *
string_of_expr e))

else expr e

in

let rec check_stmt s = match s with
Expr e -> SExpr (expr e)
| varDec((t,s),e) -> SVarDec((t,s),expr e)

| 1f(p, b1, b2) -> SIf(check_bool_expr p, check_stmt
bl, check_stmt b2)

| For(el,e2,e3,s)-> SFor(expr el, expr e2, expr e3,
check_stmt s)

| while(p, s) -> SwWhile(check_bool_expr p,
check_stmt s)

| Return e -> SReturn(expr e)
(* let (t, e') = expr e in
if t = func.typ then SReturn (t, e')

else raise (Failure ("return gives " 7

string_of_typ t ~ " exprected "
N string of_typ func.typ ~ " in " ~

string_of_expr e)) *)

40

| seq s1 -> let rec check_seq = function
[Return _ as x] -> [check_stmt x]

| Return _ :: _ -> raise (Failure "nothing may
follow a return")

| seq sl :: ss -> check_seq (sl @ ss)
| s :: ss -> check_stmt s :: check_seq ss
[[1->1]

in SSeq(check_seq sl)

in

let realcheck_functions func =
{
styp = func.typ;
stname = func.fname;
sformals = func.formals;
sbody = (List.map check_stmt func.body);}

in

(* Check for assignments and duplicate vdecls *)
(* let y = (List.map check_stmt stmt_list) *)
let _ = ignore(List.iter check_function functions) in
let convert x = List.map (fun y -> SStmt(y)) x in
let transmit z = List.map (fun y -> SFunction(y)) z in

(transmit (List.map realcheck_functions

functions),convert(List.map check_stmt stmt_list));

(* ignore(List.iter check_function functions);
ignore(List.map check_stmt stmt_list);*)

(* List.iter stmt stmt_list; *)

41

(*report_duplicate (fun n -> "Duplicate declaration or

assignment for " ~ n) (List.map snd globals);*)

Sast.ml

(* Semantically-checked Abstract
Syntax Tree and functions for

printing it *)

open Ast

type sbind = typ * string

type sexpr

typ * sx
and sx =
SLiteral of int
| SFliteral of string
| SBoolLit of bool
| sSliteral of string
| SNodeLit of sexpr * sexpr
| SNodeData of sexpr
| SNodeParent of sexpr
| SNodeLevel of sexpr
| SLNodeShift of sexpr
| SRNodeShift of sexpr
| SSwapNode of sexpr * sexpr
| SFindNode of sexpr * sexpr
| sAddNode of sexpr * sexpr
| SRemoveNode of sexpr * sexpr
| SId of string

| SBinop of sexpr * op * sexpr

42

| SUnop of uop * sexpr
| SAssign of string * sexpr
| SFunCall of string * sexpr list

| SNoexpr

type sstmt =
SSeq of sstmt list
| SExpr of sexpr
| SReturn of sexpr
| SIf of sexpr * sstmt * sstmt
| SvarDec of sbind * sexpr
| SFor of sexpr * sexpr * sexpr * sstmt

| SWhile of sexpr * sstmt

type sfunc_decl = {
styp : typ;
sfname : string;
sformals : bind list;
sbody : sstmt list;
}
(*

type SStmt = sstmt

type SFunction = sfunc_decl
*)
type sitem =

SStmt of sstmt

| SFunction of sfunc_decl

43

type sprogram = sitem list

(*type sprogram = sfunc_decl list * sstmt list*)

(* Pretty-printing functions *)

let rec string_of_sexpr (t, e) =
"(" ~ string_of_typ t ~ " ¢ " A (match e with
SLiteral(l) -> string of_int 1
| SBoolLit(true) -> "true"

| sBoolLit(false) -> "false"

| SFliteral(l) -> 1
| sSliteral(l) -> "\""™ ~ 1 A "\""

| SNodeLit(el, e2) -> string_of sexpr el ~ "," 7
string_of_sexpr e2

| SNodeData(e) -> string_of_sexpr e ~ ".data"

| SNodeParent(e) -> string_of_sexpr e *~ ".parent"
| SNodeLevel(e) -> string of sexpr e ~ ".level"

| SLNodeShift(e) -> string_of_sexpr e » "<<"

| SRNodeShift(e) -> string_of_sexpr e ~ ">>"

| SSwapNode(el, e2) -> string_of_sexpr el ~ "A"
string_of_sexpr e2

| SFindNode (g,param) -> string_of sexpr g

~ ".find_node(" ~ string_of_sexpr param ~ ")"
| SAddNode (g,param) -> string_of_sexpr g

~ ".add_node(" ~ string_of_sexpr param * ")"
| SRemoveNode (g,param) -> string_of_sexpr g

A~ ".remove_node(" ~ string_of_sexpr param *
II)II
| s1d(s) -> s

| sBinop(el, o, e2) ->

44

string of_sexpr el ~ " " ~ string of op o ~ " "
~ string_of_sexpr e2
| SUnop(o, e) -> string of uop o * string of_ sexpr
e
| SAssign(v, e) -> v ~ " =" ~ string of_sexpr e

| SFunCall(s,e) -> s ~ "(" ~ String.concat ",

(List.map string_of_sexpr e) ~ ")

un

| SNoexpr ->

A

let rec string_of _sstmt = function

SSeq(stmts) ->

"{\n" ~ String.concat
string_of_sstmt stmts) ~ "}\n"

(List.map

| SExpr(expr) -> string_of_sexpr expr ~ ";\n";

| SReturn(expr) -> "return " ~ string_of_ sexpr expr
~ "Nt

| sif(e,s1,s2) -> "If(" ~ string_of_sexpr e ~ ") {"
AN string _of_sstmt s1 ~ "} Else {" ~ string of_sstmt
s2 N "

| svarDec((t, s),e) -> string of typ t ~ " " ~ s~
" =" ~ string_of_sexpr e

| SFor(el, e2, e3, s) ->

"for (" ” string_of sexpr e1 ~ " ; " A
string_of_sexpr e2 ~ " ; "~

string_of_sexpr e3 ~ ") " ~ string of_sstmt s

| SWhile(e, s) -> "while (" ~ string_of_sexpr e "

") " ~ string_of_sstmt s

let string_of_sfunc_decl func_decl =

func_decl.sfname ~ "<" ~ string_of_typ
func_decl.styp *

">(" ~ String.concat ", " (List.map snd

func_decl.sformals) *

45

Microparse.mly

/* Ocamlyacc
parser for MicroC
*/

DAGE

String.concat
func_decl.sbody) *
"}\n"

(List.map string_of_sstmt

let string_of_sprogram stmts =

String.concat (List.map string_of_sstmt stmts)

(* String.concat (List.map string_of_vdecl

vars) ~ "\n" ~
String.concat "\n" (List.map string_of_sfunc_decl

funcs) *)

a1
open Ast

%}

%token SEMI COLON LPAREN RPAREN LBRACE RBRACE LBRACK RBRACK COMMA
DATA NODE_LEVEL PLUS MINUS TIMES MOD DIVIDE ASSIGN
%token NOT EQ NEQ LT LEQ GT GEQ AND OR FUN

%token RETURN IF THEN ELSE FOR WHILE BFS DFS
%token INT BOOL FLOAT VOID STRING NODE PARENT

%token LSHIFT_NODE RSHIFT_NODE SWAP_NODE ADD_NODE REMOVE_NODE
FIND_NODE
%token <int> LITERAL

%token <bool> BLIT

%token <string> ID FLIT

46

%token EOF

%start program

%type <Ast.program> program

%nonassoc FUN NOELSE
%nonassoc ELSE SEMI COLON
%right ASSIGN

%left PARENT

%left DATA NODE_LEVEL
%left OR

%left AND

%left EQ NEQ

%left LT GT LEQ GEQ
%left PLUS MINUS

%left TIMES DIVIDE MOD
%right NOT

%left LSHIFT_NODE RSHIFT_NODE ADD_NODE REMOVE_NODE SWAP_NODE
FIND_NODE
%%

program:

item_list EOF { List.rev $1 }

item_list:
{[1}

item_list item {$2 :: $1}

item:
stmt { Stmt($1) }

| fdecl { Function($1) }

typ:
INT { Int }
| BooL { Bool }
| FLOAT { Float }
| voID { Void }
| STRING { String }

| NODE LT typ GT { Node($3) }

stmt_list:

stmt { [$1] }

| stmt_list stmt { ($2 :: $1) }

stmt:
expr SEMI { Expr($1) }
| RETURN expr SEMI { Return (%$2) }

| IF LPAREN expr RPAREN THEN LBRACE stmt_list RBRACE ELSE LBRACE

stmt_list RBRACE { If($3, Seq($7),Seq($11)) }
| typ ID ASSIGN expr SEMI {VvarDec((%$1, $2),
$4)}

| FOR LPAREN expr SEMI expr SEMI expr RPAREN LBRACE stmt_list RBRACE

{ For($3, $5, $7, Seq($10)) }
I WHILE LPAREN expr RPAREN LBRACE stmt_list RBRACE {

While($3, Seq($6)) }

48

expr:

LITERAL { Literal($1) }
| FLIT { Fliteral($1) }
| BLIT { BoollLit($1) }
| ID { 1d($1) }
| expr PLUS expr { Binop($1, Add, $3) }
| expr MINUS expr { Binop($1l, Sub, $3) 1}
| expr TIMES expr { Binop($1, Mult, $3) }
| expr MOD expr { Binop($1, Mod, $3) }
| expr DIVIDE expr { Binop($1, Div, $3) }
| expr EQ expr { Binop($1, Equal, $3) }
| expr NEQ expr { Binop($1, Neq, $3) }
| expr LT expr { Binop($1l, Less, $3) }
| expr LEQ expr { Binop($1, Leq, $3) }
| expr GT expr { Binop($1l, Greater, $3) }
| expr GEQ expr { Binop($1, Geq, $3) }
| expr AND expr { Binop($1, And, $3) }
| expr OR expr { Binop($1, Or, $3) }
| MINUS expr %prec NOT { Unop(Neg, $2) }
| NOT expr { Unop(Not, $2) }
| ID ASSIGN expr { Assign($1, $3) }

| ID LPAREN actuals_opt RPAREN { FunCall($1, $3) }

| LPAREN expr RPAREN { $2 }

/* Node Auxillary*/
/*
| expr DATA { NodeData($1) }

| expr DATA ASSIGN expr { Assign(NodeData($1), $4)}

| expr
| expr
| LBRA
| expr
| expr
| expr
| expr
| expr
| expr

| expr

*/

fdecl:

PARENT ASSIGN expr { Assign(NodeParent($1), $4) }
PARENT { NodeParent($1) }
CK expr COMMA expr RBRACK { NodeLit($2, $4) }
NODE_LEVEL { NodeLevel($1) }

LSHIFT_NODE { LNodeShift($1)}

RSHIFT_NODE { RNodeShift($1)}

SWAP_NODE expr { SwapNode($1, $3) }

FIND_NODE LPAREN expr RPAREN { FindNode($1, $4) }
ADD_NODE LPAREN expr RPAREN { AddNode($1, $4) }

REMOVE_NODE LPAREN expr RPAREN { RemoveNode($1, $4) }

FUN typ ID LPAREN formal_opt RPAREN LBRACE stmt_list RBRACE

{{ typ = $2;

.F
.F

b

y3

name = $3;
ormals = $5;

ody = List.rev $8;

actuals_opt:

/*

| a

nothing */ { [] }

ctuals_list { List.rev $1 }

actuals_list:

expr { [#1]1 }

| actuals_list COMMA expr { $3 :: $1 }

formal_

opt:

50

/* nothing */ { [] }

| formal list { List.rev $1 }

formal_list:

typ ID { [($1,$2)]}

| formal_list COMMA typ ID { ($3,%$4) :: $1 }

Microc.ml

(* Top-level of the MicroC compiler:

scan & parse the input,

check the resulting AST and generate an SAST

from it, generate LLVM IR,
and dump the module *)

type action

let () =

let action = ref Compile in

let set_action a () = action :

let speclist = [

("-a", Arg.Unit (set_action
AST");

("-s", Arg.Unit (set_action
SAST");

"-1", Arg.Unit (set_action
the generated LLVM IR");

("-c", Arg.Unit (set_action

Ast | Sast | LLVM_IR | Compile

in

I
Q

Ast), "Print the

Sast), "Print the

LLVM_IR), "Print

Compile),

"Check and print the generated LLVM IR

(default)");

1 in

let usage_msg = "usage: ./microc.native

[-al-s|-1]-c] [file.mc]" in

let channel = ref stdin in

51

Codegen.ml

(*

Arg.parse speclist (fun filename -> channel :=

open_in filename) usage_msg;

let lexbuf = Lexing.from_channel !channel in

let ast = Microcparse.program Scanner.token
lexbuf in

(* let sast = Semant.check_program ast in*)

let m = Codegen.translate (Semant.check_program
ast)

in Llvm_analysis.assert_valid_module m;
(* match laction with
Ast -> print_string (Ast.string of program ast)
| _ -> let sast = Semant.check_program ast in
match laction with
Ast -> ()

| sast -> print_string
(Sast.string_of_sprogram sast)

| LLVM_IR -> print_string
(Llvm.string_of_llmodule (Codegen.translate sast))

| Compile -> let m = Codegen.translate sast in
Llvm_analysis.assert_valid _module m; *)

print_string (Llvm.string_of_llmodule m);

* Code generation for MicroC Programming Language

* Authors

*)

module L
module A

open Sast

L1lvm

Ast

52

module StringMap = Map.Make(String)

let translate (functions,statements) =

let theprogram = (functions) @ (statements) in

let context = L.global_context () in
let the_module = L.create_module context "MicroC"
and i8 t = L.i8 type context

and str_t = L.pointer_type (L.i8 type context)

and i1_t = L.il_type context
and i32_t = L.i32_type context
and float_t = L.double_type context

and void_t

L.void_type context in

(* types of variables in BURGer*)
let 1ltype_of_typ = function
A.Int -> i32 t
| A.String -> str_t
| A.Bool -> i1 t
| A.Float -> float_t
| A.void -> void t
in
(* isolate list of items that match as statements and then form a list of statements

*)
let stmt_list =

let stmts_as_items =
List.filter (fun x -> match x with
SStmt(x) -> true

| _ -> false) theprogram

53

in List.map (fun x -> match x with
SStmt(x) -> x
| _ -> failwith "stmt casting didn't work") stmts_as_items

in

(*after you figure out which items are statements, you need to go through the
statements

and figure out which ones contain the variable declarations *)
let globals =
let global_list = List.filter (fun x -> match x with
SVarDec(x,) -> true
| _ -> false) stmt_list
in List.map (fun x -> match x with
SVarDec(x, _) -> X
| _ -> failwith "not turned into global") global_ list
in
let decode x = List.map (fun v -> match v with SStmt(y) -> y) x in
(* isolate list of statements that are NOT variable declarations *)
let not_globals_list = List.filter (fun x -> match x with
SvarDec(_,_) -> false

| _ -> true) (decode statements) in

(* from list of items in program, form list of functions from items and
build the main function *)
let functions =
(* generating the hidden main function *)
let sfunc_decl_main = SFunction{
styp = Int;
sfname = "main";

sformals = [];

54

sbody =(* SReturn(Void,SLiteral(@)) ::*) not_globals_list;

in
(* filtering out items that match as functions *)
let functions_as_items = List.filter (fun x -> match x with
SFunction(x) -> true
| _ -> false) theprogram
in
let all_functions_as_items = sfunc_decl _main :: functions_as_items
in List.map (fun x -> match x with
SFunction(x) -> x
| _ -> failwith "function casting didn't work") all functions_as_items

in

(* Store the global variables in a string map *)
let global_vars =
let global var map (t, n) =
if (ltype_of_typ t = str_t)
then (
let init = L.const_null str_t in
StringMap.add n (L.define_global n init the_module) map
)
else (
let init = L.const_int (1ltype_of_typ t) ©

in StringMap.add n (L.define_global n init the_module) map

in

List.fold_left global_var StringMap.empty globals in

55

(* printf() declaration *)
let print_t = L.var_arg_function_type i32_t [| L.pointer_type i8 t |] in

let print_func = L.declare_function "print" print_t the_module in

let printf_t = L.var_arg _function_type i32_t [| L.pointer_type i8 t |] in

let printf_func = L.declare_function "printf" printf_t the_module in

let printbig t = L.var_arg_function_type i32_t [| i32_t |] in

let printbig_func = L.declare_function "printbig" printbig_t the_module in

(* let println_t = L.var_arg function_type i32_t [| L.pointer_type i8 t |] in

let println_func = L.declare_function "println" println_t the_module in *)

(* Define each function (arguments and return type) so we can call it *)
let function_decls =
let function_decl map func_dec =
let name = func_dec.sfname
and formal_types = Array.of_list (List.map (fun (t,_) -> ltype_of_typ t)
func_dec.sformals)
in
let ftype = L.function_type (ltype_of_typ func_dec.styp) formal_types in
StringMap.add name (L.define_function name ftype the_module, func_dec) map
in
List.fold_left function_decl StringMap.empty functions

in

(* Fill in the body of the given function *)

let build_function_body func_dec =

let (the_function, _) = StringMap.find func_dec.sfname function_decls in

let builder = L.builder_at_end context (L.entry_block the_function) in

let int_format_str = L.build_global_stringptr "%d\n" "fmt" builder

and float_format_str = L.build _global_ stringptr "%g\n" "fmt" builder in

let local_vars =

let add_formal var_map (formal_type, formal_name) param = L.set_value_name

formal_name param;

in

let local = L.build_alloca (ltype_of_typ formal_type) formal_name builder in
ignore (L.build_store param local builder);
StringMap.add formal_name local var_map

in

let add_local map (formal_type, formal_name) =

let local _var = L.build_alloca (ltype_of_typ formal_type) formal_name builder

StringMap.add formal_name local_var map

in

let formals = List.fold_left2 add_formal StringMap.empty func_dec.sformals

(Array.to_list (L.params the_function)) in

let function_locals =
let get_locals_from_fbody function_body =
let get_vardec locals_list stmt = match stmt with
SVarDec((typ, string),) -> if (func_dec.sfname = "main"

then

57

locals_list
else
(typ, string) :: locals_list
| _ -> locals_list
in
List.fold_left get_vardec [] function_body
in get_locals_from_fbody func_dec.sbody
in List.fold_left add_local formals function_locals

in

let lookup n = try StringMap.find n local_vars
with Not_found -> StringMap.find n global_vars

in

(* generate code for different kinds of expressions *)
let rec expr builder ((_, e) : sexpr) = match e with
SLiteral i -> L.const_int i32 t i
| SBoolLit b -> L.const_int i1 t (if b then 1 else 9)
| SFliteral 1 -> L.const_float_of string float_t 1
| SNoexpr -> L.const_int i32_t ©
| s1d s -> L.build load (lookup s) s builder
| SBinop ((A.Float,) as el, op, e2) ->
let el' = expr builder el
and e2' = expr builder e2 in

(match op with

A.Add -> L.build_add
| A.Sub -> L.build_sub
| A.Mult -> L.build_mul

| A.Div -> L.build_sdiv

| A.Mod -> L.build_srem
A.And -> L.build and

I _
A.Or -> L.build or

I _

| A.Equal -> L.build_icmp L.Icmp.Eq

| A.Neq -> L.build_icmp L.Icmp.Ne
| A.Less -> L.build_icmp L.Icmp.S1t
| A.Leq -> L.build_icmp L.Icmp.Sle

| A.Greater -> L.build_icmp L.Icmp.Sgt
| A.Geq -> L.build_icmp L.Icmp.Sge
) el' e2' "tmp" builder
| SUnop(op, e) ->
let e' = expr builder e in

(match op with

A.Neg -> L.build_neg
| A.Not -> L.build_not)
e' "tmp" builder

| SAssign (s, e) -> let e' = expr builder e in ignore(L.build_store e' (lookup
s) builder); e’

| SFunCall ("print", [e]) | SFunCall ("printb", [e]) ->
L.build_call printf_func [| int_format_str ; (expr builder e) |]
"printf" builder
| SFuncall ("printbig", [e]) ->
L.build_call printbig func [| (expr builder e) |] "printbig" builder
| SFuncall ("printf", [e]) ->
L.build_call printf_func [| float_format_str ; (expr builder e) |]
"printf" builder
| SFuncall (f, args) -»
let (fdef, func_dec) = StringMap.find f function_decls in
let 1llargs = List.rev (List.map (expr builder) (List.rev args)) in
let result = (match func_dec.styp with

A.Void -> ""

59

| _ -> f ~ " _result") in
L.build_call fdef (Array.of_list llargs) result builder

in

(* Invoke "f builder" if the current block doesn't already
have a terminal (e.g., a branch). *)
let add_terminal builder f =
match L.block_terminator (L.insertion_block builder) with
Some _ -> ()
| None -> ignore (f builder)

in

(* generate code for different kinds of statements *)
let rec stmt builder = function

SSeq sl -> List.fold_left stmt builder sl
| SExpr e -> ignore(expr builder e); builder

| svarDec ((typ, string), e) -> ignore(expr builder (typ, (SAssign(string, e))));
builder

| SReturn e -> ignore (match func_dec.styp with
(* Special "return nothing" instr *)
A.Void -> L.build_ret_void builder
(* Build return statement *)
| _ -> L.build_ret (expr builder e) builder);
builder
| SIf (predicate, then_stmt, else stmt) ->
let bool_val = expr builder predicate in
let merge_bb = L.append_block context "merge" the_function in

let build_br_merge = L.build_br merge_bb in (* partial function *)

in

let then_bb = L.append_block context "then" the_function in
add_terminal (stmt (L.builder_at_end context then_bb) then_stmt)

build_br_merge;

let else_bb = L.append_block context "else" the_function in
add_terminal (stmt (L.builder_at_end context else_bb) else_stmt)

build_br_merge;

ignore (L.build_cond_br bool val then_bb else_bb builder);
L.builder_at_end context merge_bb

| SWhile (predicate, body) ->
let pred_bb = L.append_block context "while" the_function in

ignore (L.build_br pred_bb builder);

let body_bb = L.append_block context "while_body" the_function in
add_terminal (stmt (L.builder_at_end context body_bb) body)

(L.build _br pred_bb);

let pred_builder = L.builder_at_end context pred_bb in

let bool _val = expr pred_builder predicate in

let merge_bb = L.append_block context "merge" the_function in
ignore (L.build_cond_br bool_val body_bb merge_bb pred_builder);

L.builder_at_end context merge_bb

(* Build the code for each statement in the function *)

61

let builder = stmt builder (SSeq func_dec.sbody) in

(* Add a return if the last block falls off the end *)

add_terminal builder (match func_dec.styp with

A.Void -> L.build_ret (L.const_float float_t 5.5)

| A.Float -> L.build_ret (L.const_float float_t ©.0)

| t -> L.build_ret (L.const_int (1ltype_of_typ t) 5))

in

List.iter build_function_body functions;

the_module

Ast.ml

(* Abstract Syntax Tree and

functions for printing it *)

type op = Add | Sub | Mult | Mod | Div | Equal | Neq |
Less | Leq | Greater | Geq |
And | Or

type uop = Neg | Not

type typ = String | Int | Bool | Float | Void | Node of

typ

type bind

typ * string

type expr

Literal of int

62

| Fliteral of string

| BoolLit of bool

| sliteral of string

| NodeLit of expr * expr

| NodeData of expr

| NodeParent of expr

| NodeLevel of expr

| LNodeshift of expr

| RNodeShift of expr

| SwapNode of expr * expr

| FindNode of expr * expr

| AddNode of expr * expr

| RemoveNode of expr * expr
| Id of string

| Binop of expr * op * expr
| Unop of uop * expr

| Assign of string * expr

| FunCall of string * expr list

| Noexpr

type stmt =
(*Block of stmt list*)
| Expr of expr
| Return of expr
| If of expr * stmt * stmt
| varDec of bind * expr
(* | Assign of string * expr *)

| For of expr * expr * expr * stmt

| While of expr * stmt

| Seq of stmt list

type func_decl = {
typ: typ;
fname: string;
formals: bind list;

body: stmt list;

type item =
Stmt of stmt

| Function of func_decl

type program = item list

(* Pretty-printing functions

let string_of_op = function

Add -> "+"
| sub -> "-"
| Mult -> "*"
| Mod -> "%"
| Div -> "/"
| Equal -> "=="
| Neg -> "1="
| Less -> "<"
| Leg -> "<="

| Greater -> ">

*)

64

| Geq -> ">="
| And -> "&&"

| or > |

let string_of uop = function

Neg ->

| Not -> "1"

let rec string of_typ = function

Int -> "int"
| Bool -> "bool"
| Float -> "float"

| Void -> "void"

| string -> "string"

| Node(t) -> "node<" ~ string of typ t » ">

let rec string_of_expr = function

Literal(l) -> string of_int 1

| Fliteral(l) -> 1

| Sliter‘al(l) -> "\"" Al A ll\llll
| BoolLit(true) -> "true"

| BoolLit(false) -> "false"

| NodeLit(el, e2) -> string_of expr el ~ "," 7

string_of_expr e2

| NodeData(e) -> string of _expr e » ".data"

| NodeParent(e) -> string_of_expr e ~ ".parent"

65

| NodeLevel(e) -> string of_expr e ~ ".level"

| LNodeShift(e) -> string_of_expr e ~ "<<"

| RNodeShift(e) -> string_of _expr e ~ ">>"

| SwapNode(el, e2) -> string of_expr el ~ "A" »

string_of_expr e2

| FindNode (g,param) -> string_of expr g

A ", find_node(" ~ string of_expr param ~ ")
| AddNode (g,param) -> string_of_expr g

A ".add_node(" ~ string_of_expr param ~ ")

| RemoveNode (g,param) -> string_of_expr g

A ".remove_node(" ~ string_of_expr param * ")

| Id(s) -> s
| Binop(el, o, e2) -> string of_expr e1 ~ " " 7
string of op o » " " ~ string_of_expr e2

| Unop(o, e) -> string_of_uop o " string_of_expr e

"

| FunCall(s,e) -> s ~ "(" ~ String.concat ", " (List.map

string_of_expr e) ~ ")"
| Assign(s,e) -> s ~ " =" ~ string of expr e

nn

| Noexpr ->

let rec string_of_stmt = function

"

Expr(expr) -> string_of_expr expr ~ ";\n";

"

| Return(expr) -> "return " ~ string_of_expr expr *
"i\n";

| 1f(e,s1,s2) -> "If(" ~ string_of_expr e ~ ") {" »
string_of_stmt s1 ~ "} Else {" ~ string_of_stmt s2 ~ "}"

| varDec((t, s),e) -> string of typt ~ " "~ s~ " ="~
string_of_expr e

(* | Assign(s,e) -> s ~ " =" 2 string_of_expr e *)

| For(el, e2, e3, s) ->

"for (" ~ string_of_expr el ~ ; " 7 string_of_expr
@2 Ay maA

string_of_expr e3 ~ ") " ~ string_of_stmt s

66

| while(e, s) -> "while (" ~ string_of _expr e ~ ") "
string_of_stmt s

| seq(l) -> String.concat
1)

, " (List.map string_of_stmt

let string of func_decl func_decl =

func_decl.fname ~ "<" ~ string_of_typ func_decl.typ *

"

">(" ~ String.concat ", " (List.map snd

func_decl.formals) *

O

String.concat (List.map string_of_stmt func_decl.body)

N

"Fn"

let string _of_vdecl (t, id) = string of typ t ~ " " ~ id »

||;\n||

let string of fdecl fdecl =

string_of_typ fdecl.typ ~ " " ~»

"

fdecl.fname ~ "(" ~ String.concat
fdecl.formals) *
")\n{\n" A

, " (List.map snd

String.concat (List.map string_of_vdecl fdecl.formals)

N

String.concat (List.map string_of_stmt fdecl.body) ~

"J\n"

let string_of_items item = match item with

67

Stmt(x) -> string_of_stmt x

|Function(y) -> string_of_fdecl y

let string_of_program stmts =

String.concat " " (List.map string_of_items stmts)

Appendix: MicroC+

Appendix: MicroC+ C-Code:

Tree.h*

#include <stdint.h>
#include <stdlib.h>
#include <stdio.h>
#tinclude "tree.h"

// functions not defined in the header file
void del node(struct Node *node);

void init_root(struct Node *node){
node->root = 1;

struct Node *create_int_node(int data){
struct Node *node = malloc(sizeof(struct Node));
node->children = malloc(sizeof(struct List));
node->data = malloc(sizeof(union data_u));

node->children->head = 0;
node->children->length = 0;

node->level = 0;
node->root 0;
node->next NULL;
node->prev = NULL;
node->parent = NULL;

68

node->dtype = INT;
node->data->i = data;
return node;

struct Node *create_char_node(char data){
struct Node *node = malloc(sizeof(struct Node));
node->children = malloc(sizeof(struct List));
node->data = malloc(sizeof(union data_u));

node->children->head = 0;
node->children->length = 0;

node->level = 9;
node->root 0;
node->next NULL;
node->prev = NULL;
node->parent = NULL;
node->dtype = CHAR;
node->data->c = data;
return node;

struct Node *create_float_node(float data){
struct Node *node = malloc(sizeof(struct Node));
node->children = malloc(sizeof(struct List));
node->data = malloc(sizeof(union data_u));

node->children->head = 0;
node->children->length = 0;

node->level = 9;

node->root
node->next
node->prev

9;
NULL;
NULL;

node->parent = NULL;
node->dtype = FLOAT;
node->data->f = data;
return node;

void delete node(struct Node *node)({

if(node->children->length != 0){ // if no children
node->parent->children->length -= 1;
del node(node);
}
int i = 0;
struct Node *curr = node->children->head;
while(i < node->children->length){
delete node(curr);
curr = curr->next;
i++;

void del node(struct Node *node){
free(node->children);
free(node->data);
free(node);

void add_child(struct Node *parent, struct Node *child){
// TODO: check if child is ancestor of the parent already

if(child->dtype != parent->dtype){
perror("Cannot add a node of diffent data type to another

node");

return;

}

if(child->root == 1){
child->root = 0;

}

if(child->parent) // if was a child and head of another nod
child->parent->children->head = child->next;

child->parent = parent;

child->level = parent->level + 1;

if(parent->children->length == 0){
parent->children->head = child;
parent->children->length += 1;

}

int i = 9;

struct Node *curr = parent->children->head;

while(i < parent->children->length){
if(curr->next)

curr = curr->next;

i++;
}
curr->next = child;
child->prev = curr;
parent->children->length += 1;

struct Node *get root(struct Node *n){ // could be done with lvls
if(n->root == 1) return n;

struct Node *curr = n->parent;
while(curr->root != 1 && curr->parent){
if(curr->parent)
curr = curr->parent;
}
if(curr->root == 1) return curr;
return 0;

int is_empty(struct Node *node){
return node->children->length == 0;

int is_ancestor(struct Node *parent, struct Node *child){
struct Node *curr = child->parent;
while(curr){
if(curr == parent)
return 1;
curr = curr->parent;

}

return 0;

int is_root(struct Node *node){
return node->root;

// int get _height(struct Node *n){

// int height = 0;

// int i = 0;

// struct Node *curr = get_root(n);

// struct Node *curr = node->children->head;
// while(i < node->children->length){

// print_tree(curr);

// if(curr->next)

// curr = curr->next;

// i++;

// }

// return 0;

/1 }

int get_depth(struct Node *n){
return n->level; // what if node is null

int get_index(struct Node *node){
return 0;

// throw errors?
void shift_right(int index, struct Node *child)({

if(child == NULL) return;
if(child->parent == NULL) return; // free floating node

struct Node *ahead place = child;
int i = @; // making the ahead place index times ahead of the other
for(i = 0; i < index; i++){
ahead place = ahead place->next;
}
if('ahead place){
perror("Index out of range");
return;
}
if(index == 1){
struct Node *temp = ahead_place->next;
ahead place->next = child;
child->next = temp;
ahead place->prev = child->prev;
if(child->prev)
child->prev->next = ahead place;
child->prev = ahead_place;

struct Node *temp = ahead_place->next;
if(ahead place->next)

ahead_place->next->prev = child;
ahead_place->next = child->next;
ahead_place->next->prev = ahead_place;
child->next = temp;

temp = ahead_place->prev;
if(child->prev)
ahead_place->prev->next = child->prev;
ahead place->prev = child->prev;
child->prev = temp;
child->prev->next = child;

if(child->parent->children->head == child){
child->parent->children->head = ahead place;

return;

void shift left(int index, struct Node *child){
if(child == NULL) return;
if(child->parent == NULL) return; // free floating node

struct Node *behind_place = child;
int i = 9; // making the ahead place index times ahead of the other
for(i = 0; i < index; i++){
behind _place = behind_place->prev;
¥
if(!behind _place){
perror("Index out of range");
return;
¥
if(index == 1){
shift_right(1, behind_place);
}
else{
struct Node *temp = behind_place->next;
if(child->next)

child->next->prev = behind_place;
behind_place->next->prev = child;
behind place->next = child->next;
child->next = temp;

temp = child->prev;

if(behind_place->prev)
behind_place->prev->next = child;

child->prev = behind_place->prev;

behind_place->prev = temp;

behind place->prev->next = behind_place;

if(child->parent->children->head == behind_place){
child->parent->children->head = child;

}

return;

// BUG: in certain cases, when the children are from same parent,
// the head won't switch, even though the nodes will

void deep_swap(struct Node *node a, struct Node *node b){
struct Node * temp = NULL;
if(node_a->level == node_b->level){ // same level
if(node_a->parent == node_b->parent){ // not same parent
if(node_b->parent->children->head == node b){// if node a
is the head of child 1list
node_b->parent->children->head = node_a;

}
else if(node_b->parent->children->head == node_a){// if
node_a is the head of child list
node_b->parent->children->head = node_b;
}
struct Node *curr = node_a->parent->children->head;
while(curr){ // make prev -> next point to correct one
if(curr->next == node_a){
curr->next = node_b;
break;
}
else if(curr->next == node_b){
curr->next = node_a;
break;

}

curr = curr->next;

node_a->prev->next = node_b;
node_b->prev->next = node_a;
temp = node_a->parent;
node_a->parent = node_b->parent;
node_b->parent = temp;

if(node_a->next == node_b){
node_a->next = node_b->next;
node_b->next = node_a;

}

else if(node_b->next == node_a){
temp = node_a->next;
node_a->next = node_b;
node_b->next = temp;

}

else{
temp = node_a->next;
node_a->next = node_b->next;
node_b->next = temp;

temp = node_a->prev;
node_a->prev = node_b->prev;
node_b->prev = temp;

}

return;

// make this a bfs printing
void print_tree(struct Node *node){
print_node(node);
int i = 1;
struct Node *curr = node->children->head;
while(i < node->children->length){
print_tree(curr);

if(curr->next)
curr = curr->next;
i++;

void print_node(struct Node *node){
if(node == NULL) return;
switch(node->dtype){
case INT:
printf(“"Level: %d\t", node->level);
printf("Data: %d\n", node->data->i);
break;
case CHAR:
printf(“"Level: %d\t", node->level);
printf("Data: %c\n", node->data->c);
break;
case FLOAT:
printf(“"Level: %d\t", node->level);
printf("Data: %f\n", node->data->f);
break;
default:
break;

}

return;

*** Tree.c***

#include <stdint.h>
#include <stdlib.h>
#include <stdio.h>
#tinclude "tree.h"

// functions not defined in the header file
void del node(struct Node *node);

void init_root(struct Node *node){
node->root = 1;

struct Node *create_int_node(int data){
struct Node *node = malloc(sizeof(struct Node));
node->children = malloc(sizeof(struct List));
node->data = malloc(sizeof(union data_u));

node->children->head = 0;
node->children->length = 0;

node->level = 9;
node->root 0;
node->next NULL;
node->prev = NULL;
node->parent = NULL;
node->dtype = INT;
node->data->i = data;
return node;

struct Node *create_char_node(char data){
struct Node *node = malloc(sizeof(struct Node));
node->children = malloc(sizeof(struct List));
node->data = malloc(sizeof(union data_u));

node->children->head = 0;
node->children->length = 0;

node->level = 9;

node->root
node->next
node->prev

9;
NULL;
NULL;

node->parent = NULL;
node->dtype = CHAR;
node->data->c = data;
return node;

struct Node *create float node(float

struct Node *node = malloc(sizeof(struct Node));
node->children = malloc(sizeof(struct List));
node->data = malloc(sizeof(union data_u));

node->children->head = 0;
node->children->length = 0;

node->level = 9;
node->root 0;
node->next NULL;
node->prev = NULL;
node->parent = NULL;
node->dtype = FLOAT;
node->data->f = data;
return node;

void delete node(struct Node *node){
if(node->children->length != @){ // if no children
node->parent->children->length -= 1;
del node(node);
}
int i = 0;
struct Node *curr = node->children->head;
while(i < node->children->length){
delete node(curr);
curr = curr->next;
it+;

void del node(struct Node *node){
free(node->children);
free(node->data);
free(node);

void add_child(struct Node *parent, struct Node *child){
// TODO: check if child is ancestor of the parent already
if(child->dtype != parent->dtype){
perror("Cannot add a node of diffent data type to another
node");

return;
}
if(child->root ==
child->root
}
if(child->parent) // if was a child and head of another nod
child->parent->children->head = child->next;
child->parent = parent;
child->level = parent->level + 1;
if(parent->children->length == 0){
parent->children->head = child;
parent->children->length += 1;
}
int i = 0;
struct Node *curr = parent->children->head;
while(i < parent->children->length){
if(curr->next)
curr = curr->next;
i++;
}
curr->next = child;
child->prev = curr;
parent->children->length += 1;

struct Node *get root(struct Node *n){ // could be done with lvls
if(n->root == 1) return n;

struct Node *curr = n->parent;
while(curr->root != 1 && curr->parent){
if(curr->parent)
curr = curr->parent;
}
if(curr->root == 1) return curr;
return 0;

int is_empty(struct Node *node){
return node->children->length ==

int is_ancestor(struct Node *parent, struct Node *child){
struct Node *curr = child->parent;
while(curr){
if(curr == parent)
return 1;
curr = curr->parent;

}

return 0;

int is_root(struct Node *node){
return node->root;

// int get_height(struct Node *n){

// int height = 0;

// int i = 0;

// struct Node *curr = get_root(n);
// struct Node *curr = node->children->head;
// while(i < node->children->length){
// print_tree(curr);

// if(curr->next)

// curr = curr->next;

// i++;

// }

// return 0;

/1 }

int get_depth(struct Node *n){
return n->level; // what if node is null

int get_index(struct Node *node){
return 0;

// throw errors?
void shift_right(int index, struct Node *child)({
if(child == NULL) return;
if(child->parent == NULL) return; // free floating node

struct Node *ahead place = child;
int i = @; // making the ahead place index times ahead of the other
for(i = 0; i < index; i++){
ahead_place = ahead_place->next;
}
if(!ahead_place){
perror("Index out of range");
return;
}
if(index == 1){
struct Node *temp = ahead_place->next;
ahead_place->next = child;
child->next = temp;
ahead place->prev = child->prev;
if(child->prev)
child->prev->next = ahead place;
child->prev = ahead_place;

struct Node *temp = ahead_place->next;
if(ahead place->next)

ahead_place->next->prev = child;
ahead_place->next = child->next;
ahead_place->next->prev = ahead_place;
child->next = temp;

temp = ahead_place->prev;
if(child->prev)
ahead_place->prev->next = child->prev;
ahead place->prev = child->prev;
child->prev = temp;
child->prev->next = child;

if(child->parent->children->head == child){
child->parent->children->head = ahead place;

return;

void shift left(int index, struct Node *child)({

if(child == NULL) return;
if(child->parent == NULL) return; // free floating node

struct Node *behind_place = child;
int i = 9; // making the ahead place index times ahead of the other
for(i = 0; i < index; i++){
behind_place = behind_place->prev;
¥
if(!behind _place){
perror("Index out of range");
return;
¥
if(index == 1){
shift_right(1, behind_place);
}
else{
struct Node *temp = behind_place->next;
if(child->next)
child->next->prev = behind_place;
behind place->next->prev = child;
behind place->next = child->next;
child->next = temp;

temp = child->prev;

if(behind_place->prev)
behind_place->prev->next = child;

child->prev = behind_place->prev;

behind_place->prev = temp;

behind place->prev->next = behind_place;

if(child->parent->children->head == behind_place){
child->parent->children->head = child;

}

return;

// BUG: in certain cases, when the children are from same parent,
// the head won't switch, even though the nodes will
void deep_swap(struct Node *node a, struct Node *node b){

struct Node * temp = NULL;

if(node_a->level == node_b->level){ // same level

if(node_a->parent == node_b->parent){ // not same parent
if(node_b->parent->children->head == node b){// if node_a
is the head of child 1list
node_b->parent->children->head = node_a;
}
else if(node_b->parent->children->head == node_a){// if
node_a is the head of child list
node_b->parent->children->head = node_b;
}
struct Node *curr = node_a->parent->children->head;
while(curr){ // make prev -> next point to correct one
if(curr->next == node_a){
curr->next = node_b;
break;
}
else if(curr->next == node_b){
curr->next = node_a;
break;

}

curr = curr->next;

node_a->prev->next = node_b;
node_b->prev->next = node_a;
temp = node_a->parent;
node_a->parent = node_b->parent;
node_b->parent = temp;

if(node_a->next == node_b){
node_a->next = node b->next;
node_b->next = node_a;

}

else if(node_b->next == node_a){
temp = node_a->next;
node_a->next = node_b;
node_b->next = temp;

}

else{
temp = node_a->next;

node_a->next = node_b->next;
node_b->next = temp;

temp = node_a->prev;
node_a->prev = node_b->prev;
node_b->prev = temp;

}

return;

// make this a bfs printing
void print_tree(struct Node *node){
print_node(node);
int i = 1;
struct Node *curr = node->children->head;
while(i < node->children->length){
print_tree(curr);
if(curr->next)
curr = curr->next;
i++;

void print_node(struct Node *node){
if(node == NULL) return;
switch(node->dtype){
case INT:

printf("Level: %d\t", node->level);
printf("Data: %d\n", node->data->i);
break;

case CHAR:
printf("Level: %d\t", node->level);
printf("Data: %c\n", node->data->c);
break;

case FLOAT:
printf("Level: %d\t", node->level);
printf("Data: %f\n", node->data->f);
break;

default:
break;

return;

*k%k

***Treetest.c

#tinclude <stdio.h>
#include "tree.h"

void test create_int node(){
int p = 5;
void *q = &p;
struct Node * n = create _node(q,
print _node(n);

int a = 5
void *b = &a;
struct Node *nn create node(b,

print_node(nn);

delete_node(n);
delete node(nn);

void test_delete node(){
int p = 5
void *q = &p;
struct Node * n = create_node(q, INT);

delete node(n);

void test_init root(){
int p = 5;
void *q = &p;
struct Node * n = create_node(q, INT);
printf("is_root @ == %d\n", n->root);
init_root(n);
printf("is_root 1 == %d\n", n->root);

delete_node(n);

void test _add child(){
int p = 5;
void *q = &p;
struct Node * parent = create_node(q, INT);

int r = g
void *s = &r;
struct Node * nchild = create_node(s, INT);

int t = g
void *u = &t;
struct Node * nnchild = create_node(u, INT);

int a = g

void *b = &a;

struct Node *child = create_node(b, INT);
add_child(parent, child);

int ¢ = ;
void *d= &c;
struct Node *nnnchild = create node(d, INT);

add_child(parent, nchild);
add_child(parent, nnnchild);
add_child(nchild, nnchild);
print_tree(parent);

void test deep swap same level(){
int p = 5;
void *q = &p;
struct Node * parent create_node(q,

int r = g
void *s = &r;
struct Node * nchild create_node(s,

int a = g
void *b = &a;

struct Node *child = create_node(b, INT);

add_child(parent, child);
add_child(parent, nchild);

deep_swap(child, nchild);
print_tree(parent);
printf("\n");
deep_swap(nchild, child);
print_tree(parent);

printf("\n");
deep _swap(child, nchild);
print_tree(parent);

void test shift right one(){
int p = 5;
void *q = &p;
struct Node * parent create_node(q,

int r = g
void *s = &r;
struct Node * nchild = create_node(s, INT);

int a = g
void *b = &a;
struct Node *child = create_node(b, INT);

add_child(parent, child);
add_child(parent, nchild);
print_tree(parent);
printf("\n");
shift_right(1, child);
print_ tree(parent);

int main(){
printf("\n
test_create_int _node();

printf("\n

printf("\n

printf("\n
test add child();

printf("\n

printf("\n

return 0;

Makefile*

CCCC = gcc
INCLUDES =

CFLAGS = -g -Wall $(INCLUDES)
LDFLAGS = -g

MAIN = tree
$(MAIN): treetest.o tree.o

.PHONEY: clean
clean:
rm -f *.0 $(MAIN)

.PHONEY: run
run: $(MAIN)
./$(MAIN)

.PHONEY: valgrind
valgrind: $(MAIN)
valgrind --leak-check=full ./$(MAIN)

Appendix: MicroC+ Code:

*kk

***Scanner

(* Ocamllex scanner for MicroC *)

{ open Microcparse

}

let digit = ['@"' - '9"]
let digits = digit+

rule token = parse
"\t '\r' '\n'] { token lexbuf } (* Whitespace *)
{ comment lexbuf } (* Comments *)
{ LPAREN }
{ RPAREN }
{ LBRACE }
{ RBRACE }
LBRACK }

{ RBRACK }
{ SEMI }
{ coMMmA }
{ PLUS }
{ MINUS }
Tk { TIMES }
%" { MOD }
{ DIVIDE }
{ ASSIGN }
"node" { NODE }
".data" { DATA }
".parent" { PARENT }
".level" { NODE_LEVEL }
"o { LSHIFT_NODE }
"y { RSHIFT_NODE }
mAn { SWAP_NODE }
".find_node" { FIND_NODE }
".add_node" { ADD_NODE }
".remove_node" { REMOVE_NODE }
{ EQ }
NEQ }
LT }
LEQ }
GT }
GEQ }
AND }
OR }
NOT }
IF }

>=||
II&&II
n | |]

lli_Fll

"for"
"while"
"return”
"string"

FOR }

WHILE }

RETURN }

STRING }

INT }

BOOL }

FLOAT }

VOID }

"true" BLIT(true) 1}

"false" { BLIT(false) }

\"([A\"']* as 1xm) "\ { SLITERAL(1xm) }
digits as 1xm { LITERAL(int_of_string 1xm) }

"bool"
"float"
"void"

{
{
{
{
{
{
{
{
{
"else" { ELSE }
{
{
{
{
{
{
{
{
{

digit* (['e' "E'] ['+" '"-"]? digits)? as 1lxm { FLIT(1lxm) }
" A'-'Z']['a'-'z' 'A'-'Z' 'e'-'9' '] as 1xm { ID(1xm) }

as char { raise (Failure("illegal character " ”~ Char.escaped char)) }

and comment = parse
"*/" { token lexbuf }
| { comment lexbuf }

*kk

***Parser

/* Ocamlyacc parser for MicroC */

%1
open Ast
%}

%token SEMI LPAREN RPAREN LBRACE RBRACE LBRACK RBRACK COMMA PLUS MINUS
TIMES MOD DIVIDE ASSIGN

%token NOT EQ NEQ LT LEQ GT GEQ AND OR

%token RETURN IF ELSE FOR WHILE STRING INT BOOL FLOAT VOID

%»token <int> LITERAL

%token <string> SLITERAL

%»token <bool> BLIT

%»token <string> ID FLIT

%»token EOF

%token DATA NODE_LEVEL NODE PARENT LSHIFT NODE RSHIFT NODE SWAP_NODE
ADD_NODE REMOVE_NODE FIND_NODE

%start program
%»type <Ast.program> program

%nonassoc NOELSE
%»nonassoc ELSE
%right ASSIGN

%left OR

%left AND

%left EQ NEQ

%left LT GT LEQ GEQ
%left PLUS MINUS

%left TIMES DIVIDE MOD

%right NOT

%left PARENT

%left DATA NODE_LEVEL LSHIFT_NODE RSHIFT_NODE ADD_NODE REMOVE_NODE
SWAP_NODE FIND_NODE

%%

program:
decls EOF { %1 }

decls:
/* nothing */ { ([1, [1]) }
| decls vdecl { (($2 :: fst $1), snd $1) }
| decls fdecl { (fst $1, ($2 :: snd $1)) }

fdecl:
typ ID LPAREN formals_opt RPAREN LBRACE vdecl 1list stmt_list RBRACE
{ { typ = $1;
fname = $2;
formals = List.rev $4;
locals = List.rev $7;
body = List.rev $8 } }

formals opt:
/* nothing */ { [] }
| formal list { $1 }

formal_ list:
typ ID { [(%1,%$2)]
| formal list COMMA typ ID { ($3,%$4) ::

typ:
INT { Int }
| STRING { String}
| BOOL { Bool }
| FLOAT { Float }
| voID { Void }
| NODE LT typ GT { Node($3) }

vdecl list:
/* nothing */ {01}

| vdecl list vdecl { $2 :: $1 }

vdecl:
typ ID SEMI { ($1, $2) }

stmt_list:
/* nothing */ { [] }
| stmt_list stmt { $2 :: $1 }

stmt:
expr SEMI Expr $1 }
RETURN expr_opt SEMI Return $2 }
LBRACE stmt_list RBRACE Block(List.rev $2) }
IF LPAREN expr RPAREN stmt %prec NOELSE { If($3, $5, Block([])) }
IF LPAREN expr RPAREN stmt ELSE stmt { If($3, $5, $7) }
FOR LPAREN expr_opt SEMI expr SEMI expr_opt RPAREN stmt
{ For($3, $5, $7, $9)
WHILE LPAREN expr RPAREN stmt { while($3, $5)

expr_opt:
/* nothing */ { Noexpr }

| expr { %1}

expr:
LITERAL { Literal($1)
| SLITERAL { Sliteral($1)
| FLIT { Fliteral($1)
| BLIT BoolLit($1)
| ID Id($1)
| expr PLUS Binop($1, Add, $3)
| expr MINUS Binop($1, Sub, $3)
| expr TIMES Binop($1, Mult, $3)
| expr MOD Binop($1, Mod, $3)
| expr DIVIDE Binop($1, Div, $3)
| expr EQ Binop($1, Equal, $3)
| expr NEQ Binop($1, Neq, $3)
| expr LT Binop($1, Less, $3)
| expr LEQ Binop($1, Leq, $3)
| expr GT Binop($1, Greater, $3)
| expr GEQ Binop($1, Geq, $3)
| expr AND Binop($1, And, $3)
| expr OR Binop($1, Or, $3)

P R S N S S S = S iy
L S S e X S U U W W)

MINUS expr %prec NOT { Unop(Neg, $2)

NOT expr { Unop(Not, $2)

ID ASSIGN expr { Assign($1, $3)

ID LPAREN args_opt RPAREN { Call($1, $3)
LPAREN expr RPAREN { $2

/* Node Auxillary*/

| expr DATA { NodeData($1) }
/* | expr DATA ASSIGN expr { Assign(NodeData($1), $4)}
expr PARENT ASSIGN expr { Assign(NodeParent($1), $4) }*/
expr PARENT { NodeParent($1) }
LBRACK expr COMMA expr RBRACK { NodeLit($2, $4) }
expr NODE_LEVEL { NodelLevel($1) }
expr LSHIFT NODE { LNodeShift($1)}
expr RSHIFT_NODE { RNodeShift($1)}
expr SWAP_NODE expr { SwapNode($1, $3) }
expr FIND_NODE LPAREN expr RPAREN { FindNode($1, $4) }
expr ADD_NODE LPAREN expr RPAREN { AddNode($1, $4) }
expr REMOVE_NODE LPAREN expr RPAREN { RemoveNode($1, $4) }

args_opt:
/* nothing */ { [] }
| args_list { List.rev $1 }

args_list:

expr { [$1] }
| args_list COMMA expr { $3 :: $1 }

Ast

(* Abstract Syntax Tree and functions for printing it *)
type op = Add | Sub | Mult | Mod | Div | Equal | Neq | Less | Leq | Greater
| Geq |

And | Or

type uop = Neg | Not

type typ = String | Int | Bool | Float | Void | Node of typ

type bind = typ * string

type expr =
Literal of int
Fliteral of string
BoolLit of bool
Sliteral of string
Id of string
Binop of expr * op * expr
Unop of uop * expr
Assign of string * expr
Call of string * expr list
Noexpr
NodeLit of expr * expr
NodeData of expr
NodeParent of expr
NodelLevel of expr
LNodeShift of expr
RNodeShift of expr
SwapNode of expr * expr
FindNode of expr * expr
AddNode of expr * expr
RemoveNode of expr * expr

type stmt =
Block of stmt list
Expr of expr
Return of expr
If of expr * stmt * stmt
For of expr * expr * expr * stmt
While of expr * stmt

type func_decl = {
typ : typ;
fname : string;
formals : bind list;
locals : bind list;
body : stmt list;

type program = bind list * func_decl list

(* Pretty-printing functions *)

let string_of op = function

Add -> "+"

Sub -> "-"

Mult -> "*"

Mod -> "%"

Div -> "/"

Equal -> "=="

Neq -> "!I="

Less -> "<
Leq _> II<=II

Greater -> ">
Geq -> ">="
And -> "&&"
or -> "[|"

string _of uop = function
Neg _> II_II
Not -> "I"

rec string_of_expr = function
Literal(l) -> string of_int 1
Sliteral(l) -> "\"" ~ 1 A~ "\""
Fliteral(l) -> 1
BoolLit(true) -> "true"
BoolLit(false) -> "false"
Id(s) -> s
Binop(el, o, e2) ->
string of expr el ~ " " ~ string of op o ~ " " ~ string_of_expr e2
Unop(o, e) -> string_of uop o ~ string of expr e
Assign(v, e) -> v A~ " =" ~ string of _expr e
Call(f, el) ->
£ ~ "(" ~ String.concat
Noexpr -> ""
NodeLit(el, e2) -> string of expr el ~ "," ~ string of expr e2
NodeData(e) -> string of _expr e ~ ".data"
NodeParent(e) -> string of expr e ~ ".parent"
NodelLevel(e) -> string _of expr e ~ ".level"
LNodeShift(e) -> string of expr e ~ "<<"
RNodeShift(e) -> string_of_expr e ~ ">>"

, " (List.map string of expr el) ~ ")

SwapNode(el, e2) -> string of expr el ~ "~A" ~ string of expr e2
FindNode (g,param) -> string of expr g

A " find _node(" ”~ string_of _expr param ~ ")
AddNode (g,param) -> string of expr g

A ".add_node(" ”~ string_of _expr param ~ ")
RemoveNode (g,param) -> string_of expr g

A " remove_node(" ~ string of_expr param ~ ")

rec string of_stmt = function
Block(stmts) ->
"{\n" ~ String.concat (List.map string of_ stmt stmts) ~ "}\n"
Expr(expr) -> string of_expr expr ~ ";\n";
Return(expr) -> "return " ~ string of expr expr ~ ";\n";
If(e, s, Block([])) -> "if (" ~ string_of_expr e ~ ")\n" ~
string _of _stmt s
| If(e, s1, s2) -> "if (" ~ string_of _expr e ~ ")\n" 2
string of stmt s1 ~ "else\n" ~ string of stmt s2
| For(el, e2, e3, s) ->
"for (" ”~ string of expr el

; " N string_of_expr e2 A~ " ; " A

string of _expr e3 ~ ") " ~ string of_stmt s
While(e, s) -> "while (" ”~ string of expr e ~ ") " ~ string of stmt s

rec string of_typ = function

Int -> "int"

String -> "string"

Bool -> "bool"

Float -> "float"

Void -> "void"

Node(t) -> "node<"™ ~ string of typ t ~ ">"

let string_of_vdecl (t, id) = string of_typ t ~ " " ~ id ~ ";\n"

let string of_fdecl fdecl =
string_of_typ fdecl.typ ~ " " ~
fdecl.fname ~ "(" ~ String.concat
“)\n{\n" ~
String.concat
String.concat

"F\n"

, " (List.map snd fdecl.formals)
"" (List.map string_of vdecl fdecl.locals) ~
(List.map string_of_stmt fdecl.body) ~

let string of program (vars, funcs) =
String.concat "" (List.map string_of vdecl vars) ~ "\n" ~

String.concat "\n" (List.map string_of_fdecl funcs)

Sast

(* Semantically-checked Abstract Syntax Tree and functions for printing it

*)
open Ast

type sexpr = typ * sx

and sx =
SLiteral of int
SFliteral of string
SBoolLit of bool
SSliteral of string
SId of string
SBinop of sexpr * op * sexpr
SUnop of uop * sexpr
SAssign of string * sexpr
SCall of string * sexpr list
SNoexpr
SNodeLit of sexpr * sexpr
SNodeData of sexpr
SNodeParent of sexpr
SNodelLevel of sexpr
SLNodeShift of sexpr
SRNodeShift of sexpr
SSwapNode of sexpr * sexpr
SFindNode of sexpr * sexpr
SAddNode of sexpr * sexpr
SRemoveNode of sexpr * sexpr

type sstmt =
SBlock of sstmt list
SExpr of sexpr
SReturn of sexpr
SIf of sexpr * sstmt * sstmt
SFor of sexpr * sexpr * sexpr * sstmt
SWhile of sexpr * sstmt

type sfunc_decl = {
styp : typ;
sfname : string;
sformals : bind list;
slocals : bind list;
sbody : sstmt list;

type sprogram = bind list * sfunc_decl list
(* Pretty-printing functions *)

let rec string of sexpr (t, e) =
"(" ~ string of typ t ~ " : " ~ (match e with
SLiteral(l) -> string of int 1
SSliteral(l) -> "\"" ~ 1 A~ "\""
SBoolLit(true) -> "true"
SBoollLit(false) -> "false"
SFliteral(l) -> 1
SId(s) -> s
SBinop(el, o, e2) ->
string_of_sexpr el ~ " " ~ string of op o ~ " " ~ string_of sexpr
SUnop(o, e) -> string of uop o ~ string of sexpr e
SAssign(v, e) -> v ~ " = " A string_of_sexpr e
SCall(f, el) ->
f ~ "(" ~ String.concat

, " (List.map string_of_sexpr el) ~ ")
SNodelLit(el, e2) -> string of sexpr el ~ "," ~ string of_sexpr e2
SNodeData(e) -> string_of sexpr e ~ ".data"

SNodeParent(e) -> string of sexpr e ~ ".parent"

SNodelLevel(e) -> string of sexpr e ~ ".level"

SLNodeShift(e) -> string of sexpr e ~ "<«
SRNodeShift(e) -> string of sexpr e ~ ">>
SSwapNode(el, e2) -> string of sexpr el ~ "~A" A string of_sexpr e2
SFindNode (g,param) -> string_of_sexpr g

A " find _node(" ”~ string_of sexpr param ~ ")
SAddNode (g,param) -> string_of_sexpr g

A ".add_node(" ”~ string_of sexpr param ~ ")
SRemoveNode (g,param) -> string of_sexpr g

A " . remove_node(" ”~ string of_sexpr param ~ ")
SNoexpr -> ""

)~)"

rec string of_sstmt = function
SBlock(stmts) ->
"{\n" 2~ String.concat "" (List.map string of sstmt stmts) ~ "}\n"
SExpr(expr) -> string _of_sexpr expr ~ ";\n";
SReturn(expr) -> "return " ~ string_of_sexpr expr ~ ";\n";
SIf(e, s, SBlock([])) ->
"if (" ~ string_of sexpr e * ")\n" ~ string of sstmt s
SIf(e, s1, s2) -> "if (" ~ string_of _sexpr e ~ ")\n" ~
string of sstmt s1 ~ "else\n" ~ string of sstmt s2
SFor(el, e2, e3, s) ->
"for (" ”~ string of sexpr el ~* ; " N string_of_sexpr e2 ~ "
string of _sexpr e3 ~ ") " 2~ string_of_sstmt s
SWhile(e, s) -> "while (" ~ string_of_sexpr e ~ ") " ~ string of_ sstmt

let string of sfdecl fdecl =
string of typ fdecl.styp ~ " " ~
fdecl.sfname ~ "(" ~ String.concat ", " (List.map snd fdecl.sformals) ~

“)\n{\n" *

String.concat "" (List.map string of vdecl fdecl.slocals) *
String.concat "" (List.map string of sstmt fdecl.sbody) ~

“}\n"

let string_of_sprogram (vars, funcs) =
String.concat "" (List.map string of vdecl vars) ~ "\n" ~
String.concat "\n" (List.map string of sfdecl funcs)

*k%k

***Codegen

(* Code generation: translate takes a semantically checked AST and
produces LLVM IR

LLVM tutorial: Make sure to read the 0OCaml version of the tutorial
http://11lvm.org/docs/tutorial/index.html
Detailed documentation on the OCaml LLVM library:

http://11lvm.moe/
http://11lvm.moe/ocaml/

newverison

*)

module L
module A
open Sast

module StringMap = Map.Make(String)

(* translate : Sast.program -> Llvm.module *)
let translate (globals, functions) =
let context = L.global_context () in

(* Create the LLVM compilation module into which
we will generate code *)
(* let 1lmem = L.MemoryBuffer.of_file "tree.bc" in
let 1lm = Llvm bitreader.parse bitcode context llmem in *)
let the_module = L.create_module context "MicroC" in

(* Get types from the context *)
let i32_t = L.i32 type context
and i8_t = L.1i8 type context
and il t = L.il type context
and str_t = L.pointer_type (L.i8 type context)
and float_t L.double_type context
and void_ptr_t L.pointer_type (L.i8 type context)
and void_t L.void_type context
(* and node_t = L.pointer_type (match L.type by name 1llm "struct.Node
with

None -> raise (Failure "Missing implementation for struct Node")
| Some t -> t) in *)
in
(* Return the LLVM type for a MicroC type *)
let ltype of typ = function
A.Int -> i32_t
(* | A.Char -> i8 t *)
| A.String -> str_t
| A.Bool -> il t
| A.Float -> float_t
| A.void -> void_t
(* | A.Node(_) -> node_t *)
in

(*

(* node functions *)

let create_node_t = L.function_type node_t [| void _ptr_t ; i32_t |] in

let create_node_f = L.declare_function "create_node" create_node_t
the_module in

let root_init_t = L.function_type node_t [| node_t |] in

let root_init_f = L.declare_function "root_init" root_init_t the_module
in

let delete_node_t = L.function_type void ptr_t [| node_t |] in

let delete node_f = L.declare_function "delete_node" delete node_t
the_module in

let add_child_t = L.function_type node_t [| node_t; node_t|] in

let add_child f = L.declare_function "add_child" add_child_t the_module
in

let get root_t = L.function_type node_t [| node_t |] in

let get _root_f = L.declare_function "get root" get_root_t the_module in

let is_ancestor_t = L.function_type i32_t [| node_t ; node_t |] in

let is_ancestor_f = L.declare_function "is_ancestor" is_ancestor_t
the_module in

let is_root_t .function_type i32 t [| node_t |] in

L
let is_root_f = L.declare_function "is_ root" is_root_t the_module in

let get _depth_t = L.function_type i32_t [| node_t |] in

let get _depth_f = L.declare_function "get depth" get depth_t the_module
in

let shift_right_t = L.function_type void_t [| i32_t; node_t |] in

let shift _right_f = L.declare_function "shift_right" shift_right_t
the_module in

let shift_left_t = L.function_type void _t [| i32_t; node_t |] in

let shift_left f L.declare_function "shift_left" shift_left t
the_module in

*)
(* Create a map of global variables after creating each *)
let global vars : L.llvalue StringMap.t =
let global var m (t, n) =
let init = match t with
A.Float -> L.const _float (ltype of typ t)
| _ -> L.const_int (ltype of typ t)
in StringMap.add n (L.define_global n init the_module) m in
List.fold_left global var StringMap.empty globals in

let printf_t : L.1lltype =

L.var_arg_function_type i32 t [| L.pointer_type i8 t |] in
printf_func : L.llvalue =
L.declare_function "printf" printf_t the_module in

create_int _node : L.l1lltype =

L.var_arg_function_type i32_t [| i32_t |] in
create_int_node func : L.llvalue =

L.declare_function "create_int_node" create_int_node the_module

amalg : L.1lltype =

L.function_type i32 t [| i32_t |] in

amalg func : L.llvalue =

L.declare_function "amalg" amalg the_module in

printbig t : L.lltype =

L.function_type i32_t [| i32_t |] in

printbig func : L.llvalue =

L.declare_function "printbig" printbig t the_module in

(* Define each function (arguments and return type) so we can
call it even before we've created its body *)
let function_decls : (L.llvalue * sfunc_decl) StringMap.t =
let function_decl m fdecl =
let name = fdecl.sfname
and formal_types =
Array.of list (List.map (fun (t,_) -> ltype of typ t) fdecl.sformals)
in let ftype = L.function_type (ltype of typ fdecl.styp) formal types

StringMap.add name (L.define_function name ftype the_module, fdecl) m
List.fold left function_decl StringMap.empty functions in

(* Fill in the body of the given function *)

let build_function_body fdecl =
let (the_function,) = StringMap.find fdecl.sfname function_decls in
let builder = L.builder_at_end context (L.entry block the_function) in

let int_format_str = L.build _global stringptr "%d\n" "fmt" builder
and float_format_str = L.build global stringptr "%g\n" "fmt" builder
and string format_str = L.build_global_stringptr "%s\n" "fmt" builder

(* and char_format_str = L.build _global_stringptr "%c\n" "fmt" builder

in *)

(* Construct the function's "locals": formal arguments and locally
declared variables. Allocate each on the stack, initialize their
value, if appropriate, and remember their values in the "locals" map

*)
let local vars =
let add_formal m (t, n) p =
L.set _value name n p;
let local = L.build _alloca (ltype of_typ t) n builder in
ignore (L.build store p local builder);
StringMap.add n local m

(* Allocate space for any locally declared variables and add the
* resulting registers to our map *)

and add_local m (t, n) =

let local var = L.build alloca (ltype of typ t) n builder

in StringMap.add n local _var m

in

let formals = List.fold left2 add_formal StringMap.empty
sformals

(Array.to_list (L.params the_function)) in
List.fold left add_local formals fdecl.slocals

(* Return the value for a variable or formal argument.
Check local names first, then global names *)
let lookup n = try StringMap.find n local vars
with Not_found -> StringMap.find n global_vars

(* Construct code for an expression; return its value *)
let rec expr builder ((_, e) : sexpr) = match e with
SLiteral i -> L.const_int i32 t i
| SSliteral s -> L.build _global stringptr s "str" builder
| sCliteral c -> L.build_global stringptr c "str" builder *)
| SBoolLit b -> L.const_int il t (if b then 1 else 9)
| SFliteral 1 -> L.const_float of_string float t 1
| SNoexpr -> L.const_int i32_t
| SId s -> L.build load (lookup s) s builder
| SAssign (s, e) -> let e' = expr builder e in

ignore(L.build store e' (lookup s) builder); e’

(* | SNodeLit(data, rtyp)-> let d_ltyp = ltype of typ and

data = L.build_call create node f [| data; idx |] "create_node"
builder in data *)

(* let data = L.build malloc (ltype of_typ styp) "data" builder in *)

(* let data = L.build _bitcast data void _ptr_t "data" builder in

let node = L.build call node_init f [| idx; data|] "node_init"
builder in

node *)

(* L.build malloc (ltype of typ rtype) "data" builder in
let d = expr builder

let rtyp' = L.build malloc (ltype_ of typ rtyp) "data" builder in
let data' = L.build bitcast data void ptr_t "data" builder in
let node = L.build call node_init f [| data'; rtyp'|] "create_node"
builder in
node *)
(* | SNodeData n ->
let node = expr builder m n in
let data_ptr = L.build malloc (ltype of typ (fst el)) "data"
builder in
ignore (L.build _store new_value data_ptr builder);
let data_ptr = L.build_bitcast data_ptr void_ptr_t "data"
builder in
ignore (L.build _call node_set _data_f [| node; data_ptr |]
"node_set_data" builder);
new_value *)
| SBinop ((A.Float,) as el, op, e2) ->
let el' = expr builder el
and e2' = expr builder e2 in
(match op with
.Add -> L.build_fadd
.Sub -> L.build_fsub
.Mult -> L.build fmul
-> L.build_frem
.Div -> L.build_fdiv
.Equal -> L.build_fcmp L.Fcmp.Oeq
.Neq -> L.build fcmp L.Fcmp.One
.Less -> L.build_fcmp L.Fcmp.0Olt
.Leq -> L.build fcmp L.Fcmp.Ole
.Greater -> L.build _fcmp L.Fcmp.Ogt

| A.Geq -> L.build_fcmp L.Fcmp.Oge
| A.And | A.Or ->
raise (Failure "internal error: semant should have rejected
and/or on float")
) el' e2' "tmp" builder
| SBinop (el, op, e2) ->
let el' = expr builder el
and e2' = expr builder e2 in
(match op with
A.Add -> L.build_add
| A.Sub -> L.build_sub
| A.Mult -> L.build_mul
| A.Mod -> L.build_srem
.Div -> L.build_sdiv
.And -> L.build_and
.Or -> L.build_or
.Equal -> L.build icmp
.Neq -> L.build_icmp
.Less -> L.build icmp
.Leq -> L.build_icmp
.Greater -> L.build _icmp
.Geq -> L.build_icmp
el' e2' "tmp" builder
Unop(op, ((t,) as e)) ->
let e' = expr builder e in
(match op with
A.Neg when t = A.Float -> L.build fneg
| A.Neg -> L.build_neg
| A.Not -> L.build not) e' "tmp" builder
SCall ("print", [e]) | Scall ("printb", [e]) ->
L.build _call printf_func [| int_format_str ; (expr builder e) |]
"printf" builder
| scall ("prints", [e]) ->
L.build_call printf_func [| string_format_str ; (expr builder e) |]
"prints" builder
| scall ("printbig", [e]) ->
L.build_call printbig func [| (expr builder e) |] "printbig"
builder
| scall ("amalg", [e]) ->
L.build_call amalg func [| (expr builder e) |]

> > > > >r > > >
[l el el s s i

A
|
|
|
|
|
|
|
I
)
S

"amalg" builder
| scall ("printf", [e]) ->

L.build_call printf_func [| float_format_str ; (expr builder e) |]
"printf" builder
| scall ("create_int_node", [e]) ->
L.build call create_int _node func [| (expr builder e)
|1 "create_int_node" builder
| scall (f, args) ->
let (fdef, fdecl) = StringMap.find f function_decls in
let 1largs = List.rev (List.map (expr builder) (List.rev args)) in
let result = (match fdecl.styp with
A.Void -> ""
| _ -> f ~ " _result") in
L.build call fdef (Array.of list llargs) result builder

(* LLVM insists each basic block end with exactly one "terminator"
instruction that transfers control. This function runs "instr
builder"

if the current block does not already have a terminator. Used,
e.g., to handle the "fall off the end of the function" case. *)
let add_terminal builder instr =
match L.block terminator (L.insertion_block builder) with

Some _ -> ()
| None -> ignore (instr builder) in

(* Build the code for the given statement; return the builder for
the statement's successor (i.e., the next instruction will be built
after the one generated by this call) *)

let rec stmt builder = function
SBlock sl -> List.fold left stmt builder sl
| SExpr e -> ignore(expr builder e); builder
| SReturn e -> ignore(match fdecl.styp with
(* Special "return nothing" instr *)
A.Void -> L.build _ret_void builder
(* Build return statement *)
| _ -> L.build_ret (expr builder e) builder);
builder
| SIf (predicate, then_stmt, else stmt) ->
let bool val = expr builder predicate in
let merge bb = L.append_block context "merge" the_function in
let build br _merge = L.build br merge bb in (* partial function *)

let then_bb = L.append_block context "then" the_function in
add_terminal (stmt (L.builder_at_end context then_bb) then_stmt)
build _br_merge;

let else bb = L.append_block context "else" the_function in
add_terminal (stmt (L.builder_at_end context else bb) else_stmt)
build _br_merge;

ignore(L.build cond_br bool val then_bb else bb builder);
L.builder_at_end context merge_bb

| SWhile (predicate, body) ->
let pred bb = L.append_block context "while" the_function in
ignore(L.build_br pred_bb builder);

let body bb = L.append_block context "while_ body" the_ function in
add_terminal (stmt (L.builder_at_end context body bb) body)
(L.build_br pred_bb);

let pred_builder = L.builder_at_end context pred_bb in
let bool val = expr pred_builder predicate in

let merge bb = L.append_block context "merge" the_function in
ignore(L.build _cond_br bool val body bb merge bb pred_builder);
L.builder_at_end context merge_bb

(* Implement for loops as while loops *)
| SFor (el1, e2, e3, body) -> stmt builder
(SBlock [SExpr el ; SWhile (e2, SBlock [body ; SExpr e3])])
in

(* Build the code for each statement in the function *)
let builder = stmt builder (SBlock fdecl.sbody) in

(* Add a return if the last block falls off the end *)
add_terminal builder (match fdecl.styp with
A.Void -> L.build ret_void
| A.Float -> L.build_ret (L.const float float_t)
| t -> L.build_ret (L.const_int (ltype_of typ t) 0))

List.iter build function_body functions;

the_module

*kk

*** Semantic

open Ast
open Sast

module StringMap = Map.Make(String)

let check (globals, functions) =

let check binds (kind : string) (binds : bind list) =
List.iter (function
(Void, b) -> raise (Failure ("illegal void " ~ kind ~ " " 2 b))
| _ -> ()) binds;
let rec dups = function
[1->0
| ((_,n1) :: (,n2) ::) when nl = n2 ->
raise (Failure ("duplicate " ~ kind ~ " " 2~ nl1))
| _:: t -> dups t
in dups (List.sort (fun (_,a) (_,b) -> compare a b) binds)
in

check binds "global" globals;

let built_in_decls =
let add bind map (name, ty) = StringMap.add name {
typ = Void;

fname = name;
formals = [(ty, "x")];
locals = []; body = [] } map
in List.fold left add bind StringMap.empty [("print", Int); ("prints",
String);
("create_int _node", Int);

("printb", Bool);
("printf", Float);
("printbig", Int);
("amalg",Int)]
in

let add_func map fd =
let built in_err = "function " ~ fd.fname ~ " may not be defined"
and dup_err = "duplicate function " ~ fd.fname
and make err er = raise (Failure er)
and n = fd.fname
in match fd with

_ when StringMap.mem n built in decls -> make_err built in err
when StringMap.mem n map -> make_err dup_err
-> StringMap.add n fd map

let function decls = List.fold left add func built in decls functions
in

let find func s =

try StringMap.find s function_decls

with Not found -> raise (Failure ("unrecognized function " ~ s))
in

let _ = find_func "main" in
let check function func =

check_binds "formal" func.formals;
check binds "local" func.locals;

let check assign lvaluet rvaluet err =
if lvaluet = rvaluet then lvaluet else raise (Failure err)

let symbols = List.fold left (fun m (ty, name) -> StringMap.add name ty

StringMap.empty (globals @ func.formals @ func.locals

let type of identifier s =

try StringMap.find s symbols

with Not found -> raise (Failure ("undeclared identifier " ~ s))
in

rec expr = function
Literal -> (Int, SLiteral 1)
Sliteral -> (String, SSliteral 1)

Fliteral -> (Float, SFliteral 1)
BoolLit 1 -> (Bool, SBoollLit 1)

Noexpr -> (Void, SNoexpr)
Id s -> (type_of_identifier s, SId s)
Assign(var, e) as ex ->
let 1t = type_of identifier var
and (rt, e') = expr e in
let err = "illegal assignment " ~ string of typ 1t ~ " =" 2
string of typ rt ~ " in " ~ string of expr ex
in (check _assign 1t rt err, SAssign(var, (rt, e')))
Unop(op, e) as ex ->
let (t, e') = expr e in
let ty = match op with
Neg when t = Int || t = Float -> t
| Not when t = Bool -> Bool

_ -> raise (Failure ("illegal unary operator " #
string_of _uop op ” string of_typ t
" in " ~ string_of_expr ex))
in (ty, SUnop(op, (t, e')))
| Binop(el, op, e2) as e ->
let (t1, el') = expr el
and (t2, e2") expr e2 in

let same = t1 t2 in

let ty = match op with

Add | Sub | Mult | Mod | Div when same && tl = Int -> Int
Add | Sub | Mult | Mod | Div when same &% t1 = Float -> Float
Equal | Neq when same -> Bool
Less | Leq | Greater | Geq

when same && (tl = Int || t1 = Float) -> Bool
And | Or when same &% t1 = Bool -> Bool
_ -> raise (
Failure ("illegal binary operator " ~

string of typ t1 ~ " " ~ string of op op ~ " " ~

string of _typ t2 ~ " in " ~ string_of_expr e))
in (ty, SBinop((tl1, el'), op, (t2, e2')))
| call(fname, args) as call ->
let fd = find_func fname in
let param_length = List.length fd.formals in
if List.length args != param_length then
raise (Failure ("expecting " ~ string_of_int param_length ~

arguments in " ”~ string_of _expr call))
else let check_call (ft,) e =
let (et, e') = expr e in
let err = "illegal argument found " ~ string_of_typ et ~
" expected " ~ string of typ ft ~ " in " ~ string of_expr e
in (check_assign ft et err, e')
in
let args' = List.map2 check_call fd.formals args
in (fd.typ, SCall(fname, args'))

let check bool expr e =
let (t', e') = expr e
and err = "expected Boolean expression in " ~ string_of _expr e

in if t' != Bool then raise (Failure err) else (t', e')
in

rec check _stmt = function
Expr e -> SExpr (expr e)
If(p, bl, b2) -> SIf(check bool expr p, check stmt bl, check stmt

For(el, e2, e3, st) ->

SFor(expr el, check bool expr e2, expr e3, check stmt st)

While(p, s) -> SWhile(check bool expr p, check_stmt s)

Return e -> let (t, e') = expr e in

if t = func.typ then SReturn (t, e')

else raise (

Failure ("return gives " ”~ string of typ t ~ " expected " ~
string of typ func.typ ~ " in " ~ string of_expr e))

sl ->

rec check stmt_list = function

[Return _ as s] -> [check stmt s]

Return _ :: _ -> raise (Failure "nothing may follow a
return™)

Block sl :: ss -> check stmt _list (sl @ ss)

| s

|] -> [1]
in SBlock(check stmt_list sl)

i1 ss -> check_stmt s :: check_stmt_list ss

in
{ styp = func.typ;
sfname = func.fname;
sformals = func.formals;
slocals = func.locals;
sbody = match check stmt (Block func.body) with
SBlock(sl) -> sl
| _ -> raise (Failure ("internal error: block didn't become a
block?"))
}

in (globals, List.map check function functions)

Top-Level

type action = Ast | Sast | LLVM_IR | Compile

let () =

let action = ref Compile in

let set action a () = action := a in

let speclist = [

("-a", Arg.Unit (set_action Ast), "Print the AST");

-s", Arg.Unit (set_action Sast), "Print the SAST");
-1", Arg.Unit (set _action LLVM IR), "Print the generated LLVM IR");
-c", Arg.Unit (set_action Compile),
"Check and print the generated LLVM IR (default)");

] in

let usage msg = "usage: ./microc.native [-a|-s|-1|-c] [file.mc]" in

let channel = ref stdin in

Arg.parse speclist (fun filename -> channel := open_in filename)
usage_msg;

(
(
(

let lexbuf = Lexing.from_channel !channel in
let ast = Microcparse.program Scanner.token lexbuf in
match laction with
Ast -> print_string (Ast.string of program ast)
| _ -> let sast = Semant.check ast in
match l!action with
Ast -> ()
| sast -> print_string (Sast.string of_ sprogram sast)
| LLVM_IR -> print_string (Llvm.string_of_llmodule (Codegen.translate
sast))
| Compile -> let m = Codegen.translate sast in
Llvm_analysis.assert valid module m;
print_string (Llvm.string of llmodule m)

*** Makefile***

(* Code generation: translate takes a semantically checked AST and
produces LLVM IR

LLVM tutorial: Make sure to read the 0Caml version of the tutorial
http://11lvm.org/docs/tutorial/index.html
Detailed documentation on the OCaml LLVM library:

http://11lvm.moe/
http://11vm.moe/ocaml/
newverison

*)

module L
module A
open Sast

module StringMap = Map.Make(String)

(* translate : Sast.program -> Llvm.module *)
let translate (globals, functions) =
let context = L.global_context () in

(* Create the LLVM compilation module into which
we will generate code *)
(* let 1lmem = L.MemoryBuffer.of_file "tree.bc" in
let 1lm = Llvm bitreader.parse bitcode context llmem in *)
let the_module = L.create_module context "MicroC" in

(* Get types from the context *)
let i32_t = L.i32 type context
and i8_t L.i8 type context
and il t L.i1l type context
and str_t L.pointer_type (L.i8 type context)
and float_t L.double_type context
and void_ptr_t L.pointer_type (L.i8 type context)
and void_t L.void_type context
(* and node_t = L.pointer_type (match L.type by name 1llm "struct.Node"
with

None -> raise (Failure "Missing implementation for struct Node")
| Some t -> t) in *)
in

(* Return the LLVM type for a MicroC type *)
let ltype of typ = function

(*
in

(*

A.Int -> i32_ t

| A.Char -> i8 t *)
A.String -> str_t
A.Bool -> il t
A.Float -> float_t
A.Void -> void_t

| A.Node() -> node_t *)

(* node functions *)

let
let

create_node_t = L.function_type node t [| void ptr_t ; i32_t |] in
create_node_f = L.declare_function "create_node" create node_t

the_module in

let
let
in
let
let

root_init t = L.function_type node_t [| node_t |] in
root_init f = L.declare_function "root init" root_init_t the_module

delete_node_t = L.function_type void_ptr_t [| node_t |] in
delete_node_f = L.declare_function "delete node" delete_node_t

the_module in

let
let
in
let
let
let
let

add_child_t = L.function_type node_t [| node_t; node t|] in
add_child f = L.declare_function "add child" add_child_t the_module

get _root_t = L.function_type node_t [| node_t |] in

get_root_f = L.declare_ function "get _root" get root_t the_module in
is_ancestor_t = L.function_type i32_t [| node_t ; node_t |] in
is_ancestor_f = L.declare_function "is_ancestor" is_ancestor_t

the_module in

let
let
let
let
in
let
let

is_root_t .function_type i32_t [| node_t |] in

is_root_f .declare_function "is root" is_root_t the_module in
get_depth_t = L.function_type i32 t [| node_t |] in

get_depth_f = L.declare_function "get depth" get depth_t the_module

shift_right t = L.function_type void t [| i32_t; node_t |] in
shift_right f = L.declare_function "shift_right" shift_right_t

the_module in

let
let

shift_left_t = L.function_type void _t [| i32_t; node_t |] in
shift_left f L.declare_function "shift_left" shift_left t

the_module in

*)

(* Create a map of global variables after creating each *)

let

global vars : L.llvalue StringMap.t =

1

L
let

let

(*

let
1

L

(*
let

et global var m (t, n) =
let init = match t with
A.Float -> L.const_float (ltype of typ t)
| _ -> L.const_int (ltype of typ t)
in StringMap.add n (L.define_global n init the_module) m in
ist.fold_left global_var StringMap.empty globals in

printf_t : L.1lltype =

L.var_arg_function_type i32 t [| L.pointer_type i8 t |] in
printf_func : L.llvalue =

L.declare_function "printf" printf_t the_module in

create_int _node : L.1lltype =

L.var_arg_function_type i32_t [| i32_t |] in
create_int_node func : L.llvalue =

L.declare_function "create_int_node" create_int_node the_module

amalg : L.1lltype =

L.function_type i32 t [| i32_t |] in

amalg func : L.llvalue =

L.declare_function "amalg" amalg the_module in

printbig t : L.lltype =

L.function_type i32_t [| i32_t |] in

printbig func : L.llvalue =

L.declare_function "printbig" printbig t the_module in

Define each function (arguments and return type) so we can

call it even before we've created its body *)

function_decls : (L.llvalue * sfunc_decl) StringMap.t =

et function_decl m fdecl =

let name = fdecl.sfname

and formal_types =

Array.of list (List.map (fun (t,_) -> ltype of typ t) fdecl.sformals)
in let ftype = L.function_type (ltype of typ fdecl.styp) formal types

StringMap.add name (L.define_function name ftype the_module, fdecl) m
ist.fold _left function_decl StringMap.empty functions in

Fill in the body of the given function *)
build function_body fdecl =

let (the_function,) = StringMap.find fdecl.sfname function_decls in
let builder = L.builder_at_end context (L.entry block the_function) in

let int_format_str = L.build _global stringptr "%d\n" "fmt" builder
and float_format_str = L.build global stringptr "%g\n" "fmt" builder
and string format_str = L.build_global_stringptr "%s\n" "fmt" builder

(* and char_format_str = L.build _global_stringptr "%c\n" "fmt" builder
in *)

(* Construct the function's "locals": formal arguments and locally
declared variables. Allocate each on the stack, initialize their
value, if appropriate, and remember their values in the "locals" map

*)
let local vars =
let add_formal m (t, n) p =
L.set _value name n p;
let local = L.build_alloca (ltype of_typ t) n builder in
ignore (L.build store p local builder);
StringMap.add n local m

(* Allocate space for any locally declared variables and add the
* resulting registers to our map *)

and add_local m (t, n) =

let local var = L.build alloca (ltype of typ t) n builder

in StringMap.add n local var m

in

let formals = List.fold left2 add_formal StringMap.empty
sformals

(Array.to_list (L.params the_function)) in
List.fold left add_local formals fdecl.slocals

(* Return the value for a variable or formal argument.
Check local names first, then global names *)
let lookup n = try StringMap.find n local vars
with Not_found -> StringMap.find n global_vars

(* Construct code for an expression; return its value *)
let rec expr builder ((_, e) : sexpr) = match e with

SLiteral i -> L.const_int i32 t i
| sSliteral s -> L.build _global stringptr s "str" builder
| sCliteral c -> L.build_global stringptr c "str" builder *)

| SBoolLit b -> L.const_int il t (if b then 1 else 9)

| SFliteral 1 -> L.const_float of_string float t 1

| SNoexpr -> L.const_int i32_t

| SId s -> L.build load (lookup s) s builder

| SAssign (s, e) -> let e' = expr builder e in

ignore(L.build store e' (lookup s) builder); e’

(* | SNodeLit(data, rtyp)-> let d_ltyp = ltype of typ and

data = L.build _call create node f [| data; idx |] "create_node"
builder in data *)

(* let data = L.build malloc (ltype of_typ styp) "data" builder in *)

(* let data L.build_bitcast data void_ptr_t "data" builder in

let node = L.build call node_init f [| idx; data|] "node_init"
builder in

node *)

(* L.build malloc (ltype of typ rtype) "data" builder in
let d = expr builder

let rtyp' = L.build malloc (ltype_of typ rtyp) "data" builder in
let data' = L.build bitcast data void ptr_t "data" builder in
let node = L.build call node_init f [| data'; rtyp'|] "create_node"
builder in
node *)
(* | SNodeData n ->
let node = expr builder m n in
let data_ptr = L.build malloc (ltype of typ (fst el)) "data"
builder in
ignore (L.build _store new_value data_ptr builder);
let data_ptr = L.build_bitcast data_ptr void_ptr_t "data"
builder in
ignore (L.build _call node_set _data_f [| node; data_ptr |]
"node_set_data" builder);
new_value *)
| SBinop ((A.Float,_) as el, op, e2) ->
let el' = expr builder el
and e2' = expr builder e2 in
(match op with
A.Add -> L.build_fadd
| A.Sub -> L.build_fsub

| A.

A.Mult

.Div
.Equal
.Neq
.Less
R N=To

.Geq
.And |

| A
Mo
|
|
|
|
|
|
|
I

J>J>J>J>J>J>J>J>Q.

raise (Failure
and/or on float")

) el' e2'

=2

=2
=2
=2
=2
=2

.Greater ->

->
A.Or

lltmpll

L.build_fmul

-> L.build_frem

L.build_fdiv
.build_fcmp
.build_fcmp
.build_fcmp
.build_fcmp
.build_fcmp
.build_fcmp

->

.Fcmp.
.Fcmp.
.Fcmp.
.Fcmp.
.Fcmp.
.Fcmp.

Oeq
One
0lt
Ole
Ogt
Oge

"internal error: semant should have rejected

builder

| SBinop (el, op, e2) ->

let el' =

and e2' =

(match op

A.Add

| A.Sub

| A.Mult
| A.Mod
| A.Div
.And
.Or
.Equal
.Neqg
.Less
.Leqg

> > > > > > > >

.Geq
el' e2'
Unop(op,
let e’
(match op

A
|
|
|
|
|
|
|
I
)
S

A.Neg when t = A.Float -> L.

| A.Neg
| A.Not

expr
expr
with
->
->
->

-> L.
-> L.

=2
=2
=2
=2
=2
=2

.Greater ->

=2

lltmpll

((t,

builder el
builder e2 in

L.build_add
L.build_sub
L.build_mul
build_srem
build sdiv
.build _and
.build_or
.build_icmp
.build_icmp
.build_icmp
.build_icmp
.build_icmp
.build_icmp
builder

_) as e)) ->

r r OO - -

expr builder e in

with

build fneg
-> L.build_neg
-> L.build not) e' "tmp" builder

| scall ("print", [e]) | SCall ("printb", [e]) ->
L.build _call printf_func [| int_format_str ; (expr builder e) |]
"printf" builder
| scall ("prints", [e]) ->
L.build_call printf_func [| string_format_str ; (expr builder e) |]

"prints" builder
| scall ("printbig", [e]) ->
L.build_call printbig _func [| (expr builder e) |] "printbig"

builder
| scall ("amalg", [e]) ->
L.build_call amalg func [| (expr builder e) |]
"amalg" builder
| scall ("printf", [e]) ->
L.build_call printf_func [| float_format_str ; (expr builder e) |]
"printf" builder
| scall ("create_int_node", [e]) ->
L.build call create_int _node func [| (expr builder e)
|1 "create_int_node" builder
| scall (f, args) ->
let (fdef, fdecl) = StringMap.find f function_decls in
let 1largs = List.rev (List.map (expr builder) (List.rev args)) in
let result = (match fdecl.styp with
A.Void -> ""
| _ -> f ~ " _result") in
L.build call fdef (Array.of list llargs) result builder

(* LLVM insists each basic block end with exactly one "terminator"
instruction that transfers control. This function runs "instr
builder"
if the current block does not already have a terminator. Used,
e.g., to handle the "fall off the end of the function" case. *)
let add_terminal builder instr =
match L.block terminator (L.insertion_block builder) with
Some _ -> ()
| None -> ignore (instr builder) in

(* Build the code for the given statement; return the builder for
the statement's successor (i.e., the next instruction will be built
after the one generated by this call) *)

let rec stmt builder = function
SBlock sl -> List.fold left stmt builder sl
| SExpr e -> ignore(expr builder e); builder
| SReturn e -> ignore(match fdecl.styp with
(* Special "return nothing" instr *)
A.Void -> L.build_ret_void builder

(* Build return statement *)
| _ -> L.build_ret (expr builder e) builder);

builder
| SIf (predicate, then_stmt, else stmt) ->
let bool val = expr builder predicate in
let merge bb = L.append_block context "merge" the_function in
let build br _merge = L.build br merge bb in (* partial function *)

let then_bb = L.append_block context "then" the_function in
add_terminal (stmt (L.builder_at_end context then_bb) then_stmt)
build _br_merge;

let else bb = L.append_block context "else" the_function in
add_terminal (stmt (L.builder_at_end context else bb) else_stmt)
build _br_merge;

ignore(L.build cond_br bool val then_bb else bb builder);
L.builder_at_end context merge_bb

| SWhile (predicate, body) ->
let pred bb = L.append_block context "while" the_function in
ignore(L.build_br pred_bb builder);

let body bb = L.append_block context "while body" the function in
add_terminal (stmt (L.builder_at_end context body bb) body)
(L.build_br pred_bb);

let pred_builder = L.builder_at_end context pred_bb in
let bool val = expr pred_builder predicate in

let merge bb = L.append_block context "merge" the_function in
ignore(L.build _cond_br bool val body bb merge bb pred_builder);
L.builder_at_end context merge_bb

(* Implement for loops as while loops *)
| SFor (el1, e2, e3, body) -> stmt builder
(SBlock [SExpr el ; SWhile (e2, SBlock [body ; SExpr e3])])
in

(* Build the code for each statement in the function *)
let builder = stmt builder (SBlock fdecl.sbody) in

(* Add a return if the last block falls off the end *)
add_terminal builder (match fdecl.styp with
A.Void -> L.build ret_void
| A.Float -> L.build_ret (L.const_float float_t)
| t -> L.build_ret (L.const_int (ltype_of typ t) 0))

List.iter build function_body functions;
the_module

Appendix: Original Tree++ Code

Scanner

(* Authors:

Allison Costa arc2211

Laura Matos 1m3081

Jacob Penn jp3666

Laura Smerling les2206

*)

(* Ocamllex scanner for Tree++ *)
{ open Parser }

(* Definitions *)

let digit = ['©0'-'9"]

let decimal = ((digit+'.'digit*)|('.'digit+))
let letter = ['a'-"z" "A'-"Z"]

(* Rules *)
rule token = parse
[" " "\t" "\r" "\n'] { token lexbuf } (* to ignore whitespace *)
| "(*" { comment lexbuf }
| *." { DOT }
| ',' { COMMA }

(* scoping *)
| " { LPAREN }
|)" { RPAREN }
| "{" { LBRACE }

126

| "}’ { RBRACE }
| '[! { LBRACK }
| "' { RBRACK }

(* keywords *)
(* | "bfs" {BFS}
| "dfs" {DFS} these have been classified as library functions*)
| "if" { IF }
| "then" { THEN }
| "else" { ELSE }
| "for" { FOR }
| "float" { FLOAT }
| "double" { DOUBLE }
| "int" { INT }
| "string” { STRING }
| "tuple" { TUPLE }
| "node" { NODE }
| "parent” { PARENT }
| "data" { DATA }
| "null" { NULL }
| "return” { RETURN }
| "break" { BREAK }
| "range" { RANGE }
| "func" { FUNCTION }

(* operators *)

| "+ { PLUS }

| - { MINUS }

| ot { TIMES }

| /" { DIVIDE }
| "=" { ASSIGN }

(* | "+=" { PLUSEQ }
| "-=" { MINUSEQ }
| "*=" { TIMESEQ }

| "/=" { DIVEQ } to be included in next vertical slice? *)

*

| "% { moD }
| "&&" { AND }
| "[1" { OrR }
| *!* { NOT }
| "==" { EQ }
| "> { GT }
| "<" {LT}

| "1=" { NEQ }

127

| ">=" { GEQ }

| "<=" { LEQ }

| ">>" { RSHIFT }

| "<<" { LSHIFT }

| "<<+" { LSHIFTPLUS }
| ">>+" { RSHIFTPLUS }
| "<<-" { LSHIFTMINUS }
| ">>-" { RSHIFTMINUS }
| "~~" { DSWAP }

| ":" { BFSNODE }

(* literals and IDs *)

| digit+ as 1xm { INT_LIT(int_of_string 1xm)
¥

| decimal as 1xm { FLOAT_LIT(float_of _string
Ixm) }

| ("true" | "false") as 1xm { BOOL_LIT(bool of_string
Ixm) }

| "\"" ([~"\"']* as 1lxm) "\"' { STRING_LIT(1lxm) }

| eof { EOF }

| letter (letter | digit | '_')* as 1xm { ID(1xm) }

| eof { EOF }

| _ as char { raise (Failure("illegal character " ~ Char.escaped char)) }

and comment =
parse "*)" { token lexbuf } (* return to normal scanning *)
| _ { comment lexbuf } (* Ignore other character *)

Parser*

/* PARSER Authors: */
%{ open AST %}

%token PLUS MINUS TIMES DIVIDE ASSIGN

%»token DOT COLON SEMI COMMA

%token LPAREN RPAREN LBRACE RBRACE LBRACK RBRACK

%»token IF THEN ELSE FOR BOOL FLOAT INT VOID STRING TUPLE NODE ROOT DATA

128

PARENT NULL RETURN BREAK RANGE FUNCTION

%token MOD AND OR NOT LT GT EQ NEQ GEQ LEQ RSHIFT LSHIFT LSHIFTPLUS
RSHIFTPLUS LSHIFTMINUS RSHIFTMINUS DSWAP BFSNODE

%»token <int> INT_LIT

%token <bool> BOOL_LIT

%»token <string> ID STRING_LIT FLOAT_LIT

%token EOF

%start program
%»type <Ast.program> program

%right ASSIGN

%right NOT NEG

%»leftt DOT

%left PLUS MINUS

%left TIMES DIVIDE MOD

%left OR AND

%left SWITCH

%left RSHIFT LSHIFT LSHIFTPLUS RSHIFTPLUS LSHIFTMINUS RSHIFTMINUS DSWAP
BFSNODE

%right EQ NEQ
%nonassoc LPAREN RPAREN LBRACE RBRACE LBRACK RBRACK
%nonassoc GEQ LEQ LT GT

%%
program:
stmt_list EOF {List.rev $1}

stmt_list:

/* empty */ { []}
| stmt_list stmt { $2 :: $1 }

typ:
INT { Int }
| BOOL { Bool }
| FLOAT { Float }
| voiD { Void }
| STRING { String }
| TUPLE LT typ GT { Tuple($3) }
| NODE LT typ GT { Node($3) }
| FUNCTION LT typ GT { Function($3) }

129

/* return must return somthing */

stmt:
expr SEMI

|RETURN expr SEMI
| LBRACE stmt_list RBRACE
| IF LPAREN expr RPAREN THEN stmt ELSE stmt { If($3, $6, $8)
| FOR LPAREN expr SEMI expr SEMI expr RPAREN LBRACE stmt RBRACE { For($3,

$5, $7, $10)

}

|typ ID ASSIGN expr SEMI

{Expr $1}
{Return $2}
{Block(list.rev $2) }

{ Dcl ($1,%2, $4) }

/* Currently does not allow declarations without assignements */

expr:
INT_LIT

| FLOAT_LIT
| BOOL_LIT
| STRING_LIT
| NULL {Null

/* Arithmetics */
| NOT expr {
| MINUS expr %prec NEG
| expr PLUS expr {
| expr MINUS expr {
| expr TIMES expr {
| expr DIVIDE expr {
| expr MOD expr {
| expr EQ expr {
| expr NEQ expr {
| expr LT expr {
| expr LEQ expr {
| expr GT expr {
| expr GEQ expr {
| expr AND expr {
| expr OR expr {
/* | LPAREN expr RPAREN

{I1it($1) }
{Flit($1) }
{Blit($1) }
{slit($1) }

/*Node Operations*/

| expr RSHIFT
| expr LSHIFT

| expr RSHIFT LBRACK expr RBRACK

}
Unop(Not, $2) }
{ Unop(Neg, $2) }
Binop($1, Add, $3) }
Binop($1, Sub, $3) }
Binop($1, Mult, $3) }
Binop($1, Div, $3) }
Binop($1, Mod, $3) }
Binop($1, Equal, $3) }
Binop($1, Neq, $3) }
Binop($1, Less, $3) }
Binop($1, Leq, $3) }
Binop($1, Greater, $3) }
Binop($1, Geq, $3) }
Binop($1, And, $3) }
Binop($1, oOr, $3) }
{%$2 }*
{ Unop(Rshiftu, $1) }
{ Unop(Lshiftu, $1) }

{ Binop($1, Rshiftb, $4)

}

}

130

expr LSHIFT LBRACK expr RBRACK { Binop($1, Lshiftb, $4)
expr LSHIFTPLUS { Unop(Lshiftplus, $1) }

expr RSHIFTPLUS { Unop(Rshiftplus, $1) }

expr LSHIFTMINUS { Unop(Lshiftminus, $1) }

expr RSHIFTMINUS { Unop(Rshiftminus, $1) }

expr DSWAP expr { Binop($1, Dswap, $3) }

expr BFSNODE expr { Binop($1l, Bfsnode, $3) }

/*Assignment*/
| ID { Id($1) }
| ID ASSIGN expr { Assign(Id($1), $3) }

/* Node Auxillary */
LBRACK expr COMMA expr RBRACK { NodeLit($2,%$4) }

I
| expr DOT DATA { NodeData($1) }
| expr DOT DATA ASSIGN expr { Assign(NodeData($1),$5) }
| expr DOT PARENT { Parent($1)}
| expr LBRACE expr RBRACE { NodeChild($1,$3)}
/* Tuple */
| tuple_ list {$1 }
| access {$1 ¥

| access ASSIGN expr {Assign($1, $3) }

/* Functions */
| funcexpr { FuncExpr($1) }
| fn_call {$1 }

/* TUPLE AUXILLARY */
/* access to tuple elements can be recursively called */
access:

ID LBRACK expr RBRACK {Index($1,$3)}

| access LBRACK expr RBRACK {Indexr($1,%$3)}
fn_call:

ID LPAREN args_opt RPAREN { Call (%1, $3) }

/* Functions - return type cannot be omitted */

131

funcexpr:
FUNCTION LT typ GT LPAREN formals opt RPAREN LBRACE stmt_ list RBRACE
{ { typ = $3;
formals = $6;
body = List.rev $9} }

formals_opt:
/*nothing*/ { [] }
| formal list { List.rev $1 }

formal_list:

typ ID { [($1,$2)] }
| formal list COMMA typ ID { ($3,$4) :: $1 }

tuple_list:
| LPAREN elems_seq opt RPAREN { TupleLit(List.rev $2) }

elems_seq_opt:
/*nothing*/ { [] }

| expr { [$1] 1}
| elems_seq opt COMMA expr { $3 :: $1 }

/* Function call auxiliary patterns */
args_opt:
/* nothing */ { [] }
| args_list { List.rev $1 }

args_list:

expr { [$1] }
| args_list COMMA expr { $3 :: $1 }

*kk

***Semantic

(* Semantically-checked Abstract Syntax Tree and functions for printing it

*)

132

open Ast

type sexpr = typ * sx

and

SX =
SIlit of int

SFlit of string

SB1lit of bool

SS1lit of string

SNodeLit of sexpr * sexpr
SNodeData of sexpr
SNodeChild of sexpr * sexpr
SParent of sexpr

SBinop of sexpr * op * sexpr
SUnop of uop * sexpr

SAssign of sexpr * sexpr
SCall of string * sexpr list
STuplelLit of sexpr list

SId of string

SIndex of string * sexpr
SIndexr of expr * sexpr
SFuncExpr of sfunc_decl
SNull

SNoexpr

type sstmt =

SBlock of sstmt list

SDcl of styp * string * sexpr
SExpr of sexpr

SReturn of sexpr

SBfsnode of string * sexpr * sexpr * sstmt

SIf of sexpr * sstmt * sstmt
SThen of sstmt
SElse of sstmt

SFor of sexpr * sexpr * sexpr * sstmt

type sfunc_decl = {

styp : typ;

sfname : string;
sformals : bind list;
slocals : bind list;
sbody : sstmt list;

133

type sprogram = bind list * sfunc_decl list
(* Pretty-printing functions *)

let rec string_of_sexpr (t, e) =
"(" N string of typ t 2 " ¢ " A (match e with
SIlit(l) -> string_of _int 1
| SBlit(true) -> "true"
| sBlit(false) -> "false"
| SFlit(1l) -> 1
| SS1it(l) -> 1 ~ ™)"
| SNodeLit(1l, e) -> string _of sexpr 1 ~ "#" ~ string_of_sexpr e ~ ")
| SNodeData e -> "(" ~ string _of_sexpr e ~ ".data)"

| SId(s) -> s
| SBinop(el, o, e2) ->
string _of _sexpr el ~ " ™ ~ string of op o ~ " " ~ string_of_sexpr e2
| SUnop(o, e) -> string of uop o * string of sexpr e
| SAssign(v, e) -> v ~ " =" A string_of_sexpr e

| scall(f, el) ->

£ ~ "(" ~ String.concat ", " (List.map string_of sexpr el) ~ ")
| SIndex(id, i) -> id ~ "[" ~ string_of_sexpr i ~ "]" ~ ")"
| SIndexr(i,j) -> string of sexpr i ~ "[" ~ string of_sexpr j ~ "]" ~ ")"
| SFuncExpr(fexpr) -> string_of_sfexpr fexpr ~ ")"
| SNoexpr -> ""

) M)
| SNull -> "NULL"

let rec string_of_sstmt = function
SBlock(stmts) ->
"{\n" ~ String.concat (List.map string of _sstmt stmts) ~ "}\n"
| SExpr(expr) -> string_of sexpr expr ~ ";\n";
| SReturn(expr) -> "return " ~ string_of_sexpr expr ~ ";\n";
| s1f(e, s, SBlock([])) ->
"if (" ~ string_of _sexpr e ~ ")\n" ~ string of sstmt s
| s1f(e, s1, s2) -> "if (" ~ string_of_sexpr e ~ ")\n" ~
string of sstmt s1 ~ "else\n" ”~ string of_sstmt s2
| SFor(el, e2, e3, s) ->
"for (" ~ string_of sexpr el ~* 5 "~ string_of_sexpr e2 ~ " A
string of_sexpr e3 ~ ") " ~ string_of_sstmt s
| SWhile(e, s) -> "while (" ~ string_of _sexpr e ~ ") " ~ string of_sstmt

134

| Sbcl(t, id, (SVoid,SNoexpr)) -> string of styp t ~ " " ~ id ~ ";\n"
| sbcl(t, id, v) -> string of styp t ~ " " ~ id ~ " = " ~ string_of_sexpr
V N ll;\nll

let string_of_sfdecl fdecl =
string_of_typ fdecl.styp ~ " " ~

fdecl.sfname ~ "(" ~ String.concat ", " (List.map snd fdecl.sformals) *
“)\n{\n"

String.concat "" (List.map string of_vdecl fdecl.slocals) *
String.concat "" (List.map string_of _sstmt fdecl.sbody) *

n }\nll

let string of sprogram (vars, funcs) =
String.concat "" (List.map string_of _vdecl vars) ~ "\n" ~
String.concat "\n" (List.map string_of_sfdecl funcs)

Semantic

(* Semantic checking for the treePlusPlus compiler *)

open Ast
module StringMap = Map.Make(String)

(* Semantic checking of a program. Returns void if successful,
throws an exception if something 1s wrong.
Check each global variable, then check each function *)

let check (globals, function) =

(*Raise an exception if the given list has duplicate *)
let report_duplicate exceptf list =
let rec helper = function

nl :: n2 :: _ when n1l = n2 -> raise (Failure (exceptf nl))
| _ :: t -> helper t
| [1->0

in helper (List.sort compare list)

in

(* Raise an exception if a given biding is to a void type*)

135

let check_not_void exceptf = function
(Void, n) -> raise (Failure (exceptf n))
l_-> O

in

(* Raise an exception of the given rvalue type cannot be assigned to
the given Llvalue type *)

let check_assign lvaluet rvaluet err =
if (lvaluet) = (rvaluet) then lvaluet else raise err

in

(*can add in other versions of assigning here*)

(**** Checking Global Variables ****)

List.iter (check_not_void (fun n -> "illegal void global " ~ n)) globals;
report_duplicate (fun n -> "duplicate global " ~ n) (List.map snd
globals);

(**** Checking Functions ***%*)

if List.mem "print" (List.map (fun fd -> fd.fname) functions)
then raise (Failure ("function print may not be defined")) else ();

report_duplicate (fun n -> "duplicate function " ~ n)
(List.map (fun fd -> fd.fname) functions);

(*Function declaration for a named function*)
let built_in_decls = StringMap.add "print"
{ typ = Void; fname = "print"; formals = [(Int, "x")];
locals = []; body = [] }
in

let function_decls = List.fold_left (fun m fd -> Stringmap.add fd.fname
fd m)
built_in_decls functions
in

let function_decl s = try StringMap.find s function_decls
with Not_found -> raise (Failure ("unrecognized function " ”~ s))

136

in

(*main check*)
let _ = function_decl "main" in (*Ensure "main" 1is defined *)

(*add in all the function declirations, Llinear*)

let check_function func =
List.iter (check_not_void (fun n -> "illegal void formal " ~ n ~
" in " func.fname)) func.formals;

report_duplicate (fun n -> "duplicate formal " ~ n ~ " in " A
func.fname)
(List.map snd func.locals);

(*Type of each variable (global, formal, or Llocal) *)
let symbol = List.fold left (fun m (t, n) -> StringMap.add n t m)
StringMap.empty
(globals @ func.formals @ func.locals)
in

let type_of_identifier s =

try StringMap.find s symbols

with Not_found ->raise (Failure ("undeclared identifier " ~ s))
in

(* get types for node *)
let getNodeType = function
NodeType(typ) -> typ
| _ -> Void
in

let getTupleType = function
TupleType(typ) -> typ
| _ -> String

in

(* Return the type of an expression or throw an exception *)
let rec expr = function
IntLit _ -> Int
| BoolLit _ -> Bool
| FloatLit _ -> Float

137

| StringLit _ -> String
| Tuple (t,_) -> TupleType(t)
| Node(_, t) -> NodeType(t)
| Id s -> type of_identifier s
| Binop(el, op, e2) as e -> let tl1l = expr el
and t2 = expr e2 in
(match op with

Add when t1 = Float & & t2 = Float -> Float
Add when tl1 = Int & t2 = Int -> Int

Add when t1 = Bool && t2 = Bool -> Bool
Div when t1 = Float & & t2 = Float -> Float
Div when t1 = Int & t2 = Int -> Int

Equal when t1 = t2 -> Bool

Geq when tl1 = Float & & t2 = Float -> Bool
Geq when tl1 = Int & t2 = Int -> Bool

|

|

|

|

|

|

|

| Greater when t1 = Float &% t2 = Float -> Bool
| Greater when t1 = Int && t2 = Int -> Bool

| Leq when t1 = Float & t2 = Float -> Bool
|

|

|

|

|

|

|

|

|

|

Leq when tl1 = Int & t2 = Int -> Bool

Less when t1 = Float & & t2 = Float -> Bool
Less when tl1 = Int & t2 = Float -> Bool
Mult when t1 = Float & & t2 = Float -> Float
Mult when tl1 = Int & t2 = Int -> Int

Neq when tl1 = t2 -> Bool

Or when tl1 = Bool && t2 = Bool -> Bool

Sub when t1 = Float & & t2 = Float -> Float

Sub when tl1 = Int & t2 = Int -> Int

_ -> raise (Failure ("illegal binary operator " ~
string of typ t1 ~ " " ~ string of op op ~ " " ~
string of _typ t2 ~ " in " ~ string_of_expr e)))

| Unop(op, e) as ex -> let t = expr e in
(match op with
Neg when t = Int -> Int
| Not when t = Bool -> Bool
| _ -> raise (Failure ("illegal unary operator " ~ string_of_uop op

string of typ t ~ ™ in " ~ string_of _expr ex)))
| Noexpr -> Void

138

Appendix: Other Info

Project Log Based On GitHub:

To illustrate our contributions to the project:
git log --all --decorate --oneline --graph

i O 4
FL
| | | * | a83aa3e with funcall and funcdec
60
| = | 784e@ working parser, no errors
|1 k£
| * parse with func decl
| * 8144763 improvements, parser not ready
R changed semant so that our program is defined as a list of statments
Il *3 added the modified ast
11 | * 45beac node) some basic semantic stuff but not finished
RE be origin/node) Merge branch 'node' of https://github.com/jacobmpenn/Treepp into node
| A A
I
|
| | = fixed syntax errors in ast and sast
|)= 2403 shanges node to expr
1\ 11 = 3c9c7 fixed scanner and microparse no shift reduce errors
|11/
111 * ? Merge branch 'node' of https://github.com/jacobmpenn/Treepp into node
I
| | | * c63077c added node to scanner and parser, no shift reduce errors
|11 * scanner node
10 b
g
|1 * ? added node - may have errors ast.ml sast.ml
1l o= 552 added node to ast.ml, may have bugs
| I
171
* | d42ffe8 (stringPlus) no shift reduce
| * | 9688cbf hello world
* | 3 errors
* | still not working for string
x| still not working string
x | e 2 still not working for string
* |k not working string
* | mod working
1/
11 = origin/dev) test
| * dev) without nodes
11 | * 8¢ je (origin/asn, asn) working on assignment
18 Dd origin/ops) added node ops to all files except codegen, untested pending node completion
I 4
| * | ccoo test for nodes
| o | added nodes but still with error in codegen.ml
i fe mod, string, correct comments, no char
i i
J1 * 1 mod, char, string, lbrack, rbrack
| * 3 added tests, now works for mod and print hello
i o* e submit hello world works for mod
| *) added the printc and prints
| * ! added mod, string, char (no errors but not tested)
| *) bug
A

139

| * | d429216 Merge branch 'decl' of https://github.com/jacobmpenn/Treepp into decl
[IAYAY
| * | | 735567b bunch of edits msotly to epress sast form
* | | | 222510d makefile
| Lk
1711
* | | 180be48 only Ifelse now called If
|77
* | ab6682f Merge branch 'decl' of https://github.com/jacobmpenn/Treepp into decl
(AW
| * | 2b5eaf9 codegen works
* | | 565a21c more changes related to semant expressions having types
E| 2e996e9 Merge branch 'decl' of https://github.com/jacobmpenn/Treepp into decl
IN VA
| 177
* | | f51bd19 changes to semant
| | * b880171 added partial nodes
|1/
| * ea320d3 only one error
| * 7b270d2 Merge branch 'decl' of https://github.com/jacobmpenn/Treepp into decl
A
| | * 599667d deleted then
| | * e9fabb3 Merge branch 'decl' of https://github.com/jacobmpenn/Treepp into decl
I 1IN
| 15N\ 6e3allf Merge branch 'decl' of https://github.com/jacobmpenn/Treepp into decl
LIRS
| J_)47
171 1|
N b269008 Merge branch 'decl' of https://github.com/jacobmpenn/Treepp into decl
] TN
|| x| | 1f6fad4 added node parameters into sast
| * | | | dbffebb less errors
N
I 171 |
| * | | eb84547 better but still errors
4 1t
E 98fflef Merge branch ‘'decl' of https://github.com/jacobmpenn/Treepp into decl
AYAYAY
L1/
[171
[* | 72ebe39 Merge branch 'decl' of https://github.com/jacobmpenn/Treepp into decl
[N
L1/
| * | 2b979a2 finished adding statement
* | | 0edd8of added bind in to vardec
|1/
171
* | a22d8e6 adding a new codegen to play with
1/
* 4190281 fixed some bugs
* 1769214 fixed all changes
* ©a53848 Merge pull request #3 from jacobmpenn/revert-2-jacob_fix
I\
| * 0b675f4 (origin/revert-2-jacob_fix) Revert "added all of jacobs changes"
=

* 0b67574 (origin/revert-2-jacob_fix) Revert "added all of jacobs changes"
1fdad7d Merge pull request #2 from jacobmpenn/jacob_fix

* b

Sece (origin/jacob_fix, jacob_fix) added all of jacobs changes

5cbf5fa fixed merge conflict

79c8e6d Merge pull request #1 from jacobmpenn/codegenwork

* e

3f23c Merge branch 'decl' into codegenwork

changed name of block in codegen to seq, same in sast

bunch of changes: parser: changed funcall to accept actuals list, ast changed to reflect this. same with sast and minor changes.
through expressions, but nodes have not been added

(origin/codegenwork) no duplicate

rors
e error down, new one to fix
Merge branch 'decl' of https://github.com/jacobmpenn/Treepp into decl

added then to prs and scn, incremental semant changes

b parser: fixed typos in ifelse, started changing the semant to reflect our ast
first changes toi the semant

trying to add funcdec

2 not working but still maybe ok?

working on swapping node

5 fixed parser

1fdccad just warnings in ast and sast

* 78a5f3b minor changes to ast in vdecl and typ
|
| 0aeb395 Merge branch 'decl' of https://github.com/jacobmpenn/Treepp into decl

3228 new parser reflecting split between statements and fdecls, changes reflectd in parser, ast in progress
1dad fixing some vardec and fundec errors

© &

same
6c03079 string of program additions

d8040e7 jacob's verison of ast with functions
bod7ee5 parser

* 0725c09 fixed some sast
* b965623 Merge branch 'decl' of https://github.com/jacobmpenn/Treepp into decl
I\

140

* azde6e2 small semantic change
* 1lacd985 fixed over arching main
/

1

| | * 5548753 fixed some warnings; main error still there
|| =*

1IN

| | * | 900d3bc got rid of some warnings, still has error
| * | | 351238f fixed the semantic bug

11/

I 171

| * |

| NN

V4

| | * 6528808 added mod and string

| | * 342ec39 updated to use Literal (full words)
| * | 8db81d8 changing to sfunc_decl

|1/

| * d8e568d added strings to semantic

| = f7

I I\

| | * da7043b added string and string literal

| | * 650fle® added mod

| * | 724207 added mod to semantic

I 1/

|

|

|

* 28a3f6e (HEAD -> master, origin/master, origin/HEAD) mircoc

* 0171bc2 Initial commit

9cb060f Merge branch 'dev' of https://github.com/jacobmpenn/Treepp into dev

cd8cbcl Merge branch 'dev' of https://github.com/jacobmpenn/Treepp into dev

f7d7021 Merge branch 'dev' of https://github.com/jacobmpenn/Treepp into dev

Wed

Fri

Learn how we count contributions.

Wed

Fri

Learn how we count contributions.

Excluding merges, 4 authors have pushed 0
commits to master and 107 commits to all
branches. On master, 0 files have changed and

there have been 0 additions and 0 deletions.

Jun Jul
Jun Jul
30
20
10

Aug Sep Oct
|
Less
Aug Sep Oct
|
|
Less

H Bl More

HHE More

141

