
Coral

Jacob Austin
Matthew Bowers

Rebecca Cawkwell
Sanford Miller

* please note that this presentation theme is also called Coral

Matthew Bowers

Codegen
Architect

I lik snek

Rebecca Cawkwell

Manager &
Tester

Passionately
hates snakes

Sanford Miller

Language Guru

Loves Coral
Snakes

Jacob Austin

Semant Architect

Snakes are nice

The Coral Team*

*with guidance by Lauren Arnett

Our Inspiration
● Coral to Python as TypeScript to

Javascript
● Type Safety: optional static typing

enforced at compile and runtime.
● Optimization: use type-inference to

generate code as fast as C.

Source: Pintrest

What is
● Dynamically typed programming language
● Cross compatible with Python
● Optional static typing enforced by the compiler and runtime environment
● Type inference and optimization based on static typing
● Types: int, char, float, boolean, strings, lists
● First class functions
● No classes (no time)
● Compile and runtime exceptions

Implementation

Architectural Design

source.cl Scanner Parser Semant Code
Generation coral.native

LLC

executable

Coral v Python
● Coral is a smaller version of Python with

extended support for typing.
● Coral uses the same syntax as Python,

allowing for cross compatibility
● The difference between Coral and

Python is our optimization and
safety

PYTHON

CORAL

The
Speed

of C The
Safety

of C

Haskell
OCaml

Comparison to Python
Wall-time on simple programs allows comparison
between Coral and Python. For a program like
this:

performance is about 40 times faster (.4 seconds
to 23.4 seconds wall time).

Key Features

Syntax & Grammar
● Coral strictly follows the current Python 3.7 syntax, and any valid Coral program can also be run and

compiled by an up-to-date Python 3.7 interpreter.
● Coral supports for loops, while loops, for loops, if and else statements, first-class functions, all in a

strictly Pythonic syntax.

● Some valid programs include:

Type Annotation
● Coral supports optional type annotations as supported by Python 3.7, which can be attached to

variable assignments and function declarations.

● While these labels are only cosmetic in Python, they are fully enforced in Coral, either at compile time

(if possible) or at runtime. A program will generally not compile (or in rare cases will terminate at

runtime) if these type annotations are violated.

Type Inference
● Coral supports gradual/partial type-inference built on top of the optional typing system. This is a sort

of bottom-up type inference based on identifying literals and propagating these types up through the

tree.

● Even programs with no annotations can be fully type-inferred. The type inference system does its best

to infer whatever is possible.

Compile Time Exceptions
● Uses type inference to determine types of functions and variables at compile time which allows both

optimization and the enforcement of type annotations. Coral cannot be fully type inferred while

retaining all the type flexibility of Python, but many common errors can be captured by the Coral

compiler.

● At compile time, Coral checks for:

○ Invalid assignments (to explicitly typed variables): global and local, formal args, function returns

○ Invalid argument and return types (for functions and operators)

● For example:

Runtime Exceptions
● Only has runtime checks when type isn't inferrable. Prevents violations of type annotations.

● Coral checks for:

○ Invalid assignments (to explicitly typed variables): global and local, formal args, function returns

○ Invalid argument types (for operators)

○ Initialization: can't use null objects

○ List bounds

Optimization
● Optimization is done in cases where there are immutable Objects and all of the Objects have known

types through the type inference system

● In programs which can be optimized, the code generation is similar to MicroC and therefore programs

can run “as fast as C”. This optimization is integrated into the compilation, and can be performed only

where possible, while seamlessly transitioning back to a dynamic Python-style runtime model.

Statistics for optimized code:
● For fully optimized code, LLVM loc count drops by at least 1000 lines, reducing binary sizes by tens of

kilobytes.
● Runtime performance increases by as much as 100x for code like gcd or code involving frequent heap

allocations in Python (like counting while loops).

Optimization Examples

GCD function with dynamic objects
created. Runtime is 10 seconds for
Python and .2 seconds for Coral. No
explicit type annotations.

For-loop based function traditionally
expensive in Python. Does not
terminate in reasonable time in
Python. Runs in .75 seconds in Coral

For-loop iteration over chars. Partial
type inference for sub-operations
even though full code cannot be
optimized because of lists.

Testing

Test Suite
● Sample program output compared to *.out file.
● Checks the following file types: stest-*, sfail-* and test-*, fail-* for semant tests

and llvm/runtime tests respectively.
● Done by each member as feature implemented. Generally one new test for each

new feature or commit.
● Over 100 tests in the final repository.

DEMO TIME

Thank you
 &

Happy Holidays

Source: Pintrest

