
Tree++

PLT FALL 2018

Team Members

Allison Costa
Arc2211

Manager

Laura Matos
Lm3081

Tester

Jacob Penn
jp3666

System
Architect

Laura Smerling
les2206

Language
Guru

TA: Justin Wong

OVERVIEW

- A general purpose programming language that allows easy
manipulation of nodes in trees

- We wanted users to be able to use trees free from any other data
structure including a function: easy, simple manipulation without
wrappers

- To have user think in terms of trees
- Definition of our program: Our program is a list of items made up of

statements and functions
- Gap between final output and semester long work

ARCHITECTURE

SCANNER PARSER SEMANTIC CHECKING

CODE GENERATION LLVM IR

TREE++
EXECUTABLE

C-Code

TYPES

- INT FLOAT BOOL STRING VOID
- All types allow for inline declaration and assignment
- Node<type> : node must have any of the above types
- Tree++ has explicitly typed declarations
- int x = 5; bool z= “true”; string node_t = “leaf”;
- Node<string> x = (node_t); or Node<string> = (“leaf”)

- If the user tries to have children of different types we will throw an
error

SYNTAX
CONTROL FLOW

node<string> hello_world = (“root”);
hello_world.root;
…
node<string> n = (“hello”);
hello_world.add_child(n);
node<string> m = (“world”);
hello_world.add_child(m);
printn(hello_world);
int x = 0;
while(x<1){

hello_world <<; /* shifts the child nodes left*/
x = x+1;

}
printn(hello_world);

Output: root hello world root world hello

FUNCTION DECLARATION

node<string> h = (“hello”);
h.root;
node<string> m = (“world”);
h.add_child(m);
def node<string> rotate(node<string> root, node<string>
child){

root^child;
return root;

}

printn(rotate(h));

Output: world hello /*the root is now the child and the child

is now the root*/

Tree++ Features

void init_root(struct Node *node); // done

struct Node *create_int_node(int data); // done

struct Node *create_char_node(char data); // done

struct Node *create_float_node(float data); // done

void delete_node(struct Node *node); // done

void add_child(struct Node *parent, struct Node *child); // done

void deep_swap(struct Node *node_a, struct Node *node_b); // done

void shift_left(int index, struct Node *child); // done

void shift_right(int index, struct Node *child); // done

int is_root(struct Node *node); // done

int is_empty(struct Node *node); // done

void add_child(struct Node *parent, struct Node *child); // done

int is_root(struct Node *node); // done

int is_empty(struct Node *node); // done

int get_depth(struct Node *node); // done

struct Node *get_root(struct Node *node); // done

| "node" { NODE }

| ".root" { ROOT }

| ".data" { DATA }

| ".depth" { NODE_DEPTH }

| "<<" { LSHIFT_NODE }

| ">>" { RSHIFT_NODE }

| "^" { SWAP_NODE }

| ".add_child" { ADD_CHILD }

| ".delete_node" { DELETE_NODE }

PARSER

C-Functions

TESTING - C Backend

Unlike testing outside of the c_code

directory, testing for the C backend is slightly

different

Seperate test for C backend files managed by

a separate Makefile exclusive to only the

branches for modifying the C backend files.

Focused on unit tests and more verbose than

regular tests

C Backend

Node (root)

Child Child

Data Data

List
(linked
list)

BEHIND THE SCENES

- Our main is hidden to give the user more access to manipulate functions without worry

- This ultimately lead to the major problem in our code

PROCESS

● Started coding from scratch

● Started anew with MicroC for Hello World

● Inspired by many past projects: especially Workspace, Giraph, BURGer,

and PLTree

● Realization that code has fatale error

● Building up MicroC

Git Repository

Git Repository

LESSONS LEARNED

Don’t try to recreate the wheel when there are examples you can easily reference to help speed up

understanding the process. -- Laura Matos

When you hit an error ask for help to see if there is an easy fix that you were unaware of --Laura Smerling

I gained a deep appreciation for the fact testing in isolation and compiling is not the same as testing a

program as a whole. -- Allison Costa

DEMO

To most accurately show our work we are presenting both our (not working) Tree++ code as well as

working but unrepresentative MicroC+ code

Treepp Decl Branch

● Our most developed branch in terms of
program structure and grammar

● We were ultimately unable to correct the
LLVM basic block error for anything
more advanced than the most basic
expressions

Thank you!

