WARHOL

Martina Atabong | maa2247
Charvinia Neblett | cdn2118
Samuel Nnodim | son2105

Catherine Wes | ciw2109
Sarina Xie | sx2166

05.10.2016

Programming Languages and Translators

1. Introduction

Warhol is a functional and imperative programming computer language based on both C and Matlab.
Warhol’s types, syntax, and semantics are meant to help the user easily manipulate images. Images are
uploaded from files and translated into our main primitive type, matrices. Our primitive types are
designed to store pixel data from each image. Warhol allows frequent writes, reads, and computes of
pixels. Built-in functions are provided to compute commonly used image algorithms while also giving
users freedom to implement functions.

The Warhol Library contains methods to facilitate declarative programming. Library functions provide
standard implementations of image editing tasks that can be performed on matrix types.

2. Language Tutorial

2.1 Setup
-Install OCaml using the OPAM(OCaml Package Manager).
-Install GIMP.

2.2 Using the Compiler
Commands to filter an image:
1. Inside the WARHOL project folder, type “make”.
2. To run your own WARHOL program, type the following in the command line:
./warhol.native < filename.wl > filename.ll
3. Next, convert your .1l file into a .ppm file by executing the following command:
11i filename.ll > filename.ppm
4. You should now have a ‘ fi Iename. ppm’ file in your directory. Open up this file through GIMP and
your image will be filtered.

Commands to run other .wl files:

1. Inside the WARHOL project folder, type “make”.

2. To run your own WARHOL program, type the following in the command line:
./warhol.native < filename.wl > filename.ll

3. Next, run your program by executing the following command:
11i filename.ll

Command to run .wl files using the built-in or stdlib functions:
1. Inside the WARHOL project folder, type “make”.
2. Type the following in the command:
./run.sh filename.wl
3. Next, run the executable:
./filename.exe

2.3 Hello World

Since Warhol’s main purpose is to manipulate integer arrays, hello.wl prints the integer 42.

hello.wl
fun int main () {
print (42);

return 0;

2.4 Sample Program

Every program must include a main function. Within the main functions, users can define variables, call
built-in and use defined functions, utilize control and make 1/O calls. filtercyan.wl is a function that:
- Initializes an integer array by specifying the array type, the size of the array and the array

name.

- Variables initialization cannot occur at the same time as variable declaration.
- Opentfile is a built-in function that reads a file one number at a time and returns the

integer read.

- Arrays can be accessed with [] and an integer index.

- cyan() is a library function that gives an image a cyan overcast.
- printppm() stores the new image in a output ppm file.

fun int main () {

int[22188] marilyn;

int val;

int 1i;

1= 0g

while ((val=openfile("marilyn.ppm"))!= -1
marilyn([i] = val;
i=1+ 1;

cyan (@marilyn, 22188);

) A

printppm(@marilyn, 22188, 86, 86);

3. Language Manual

3.1 Lexical Conventions

WARHOL follows consistent, syntax among all types and declarations as well as usage of functions. It
aims to make the language predictable and clear and scalable to more functionalities. There will be no
variables of the same names, no possible use of keywords, or multi-use of characters.

3.2 Comments
Comments are denoted by opening and closing dollar signs. They are always in the form of a block
comment and can encompass extensive lines but an open comment cannot encompass more block
comments.
o Example 1: $ this is my code $
o Example 2: $ this is also my code
$ and this as well $

3.3 Identifiers

Identifiers are a sequence of at least one character and a number. The first character of an identifier must
be alphabetic. Identifiers are case sensitive and cannot begin with an uppercase letter. Longest string
search is used to determine if an identifier is identical to a key word. Tokens consist of identifiers,
constants, separators, keywords, strings, and expression operators. Comments and tabs are completely
ignored. Blanks are new lines are used to separate tokens.

3.1.2 Identifiers

Keyword Usage
int Define an integer type
bool Define a boolean type
void Denote a void type
if/else Define a conditional
for Define an iterative loop
while Define a conditional loop
fun Define a function

char Define a character

string Define a string data type

3.2 Types
Integers
e Integers constants are sequence of at least one digit.
Characters
e Character constants are one character enclosed with single quotes. Two character character
constants are allowed only if the first character is a backslash. Characters are treated as integers.
o Example: *\n’, ‘a’, ‘\t’, ‘0’
Strings
e Strings are implemented as a matrix of characters. The matrix is always the exact length of the
string. Termination of string is determined by bounds of the matrix containing a string's
characters.
Boolean
e Booleans are declared using keyword boo 1. Booleans are stored and equivalent to integers equal
to O for false and greater than 0 for true.
Array
e Holds a 1-dimensional list of values all of the same consistent type. The variable points to a place
in memory allocated to this list.
e Accessing an element: the array name points to the first places. Adding and subtracting takes
traverses the list (i.e arr++).
Referencing: @arr, gives the point in location the array resides
Dereferencing: &arr, returns the value of the element at the current memory location

3.3 Expressions
3.3.1 Primary Expressions
Primary expressions are literals and names. Primary expressions involving subscripting and function calls
group left to right.
e An identifier is a primary expression. Its type is specified by its declaration (ex: matrix, function)
e A decimal or character constant is a primary expression. Its type is int.
e A string is a primary expression. Its type is matrix of chars.
® (expression)
A parenthesized expression is a primary expression. Its type and value are identical to the
expression inside the parentheses.
® primary-expression [expression |
A primary expression followed by an expression in square brackets is a subscript and is a primary
expression.
e primary-expression (expression-list (optional))

A function call is a primary expression that is immediately followed by parentheses containing
the list of its arguments. It is of type “function returning ...” and the result of the function call is
of type “...”. Any arguments of type char are converted to type int before the call. Parameters are
passed by reference.

3.3.2 Assignment Operator
Value = expression
o The value of the expression replaces that of the object referred to by the value.

3.3.3 Relational Operators
The operators <, >, <=, and >= all yield O if the specified relation is false, and 1 if it is true.
e [s-less-than
O expression_a < expression_b
e [s-greater-than
O expression_a > expression_b
e Is-less-than-or-equal-to
O expression_a <= expression_b
e [s-greater-than-or-equal-to
O expression_a >= expression_b

3.3.4 Arithmetic Operators
If both operands are int or char, the result is int. If one is int or char and the other is mat, then the result is
mat. If both operands are mat, then the result is mat. No other combinations are allowed.
e Addition
O expression_a + expression_b
m The result is the sum of the expressions.

e Subtraction
O expression_a - expression_b
m The result is the difference of the expressions.

e Division
O expression_a/ expression_b
m The binary / operator signifies division.

e Multiplication
O expression_a * expression_b
m The binary * operator signifies multiplication.
® - expression
o The result is the negative of the expression. This operator is only applicable to ints and
chars.

3.3.5 Logical Operators

® | expression
o This negation operator returns 1 if the value of the expression is 0, 0 if the value of the
expression is non-zero. The type of the result is bool. This operator is only applicable to
bools.
® expression && expression
o The && (“and”) operator returns 1 if both its operands are non-zero. Otherwise, it returns
0.
® cexpression || expression
o The || (“or”) operator returns 1 if either of its operands is non-zero, and 0 otherwise.
® expression == expression
o The == (“equal to”) operator returns 1 if both its operands are non-zero. Otherwise, it
returns 0.
® expression != expression
o The != (“not equal to”) operator returns 1 if both its operands are non-zero. Otherwise, it
returns 0.

3.4 Declaration
Declarations in WARHOL are used to establish particular types. The variable must be declared before it
can be assigned a value, and the statements must be on separate lines;

3.4.1 Integers, Booleans, Characters, and Strings

Primary types are declared by the delineating type followed by the variable name, the assignment

operator, then the respective value. Integer goes with int, booleans use bool, characters use char and

strings use string. Characters and string must have their value encompassed by *” and “”, respectively.
Format: typ variableName = value (ie. intval =4);

3.4.2 Arrays

Arrays are declared and immediately allocated the necessary space so there must be a determined list

length. The declaration also must include type in the format of type[size] variable name

3.5 Control Flow

3.5.1 If/Else

These clauses work as a control flow that are incorporated with a boolean operation to decide what to
follow. Else-if is an extension of this method.

Ex: int x;
x = =37
if (x>4) {

prints (“good”) ;
} else if (x> -4) {

prints (“bad”) ;
} else {

prints (“ugly”) ;

3.5.2 For-loop

This loop is comprised of three statements, with two being optional. It’s a pre-test loop similar to C that is
declared by for, followed by a possible assignment of a value, an expression that must resolve to a
boolean, and then a possible increment. There must still be three semi-colons to separate the three
components.

All arguments: With some arguments:
int x; int x;
for (x=2;x<4; x++){ xX=2;
prints (“just counting”); for (;x<4;){
} prints (Yjust counting”);

X++;

3.5.3 While-loop
While serves as the basis for as a continuous loop that depends on one expression that must resolve to a
boolean.
Ex: while (true) {
prints (“Infinite loop!”);

3.6 Conversions
3.6.1 Characters and Integers

Certain operators perform implicit conversions from one type to another such as characters. Characters
can be used the same as integers.

3.6.2 Booleans and Integers
When converting to a string, true takes on the value of 1 and false takes on the value of 0

3.7 Statements

3.7.1 Expressions

In Warhol there is one expression statement max, per semicolon.
i.e. form expression ;

3.7.2 Compound Statement

In Warhol, a compound statement consists of a list of statements where each statement ends in a
semicolon.

i.e.: expressionl ; expression2 ; expression3 ;

3.7.3 Conditional Statement
In Warhol, a conditional statement consists of a conditional keyword, such as if, followed by an
expression, in parentheses and an expression statement.

i.e.: keyword (expression) statement;

3.7.4 Return
The return statement returns the result of a function to the caller of the function.
i.e. return,

3.8 Functions
3.8.1 Declaration
fun return type nameOfFunction (Declaratorl, Declarator2, ..) {
<statementl>
<statement 2>

return result;
}
3.8.2 Parameters
Default scope for any variable is local. If declared in the parameters of a function, the scope is the length
of the function. All parameters are passed by value, leaving the original object passed into the function
unchanged.

3.8.3 Built-in Functions
Reading a File:

int Openfile(const char *filename)
Takes in a image file format and returns the first token in the file then removes the token from the file.

Running openfile for the length of a file returns a stream of integers in the file and leaves the original file
empty.

Input
- String: name of the image file
Return Type
- Integer: returns the first integer in the file specified by filename
Printing:

void print (int value)

Prints the value of an int then goes to the next line.
void printb (boolean value)

Prints the value of a boolean. True is converted to 1 and false is converted to 0 for printing.
void prints(string value)

3.8.4 Standard Library

Void printppm(int[] arr, int size, int width, int height)
Prints the header for a ppm file as well as well outputs all integer values in the arr as a stream of integers.
-Input

- Integer array, arr:
- Mat/image - the matrix or image to be concatenated
- Direction - enumeration type of LEFT, BOTTOM, RIGHT, TOP, to choose where to
concatenate
-Return Type
- void - prints out to file

Filter(int[] image, int size)
Takes an image and filters the image to specified color temperature. using a convolution matrix
-Input:
- 1-Dimensional Integer Array, image : image is the image to be filtered containing pixel
values
- Integer, size: size is the length of the image
-Return Type:
- Void: filter prints the filtered pixels values. These values are piped from the executable
into a file where the new image can be viewed.

3.9 Scoping
WARHOL uses static scoping. The life of the variable starts at declaration and terminates with the block
in which it is declared. For values to reach other functions they must be passed.

3.10 Standard Library

(int[] arr, N

&arr=0
=++

&arr=0
=++

(int[] arr, N

4. Project Plan

4.1 Planning Process

To begin the project, we first identified team goals and individual responsibilities for the entire semester.
We planned to meet once a week after class to discuss individual and team progress. We started the
semester off strong by meeting once a week to discuss the specifications of our language, learn OCaml,
and get our programming environment setup. We fell behind on the Hello World check mark, but with the
help of our TA (Julie), we got back on track for the second half of the semester. We met much more
frequently and made progress consistently each week.

4.2 Specifications

The beginning of the semester we wrote our Language Reference Manual (LRM) to guide our
development process. During the development process, we added new specifications and deleted old
specifications as our language grew and evolved. We updated our LRM to meet these changes
accordingly, and to ensure that all members of the group were on the same page.

4.3 Development Environment
Each member of the team used Sublime and Vim through the Ubuntu VirtualBox. This ensured that we all
were developing in the same environment. We used Github for our repository.

4.4 Timeline

Multiple meetings were spent brainstorming possible projects, speaking to TA’s about what projects are
doable and substantial. After deciding upon Warhol, the next brainstorm consisted of developing ideas
and a standard for lexical conventions. Once there was a goal language, the project was prioritized into
steps. The first checkpoint was HelloWorld. Because of the original lack of interest in string, there was a
focus on developing the integer type, thus, the first program printed the number 42. This moment
signified the first working program and a shell, in which to build the rest of WARHOL upon. The next
step was to provide other types including boolean, char, and string. Type definitions, along with
operations, gave us the capability to do control flow and have a basic program working. The biggest
milestone for WARHOL was the proper development of arrays, along with pointers. Arrays serve as the
basic functionality in which all functionalities are built upon. Once arrays were complete, the next steps
involved developing a standard library, in turn proving our program worked as expected. And lastly,
input/output streams were the last step so that WARHOL no longer had to be self-contained.

4.5 Style Guide

While each of us were developing, we tried our best to follow the same programming style guidelines:
e When indenting lines, use tabs.
e Use descriptive variable names.
e Comment code to make it easier for other group members to quickly understand.

4.6 Roles and Responsibilities
Martina Atabong - Manager
Charvinia Neblett - Language Guru

Sarnia Xie - Compiler Architect
Catherine Wes - Tester
Samuel Nnodim - Development Environment

4.7 Software Development

OCaml: language we used to implement the compiler
Github: for version control

Gimp: to open our .ppm files

Google Docs: for all written work (LRM, Final Report)
Sublime, Vim: our chosen text editor

Ubuntu on Virtual Box: operating system

5. Architecture

— =

>

WARHOL LANGUAGE ARCHITECTURE

LLVM

INPUT

5.1 Source Code

/=

<=l

The source file is concatenated with .wl and syntax should adhere to the Language Reference Manual.

5.2 Pre-Processor

The preprocessor is used to link built-in library functions. If “include stdlib” is in the header of the

source file, then then the built-in functions are inserted in the this position.

5.3 Scanner

The scanner performs lexical analysis on the source code. The source file is read in linear stream of
characters. Characters are grouped into tokens based on a defined set of regular expression rules. Any
character not defined in the scanner is therefore not recognized by the scanner, and an error will be
thrown.

5.4 Parser

The parser takes in the stream of tokens outputted by the scanner. Tokens are matched against a set of
rules set in the parser. The rules within the parser define a Context Free Grammar and determine how
tokens should be grouped. If all tokens are matched into the rules set in the parser then the source code is
syntactically correct. Based on groups of matched tokens, the parser outputs values stored with tokens in a
specific format. The values, types of values, and format of the values outputted are determined by the
Abstract Syntax Tree.

5.5 Ast

The Abstract Syntax Tree is a data structure that defines the program. The AST specifies the types of
values that can be stored in token based on how each tokens are matched into grouping rules. The AST
provides a specific structure for how to store matched tokens so that data within each structure can be
accessed easily in the next architecture component. Rules set in the AST illustrates all possible types of
programs that can be created while the source code program is a subset within the AST. We can equate
the AST to a class in Object Oriented Programming and the source code program as an object of the class.
The object of the AST is passed to the following phases within the Architecture. If we know the methods
and instance variables of the object, data can be easily accessed from the object just as program
information can be easily accessed by subsequent steps.

5.6 Semantic Checking

Semantic checking is an analyzer that takes in an Abstract Syntax Tree and provides an additional layer of
checking after source code has been scanned and parsed. This includes evaluating if all values stored in
variables match the variable types. Variables are checked for multiple declarations. Function and variable
names are checked for being identical to keywords within the language. The analyzer returns a
semantically checked AST.

5.7 Code Generation

Code Generation translates the source code program into Low Level Virtual Machine IR code. Code
Generation uses the semantically checked Abstract Syntax Tree to access data types and values from the
source code and builds semantically equivalent code in llvm. In codegen, built-in functions that are
written in other languages outside our language are linked. Meaning, the type of the external function is
defined so that the compiler knows that this function is external built-in function. The code generated to
LLVM is then compiled using the LLVM compiler and an executable is produced.

6. Test Plan

6.1 Test Suite
a. “tbrack.wl’ — Tests that you can use an expression instead of an int literal when
accessing an array. This is necessary because it is vital in the way in which we step
through the image representation held in matrix.
i. Source Code

fun int main () {

i=0;
int[3] arr;
arr[i+1] = 1;

print (arr[l]);

1i. Test Command

make clean && make
./warhol.native -c < tests/tbrack.wl > tbrack.ll

11i tbrack.1ll

iii. Output

plt@Qubuntu-plt:~/work/warhol$ 111 tbrack.ll
1

iv. LLVMIR

; ModuleID = 'Warhol'

@fmt = private unnamed addr constant [4 x i8] c"%d\0A\0O"

declare i32 (@printf (i8*, ...)

declare 132 @openfile (i8*, ...)

define 132 @main () {

entry:
%1 = alloca 132
$arr = alloca [3 x 132]

store 132 0, 132* %i

%1l = load 132* %i

oe

tmp = add i32 %il, 1
%arr2 = getelementptr [3 x 132]* %arr, 132 0, i32 %$tmp

store 132 1, 132* %arr2

%$arr3 = getelementptr [3 x 132]* %arr, 132 0, i32 1

%arr4d = load i32* %arr3

$printf = call i32 (i8*, ...)* @printf (i8* getelementptr inbounds ([4 x
i8]* @fmt, 132 0, i32 0), 132 Sarrd)

ret 132 0

b. “tfun.wl’ — Checks that functions can be called in main. This is key because functions
are the cornerstone of our language and being able to reuse functions makes for a bettr
code experience

i. Source Code

fun int prt3() {
print (3);
return 0;

}

fun int main() {
prt3();

return 0;

11. Test Command

make & make clean

./warhol.native -c < tests/tfun.wl > tfun.l1l

11i tfun.1l

iii. Output

plt@ubuntu-plt:~/work/warhol$ 11i tfun.ll
3

iv. LLVMIR

; ModuleID = 'Warhol'
@fmt = private unnamed addr constant [4 x i8] c"%d\0A\0O"

@fmtl = private unnamed addr constant [4 x i8] c"$d\0A\0OO"

declare 132 (@printf (i8*, ...)

declare 132 @openfile (i8*, ...)

define i32 @main () {
entry:
$prt3 result = call i32 @prt3()

ret 132 0

define i32 Q@prt3() {

entry:
Sprintf = call 132 (i8%*, ...)* @printf(i8* getelementptr inbounds ([4 x
i8]1* @fmtl, 132 0, 132 0), 132 3)
ret i32 0

c. “tppp.wl" — Checks that pointers can be assigned and can be incremented. This is
essential because the backbone of WARHOL is pointer

1. Source Code

fun int main () {

int[2] k;
k[0] = 0;
k[1] = 1;
int[] kp;
kp = @k;
kp = ++kp;

print (&kp) ;

1. Test Suite

make clean && make
./warhol.native -c < test/tppp.wl > tppp.ll
11i tppp.ll

iii. Output

plt@ubuntu-plt:~/work/warhol$ 11i tppp.ll
1

iv. LLVMIR

; ModuleID = 'Warhol'

@fmt = private unnamed addr constant [4 x 18]

declare 132 @printf (i8*, ...)

declare 132 @openfile(i8%*, ...)

c"%d\0A\OO"

define 132 @main () {
entry:
$k = alloca [2 x 132]
$kp = alloca 132*
%kl = getelementptr [2 x i32]* %k, 132 0, i32 0
store 132 0, 1i32* %kl
$k2 = getelementptr [2 x 132]* %k, i32 0, 132 1
store 132 1, 132* %k2
$k3 = getelementptr inbounds [2 x i32]* %k, i32 0, 132 0
store i32* %k3, 1i32** %kp
$kpd4 = getelementptr inbounds i32** %$kp, 132 0
$kp5 = load 132** Skp4d
$kp6 = getelementptr inbounds i32* %kp5, i32 1
store i32* %kp6, i32** %kp

Skp7

load i32** S$kp

$kp8 = load 132* Skp7

$printf = call 132 (i8%*, ...)* @printf (i8* getelementptr inbounds ([4 x
i8]* @fmt, 132 0, i32 0), i32 %kp8)
ret 132 0

7. Lessons Learned

7.1 Catherine

I thought one of the most difficult aspects of this project was learning how to properly delegate work.
Because many parts of the project depend on the other working parts, I found that we didn’t
utilize/delegate our time as efficiently as we could have. If you find yourself waiting for another member
to finish something, look ahead and prepare for the next steps. Additionally, because no one in our group
was familiar with OCaml and the technology was initially foreign to us, I found that pair programming
was especially helpful to work through the more difficult/tricky parts of the project. Having someone to

bounce ideas off of is very valuable. Additionally, make sure that every week you accomplish at least one
goal, big or small.

7.2 Charvinia

If you have never seen OCAML before nor have indulged in the ways of compilers, everything will seem
like a huge web. The best way to start sorting through all the new concepts thrown at you is to sit down
and learn ocaml. You will not have homework for the first few weeks, so give yourself ocaml
programming assignments. Next, if you know your focus game during lectures is already shaky, watch the
lectures online. I found this incredibly helpful because I could rewind and fastforward where needed.
Understand how theory links to application. Making this connection helped make coding a lot easier.
Lastly, know yourself and know your group. Know how each person in your group operates. Some people
will code on their own time and some people will only code when they are with your group. If you know
someone needs a push, make sure to keep them accountable.

7.3 Samuel

Make sure everyone’s environment is setup from Day 0. This means making sure the group has
knowledge of git, and more importantly knows git flows necessary to be a contributing member. Also,
meet with frequent regularity. This is perhaps the most vital point because work does not happen by itself.
Without meeting it is easy to lose sight of the larger plan as well as the cohesion group work requires.
Lastly, constant, clear communication is the glue that holds a group together, meeting outside of class, in
class, and during class are all things that any group project requires.

7.4 Martina

It’s very easy to lose sight of goals, even if you start of strong. Task allocation should be dynamic and
communication is so important in order to keep a group balanced and productive. Also, priorities change a
lot so it’s important to take a second and count your eggs.

7.5 Sarina
Look at Clang for learning 1lvm.

7.6 General Advice to Future Groups

Know your group members and how they operate very well. This will help you set expectations and
strategies for reaching those expectations. Make a weekly schedule and stick to it. Even making small
progress weekly makes a big difference. Learn Ocaml from day one. The first few lectures are
introductory and a good time to start learning Ocaml on your own. Lastly, do not be afraid to be
bestfriends with your TA. They know a lot and can save you time early on if you are having difficulties
understanding the compilation process

8. Appendix

8.1 Prep.c

#include <stdio.h>

#include <string.h>

int main(int argc, char *argv(]) {
char checkbuf]15];
size_t checkcount = 15;
FILE *fp;
/fp = fopen(argv[1], "r");
S = fopen(argv([I], "r");
fread(checkbuf, 15, 1, fp);
//for tempfile
FILE *tempfp;
tempfp = fopen("tempfile.wl", "wb'");
//check if .wl file starts with import statement
if (strstr("' Simport stdlib$"", checkbuf)) {
FILE *libfp;
libfp = fopen("'stdlib.wl", "r");
//copy contents of .wl file and stdlib to tempfile.wl
char buf]2048];
size_t n;
fwrite(checkbuf, checkcount, 1, tempfp);
while ((n = fread(buf, 1, sizeof(buf), fp)) > 0) {
fwrite(buf, 1, n, tempfp);
/
while ((n = fread(buf, 1, sizeof(buf), libfp)) > 0) {
fwrite(buf, 1, n, tempfp);
/

felose(libfp);

else {

size_t n;

//copy contents of .wl file to tempfile.wl

char buf]2048];

fwrite(checkbuf, checkcount, 1, tempfp);

}

while ((n = fread(buf, 1, sizeof(buf), fp)) > 0) {

fwrite(buf, 1, n, tempfp);

fclose(fp)s

fclose(tempfp);

8.2 Scanner.mll

{ open Parser

let unescape s =

Scanf.sscanf ("\"" ~ s~ "\"") "%S%!" (fun x -> X)

}

let digits = ['0'-'9']

let ascii = ([' '-'I" '#'-

T'71-~D

let esc = l\\l [|\\| LRI 't']

let string =" ('(ascii | esc)* as s)

let char ="' (ascii |

rule token = parse

"

digits) "'

['" \t'"\r' "\n'] { token lexbuf } (* Whitespace *)

| "$" { comment lexbuf } (* Comments *)

(* Identifiers *)
|'(' { LPAREN }
|")' { RPAREN }

|'{"' { LBRACE }

| "false" { FALSE }

"void" { VOID }
| ['0'-'9']+ as Ixm { INTLITERAL(int of string Ixm) }
|[la'-'z"'A'-'Z"['a'-'2' 'A'-'Z"' '0'-'9" ' ']* as Ixm { ID(Ixm) }
| string { STRINGLITERAL (unescape s) }

char aslxm { CHARLITERAL(String.get Ixm 1) }

| eof { EOF }

and comment = parse
"$" { token lexbuf }

| { comment lexbuf }

8.3: Parser.mly

%{ open Ast %}

/*Delimiters*/

%token LPAREN RPAREN LBRACE RBRACE LSQUARE RSQUARE COMMA SEMI

/* Operators */

%token PLUS MINUS TIMES DIVIDE NOT AND OR

%token EQ NEQ LT LEQ GT GEQ

%token STAR AMPERSAND

/*Types*/

%token INT VOID BOOL CHAR

/*Literals*/

%token <int> INTLITERAL

%token <string> STRINGLITERAL

%token <string> ID

%token <char> CHARLITERAL

%token TRUE FALSE

/*Control flow*/

%token IF ELSE NOELSE WHILE FOR

/*Misc*/

%token ASSIGN

%token FUN RETURN

%token EOF

%nonassoc NOELSE

%nonassoc ELSE

%nonassoc NOLSQUARE

%nonassoc LSOUARE

%right ASSIGN

%left OR

%left AND

%left EQ NEQ

%left LT GT LEQ GEQ

%left PLUS MINUS

%left TIMES DIVIDE

%right NOT NEG

%start program

%type <Ast.program> program

% %

program:

decls EOF {31}

decls:

/*nothing™/ {[],[]}

| decls topvdecl {(82 :: fst $1), snd $1}

| decls fdecl {fst $1, (32 :: snd $1)}

/*these two vdecl parts are for being able to mix vdecls and fdecls at the top level (outside main)*/

topvdecl list:

/*nothing®/ {[|}

| topvdecl_list topvdecl {$2 :: 31}

topvdecl:

typ ID SEMI {$1, 2}

fdecl:

FUN typ ID LPAREN formals opt RPAREN LBRACE fbody RBRACE

{ {return_type = $2; fname = $3; formals = 35; fbody = $8 }} /*copied from slides*/

/*depending on whether the next line is a vdecl or a stmt, add it to the correct list: [vdecl or f stmts*/

JSbody:

/* nothing */ { { f vdecls = [[; f stmts = []; } }

| fbody vdecl { { f vdecls = $1.f vdecls @ [$2]; f_stmts = $1.f stmts; } }

| fbody stmt { { f vdecls = $1.f vdecls; [stmts = $1.f stmts @ [$2]; } }

formals_opt:

/*nothing®/ {[]}

| formal_list {List.rev $1}

Sformal_list:

wypID {[$1,82]}

| formal_list COMMA typ ID { ($3,34) :: $1 }

op:

INT {Int}

| BOOL [Bool}

| CHAR { Char }

| VOID { Void }

| inttyp LSQUARE INTLITERAL RSQUARE { MatrixI1DType($1, $3) }

| inttyp LSQUARE RSQUARE { Matrix1DPointer($1) }

inttyp:

INT {Int}

stmt_list:

/*nothing*/ {[]}

| stmt_list stmt {32 :: $1}

vdecl:

typ ID SEMI [$1, $2}

stmt:

| expr SEMI {Expr 31}

| RETURN SEMI {Return Noexpr}

| RETURN expr SEMI {Return $2}

| LBRACE stmt list RBRACE {Block(List.rev $2)}

| IF LPAREN expr RPAREN stmt %prec NOELSE { If(33, $5, Block([])) }

| IF LPAREN expr RPAREN stmt ELSE stmt { If(83, 85, $7) }

| WHILE LPAREN expr RPAREN stmt { While($3, §5) }

| FOR LPAREN expr_opt SEMI expr SEMI expr_opt RPAREN stmt

{ For($3, 85, 87, 89) }

/*s--how does the list work™/

matrix_literal:

expr {[$1] }

| matrix_literal COMMA expr { $3 :: $1}

expr_opt:

/* nothing */ { Noexpr }

| expr {81}

expr:

INTLITERAL {IntLiteral($1)}

| STRINGLITERAL { StringLiteral(S1) }

| CHARLITERAL { CharlLiteral($1) }

| TRUE { BoolLit(true) }

| FALSE { BoolLit(false) }

| expr ASSIGN expr {Assign(81, $3)}

| expr PLUS expr { Binop($1, Add, $3) }

| expr MINUS expr { Binop($1, Subt, $3) }

| expr TIMES expr { Binop(381, Mult, $3) }

| expr DIVIDE expr { Binop($1, Div, $3) }

| expr AND expr { Binop($1, And, $3)}

| expr OR expr { Binop($1, Or, $3)}

| expr EQ expr { Binop(31, Eq, $3) }

| expr NEQ expr { Binop($1, Neq, $3)}

| expr LT expr { Binop($1, Less, 33) }

| expr LEQ expr { Binop($1, Leq, $3)}

| expr GT expr { Binop(81, Greater, $3) }

| expr GEQ expr { Binop($1, Geq, $3)}

| MINUS expr %prec NEG { Unop(Neg, $2) }

| NOT expr { Unop(Not, $2) }

| LPAREN expr RPAREN {$2)

| LSQUARE matrix_literal RSQUARE { MatrixLiteral(List.rev $2) } /*ie, [1,1,1]%/

| ID LSQUARE expr RSQUARE ~ { MatrixIDAccess($1, $3)} /*ie, if2]*/

| STAR ID { Matrix1DReference($2)}

| AMPERSAND ID { Dereference($2)}

| PLUS PLUS ID { PointerIncrement($3) }

| ID {1d($1)}

| ID LPAREN actuals_opt RPAREN {Calil(31, $3)}

actuals_opt:

/*nothing*/ {[]}

| actuals_list {List.rev $1}

actuals_list:

expr {[$1]}

| actuals_list COMMA expr {$3 :: $1}

8.4 Ast.ml

type op = Add | Subt | Mult | Div |
Eq | Neq | Less | Leq | Greater | Geq |
And | Or

type uop = Not | Neg

(*Types™)
type typ = Int | Void | Bool | String | Char

| MatrixI1DType of typ * int

| Matrix1DPointer of typ

type bind = typ * string (*bind means the same thing as datatype in CMAT*)

(*Expressions¥)

fype expr =

IntLiteral of int

| StringLiteral of string

| CharLiteral of char

| BoolLit of bool

| Zd of string

| Noexpr

| Binop of expr * op * expr

| Unop of uop * expr

| Assign of expr * expr

| MatrixLiteral of expr list (*i.e. 1,1,1, I believe®)
| MatrixI1DAccess of string * expr (¥i.e. if2], I believe*)
| Matrix1DReference of string

| Dereference of string

| PointerIncrement of string

| Call of string * expr list

(*Statements™)

type stmt =

Block of stmt list

| Expr of expr

| Return of expr

| If of expr * stmt * stmt

| While of expr * stmt

| For of expr * expr * expr * stmt

(*Function declarations*)
type func_body = {
f_vdecls: bind list;

[_stmts: stmt list;

/

(*Function declarations*)
type func_decl = {
return_type : typ;
fname : string;
formals : bind list;

fbody : func_body;

(*Start symbol*)

type program = bind list * func_decl list

(* Pretty-printing functions *)

let string _of op = function
Add ->""+"

| Subt -> ""-""

| Mult -> "*"

| Diy -> "/

| Eq-> ="

| Neg -> "!=""

|Less = "<"

| Leq > Me=tr
| Greater -> "">""
| Geq > M=t

| And > "&&"

| or = "” ”

let string _of uop = function
Neg >

| N0t - "-["

let string_of matrix m =
let rec string of matrix_lit = function
I
| /hd] -> (match hd with
IntLiteral(i) -> string_of int i
| _ > raise(Failure("Illegal expression in matrix literal”))) " string_of matrix_lit []
| hd::tl -> (match hd with
IntLiteral(i) -> string_of inti ™", "
| _ -> raise(Failure("Illegal expression in matrix literal"))) ~ string_of matrix_lit tl

in

"[" N string_of matrix_lit m

let rec string_of expr = function
IntLiteral(l) -> string_of int |

| CharLiteral(i) -> String.make 1 i

| StringLiteral(i) -> i

| BoolLit(true) -> ""true"

| BoolLit(false) -> "false"

| Id(s) -> s

| Binop(el, o, e2) ->
string_of exprel " " " string of opo """ " string of expr e2
| PointerIncrement(s) -> "++" "~ §
| Unop(o, ¢) -> string_of uop o " string_of expr e
| Assign(v, e) -> string_of exprv "' =" " string of expr e
| Call(f, el) ->
""" String.concat "', "' (List.map string_of exprel) *")"
| Noexpr -> """
| MatrixLiteral(m) -> string_of matrix m
| MatrixI1DAccess(s, r1) -=>s ~ "[" * (string_of exprrl) " "]"
| Matrix]1DReference(s) -> "@'" " s

| Dereference(s) -> "&" * s

let rec string of stmt = function
Block(stmts) ->
"{\n"" ~ String.concat """ (List.map string of stmt stmts) ~ "}\n"
| Expr(expr) -> string_of expr expr * ";\n"’;
| Return(expr) -> "return " * string_of expr expr "~ ";\n'"’;
| If(e, s, Block([])) -> "if (" ~ string_of expre ™ ")\n" " string_of stmt s
| If(e, s1, s2) -=> "if (" " string_of expre ™ ")\n"" *

"n A

string_of stmt s1 ~ "else\n" " string_of stmt s2

| For(el, e2, e3, s) ->

" A " A

"for ("' string_of exprel ™" ; string_of expre2 " ;
string_of expre3 "~ ") " ” string of stmts

| While(e, s) -> "while ("' * string_of expre ™ ") " " string_of stmt s

let rec string_of typ = function
Int -> "int"

| Bool -> "bool"”

| Void -> "void"
| String -> "string"
| MatrixI1DType(t, i1) -> string_of typ t ~ "["" * string_of intil """

| Matrix1DPointer(t) -> string_of typ t ~ "[]"

let string_of vdecl (1, id) = string of typt ™" " ~id ~ ";\n"

let string_of fdecl fdecl =

string_of typ fdecl.return_type "' "'

fdecl.fname ~ "("" ~ String.concat ", "' (List.map snd fdecl.formals)
"Nufln'"

String.concat """ (List.map string_of vdecl fdecl.fbody.f vdecls) "

String.concat """ (List.map string_of stmt fdecl.fbody.f stmts) "

"}\n "

let string _of program (vars, funcs) =
String.concat """ (List.map string_of vdecl vars) * "\n""

String.concat "\n" (List.map string_of fdecl funcs)

8.5 Semant.ml

open Ast
module StringMap = Map.Make(String)

(* Semantic checking of a program. Returns void if successful,
throws an exception if something is wrong.

Check each global variable, then check each function *)

let check (globals, functions) =
(* Raise an exception if the given list has a duplicate *)
let report_duplicate exceptf list =

let rec helper = function

nl ::n2:: when nl =n2 ->raise (Failure (exceptf nl))

| _::7->helpert
[71->0
in helper (List.sort compare list)

in

(* Raise an exception if a given binding is to a void type *)
let check_not_void exceptf = function
(Void, n) -> raise (Failure (exceptf n))
[_-=>0

in

(* Raise an exception of the given rvalue type cannot be assigned to
the given Ivalue type *)

let check_assign Ivaluet rvaluet err =
if lvaluet = rvaluet then lvaluet else raise err

in

(**** Checking Global Variables ****)
List.iter (check_not void (fun n -> "illegal void global " " n)) globals;

report_duplicate (fun n -> "duplicate global "' ™ n) (List.map snd globals);

(**%* Checking Functions ***%*)

if List.mem "print" (List.map (fun fd -> fd.fname) functions)

then raise (Failure ("'function print may not be defined")) else ();

report_duplicate (fun n -> "duplicate function " " n)

(List.map (fun fd -> fd.fname) functions);

(* Function declaration for a named function *)

let built_in_decls = StringMap.add "print"”
{ return_type = Void; fname = "print"; formals = [(Int, "x")];
fbody = { f vdecls = []; f stmts =[] } } (StringMap.add "printb"
{ return_type = Void; fname = "printb"’; formals = [(Bool, "'x")];
fbody = { f vdecls = []; f stmts =[] } } (StringMap.add "prints"
{ return_type = Void; fname = "prints"’; formals = [(String, "x")];
fbody = { f vdecls = []; f stmts =[] } } (StringMap.add "openfile"
{ return_type = Int; fname = "openfile"; formals = [(String, "x")];
fbody = { f vdecls = []; f stmts = [] } }(StringMap.singleton "printbig"
{ return_type = Void; fname = "printbig"'; formals = [(Int, "x")];
fbody = { f vdecls = [[; f stmts =[] } })))
in
let function_decls = List.fold_left (fun m fd -> StringMap.add fd.fname fd m)
built_in_decls functions
in
let function_decl s = try StringMap.find s function_decls
with Not_found -> raise (Failure ("unrecognized function " " s))
in

let _ = function_decl "main" in (* Ensure "main'" is defined *)

let check_function func =
List.iter (check_not void (fun n -> "illegal void formal " * n *
"in " " func.fname)) func.formals;
report_duplicate (fun n -> "duplicate formal " “ n * " in " * func.fname)
(List.map snd func.formals);
List.iter (check_not void (fun n -> "illegal void local " " n

"in " " func.fname)) func.fbody.f vdecls;

report_duplicate (fun n -> "duplicate local " ~ n * " in " * func.fname)

(List.map snd func.fbody.f vdecls);

(* Type of each variable (global, formal, or local *)
let symbols = List.fold_left (fun m (1, n) -> StringMap.add n t m)
StringMap.empty (globals @ func.formals @ func.fbody.f vdecls)

in

let type_of identifier s =
try StringMap.find s symbols

with Not_found -> raise (Failure (""undeclared identifier " " s))

in

let matrix_access_type = function

MatrixIDType(t,) ->t
| -> raise (Failure ("illegal matrix access"))

in

let check_pointer_type = function
Matrix1DPointer(t) -> Matrix1DPointer(t)
| _ -> raise (Failure (""cannot increment a non-pointer type'’))

in

let check_matrix1D_pointer_type = function
MatrixI1DType(p,) -> Matrix1DPointer(p)
| _ -> raise (Failure (""cannont reference non-1Dmatrix pointer type"))

in

let pointer_type = function
| Matrix1DPointer(t) -> t

| _ ->raise (Failure ("cannot dereference a non-pointer type")) in

let matrix_type s = match (List.hd s) with
| IntLiteral _ -> MatrixI1DType(Int, List.length s)

| _ ->raise (Failure (""Cannot instantiate a matrix of that type")) in

let rec check_all_matrix_literal m ty idx =
let length = List.length m in
match (ty, List.nth m idx) with

(Matrix1DType(Int,), IntLiteral) -> if idx == length - 1 then Matrix1DType(Int, length) else
check_all_matrix_literal m (Matrix1DType(Int, length)) (succ idx)

| _ ->raise (Failure ("illegal matrix literal"))

in

(* Return the type of an expression or throw an exception *)
let rec expr = function
IntLiteral _-> Int
| BoolLit _ -> Bool
| Id s -> type_of identifier s
| CharLiteral _ -> Char
| StringLiteral _ -> String
| PointerIncrement(s) -> check_pointer_type (type_of identifier s)
| MatrixLiteral s -> check_all_matrix_literal s (matrix_type s) 0
| MatrixI1DAccess(s, el) -> let _ = (match (expr el) with
Int -> Int
| _ -> raise (Failure ("attempting to access with a non-integer type"))) in
matrix_access_type (type_of identifier s)
| Dereference(s) -> pointer_type (type_of identifier s)

| Matrix1DReference(s) -> check_matrix1D_pointer_type(type_of identifier s)

(* | Len(s) -> (match (type_of identifier s) with
Matrix1DType(,) -> Int
| _ ->raise(Failure ("cannot get the length of non-1d-matrix")))
)

| Binop(el, op, e2) as e -> let t1 = expr el and t2 = expr e2 in

(match op with
Add | Subt | Mult | Div when tl = Int & & t2 = Int -> Int
| Eq | Neq when t1 =t2 -> Bool
| Less | Leq | Greater | Geq when t1 = Int & & t2 = Int -> Bool
| And | Or when t1 = Bool && t2 = Bool -> Bool
| _ ->raise (Failure ("illegal binary operator " "
string of typtl " " " string of opop """ "
string of typt2 ~ "in " " string_of expr e)))
| Unop(op, e) as ex -> let t = expr e in
(match op with
Neg when t = Int -> Int
| Not when t = Bool -> Bool
| _ -> raise (Failure ("illegal unary operator " " string_of uop op "
string of typt ™ "in " " string of expr ex)))
| Noexpr -> Void
| Assign(el, e2) as ex -> let It = (match el with
| MatrixI1DAccess(s,) -> (match (type_of identifier s) with
MatrixIDType(t,) -> (match t with
Int -> Int
| _ -> raise (Failure ("illegal matrix of not ints"))

)

| _ ->raise (Failure (""cannot access a primitive"))

| ->exprel)
and rt = expr e2 in
check_assign It rt (Failure ("lllegal assignment "' * string _of typ It "
"'=""string of typrt*"in" "
string_of expr ex))
| Call(fname, actuals) as call -> let fd = function_decl fname in

if List.length actuals != List.length fd.formals then

raise (Failure ("expecting "' " string_of int
(List.length fd.formals) ~ " arguments in " " string_of expr call))
else
List.iter2 (fun (ft,) e ->let et = expr e in
ignore (check_assign ft et
(Failure ("illegal actual argument found " " string of typ et *
" expected "' " string of typ ft * "in " " string_of expr e))))
fd.formals actuals;
fd.return_type
in
let check_bool_expr e = if expr e !I= Bool
then raise (Failure ("expected Boolean expression in "' string_of expr e))

else () in

(* Verify a statement or throw an exception *)
let rec stmt = function
Block sl -> let rec check_block = function
[Return _ as s| -> stmt s
| Return _ :: _ ->raise (Failure "nothing may follow a return')
| Block sl :: ss -> check_block (sl @ ss)
| 5 25 55 ->stmt s ; check_block ss
[11->0
in check_block sl
| Expr e -=> ignore (expr e)
| Return e -> let t = expr e in if t = func.return_type then () else
raise (Failure (""return gives " * string of typ t ™ "' expected " "

" A

string_of typ func.return_type " " in string_of _expr e))

| Zf(p, b1, b2) -=> check_bool_expr p; stmt bl; stmt b2

| For(el, e2, e3, st) ->ignore (expr el); check_bool expr e2;

ignore (expr e3); stmt st
| While(p, s) -> check_bool_expr p; stmt s
in
stmt (Block func.fbody.f stmts)
in

List.iter check_function functions

8.6 Warhol.ml

type action = LLVM IR | Compile
let =

let action = if Array.length Sys.argv > 1 then
List.assoc Sys.argv.(1) [
("-1", LLVM IR); (* Generate LLVM, don't check *)
(""-c", Compile) | (* Generate, check LLVM IR *)
else Compile in
let lexbuf = Lexing.from_channel stdin in
let ast = Parser.program Scanner.token lexbuf in
Semant.check ast;
match action with
LLVM IR -> print_string (Llvm.string_of llmodule (Codegen.translate ast))
| Compile -> let m = Codegen.translate ast in
Llvm_analysis.assert_valid_module m;

print_string (Llvm.string_of llmodule m)

8.7 Makefile

all: warhol.native printbig.o openfile.o prep

warhol.native :

ocamlbuild -use-ocamlfind -pkgs llvm,llvm.analysis -cflags -w,+a-4

Warhol.native

"make clean' removes all generated files

PHONY : clean

clean :
ocamlbuild -clean
rm -rf testall.log *.diff warhol scanner.ml parser.ml parser.mli prep
rm -rf printbig openfile

rm -rf *.cmx *.cmi *.cmo *.cmx *.0 *.s *.ll *.out *.exe

printbig : printbig.c

cc -o printbig printbig.c

openfile : openfile.c

cc -0 openfile openfile.c

prep: prep.c

gcc -o prep prep.c

8.8 Run.sh

#!/bin/bash
basename="echo $1 | sed 's/.*\\///

s/wl//"

libs=""printbig.o openfile.o"

J/prep ${basename}.wl
./warhol.native < tempfile.wl > ${basename}.ll

rm tempfile.wl

lic ${basename}.ll > ${basename}.s

cc -0 ${basenamej.exe ${basename}.s ${libs}

#./8{basename}.exe to run file

#move to piping add a -c flag?

8.9 Git Log
commit £f8359df75d0bf888ea9b2252aa8daec7d5154b43d

Author: Sarina Xie <sx2166(@columbia.edu>
Date: Wed May 10 16:44:14 2017 -0400

cleaned up, demo

commit beba8e71437a62¢25108b9dfffe3310a732a243b
Author: Sarina Xie <sx2166@columbia.edu>

Date: Wed May 10 16:32:22 2017 -0400

made demo of stdlib

commit 60940f3ea55319444d801ad902£fe00260295121
Author: Sarina Xie <sx2166(@columbia.edu>

Date: Wed May 10 16:31:45 2017 -0400

made demo of stdlib

commit 4d350454898226d47¢f9d0f07cc35741aa9¢7a7c
Author: Sarina Xie <sx2166@columbia.edu>

Date: Wed May 10 16:07:52 2017 -0400

fixed bug in prep

commit 12a9¢8447fdb702¢56a74d3850ec5b634b73573¢
Author: Sarina Xie <sx2166(@columbia.edu>

Date: Wed May 10 15:40:03 2017 -0400

std lib stuff

commit 42487d4f0aea7837878b0f1d7a03707773da%ec6
Author: Sam Nnodim <sam.nnodim@gmail.com>

Date: Wed May 10 01:18:41 2017 -0400

linked openfile to filter in warhol

commit eb57¢97655b9b8e79e3b0e02cd265ce0cd021f61
Author: Sam Nnodim <sam.nnodim@gmail.com>

Date: Wed May 10 00:48:06 2017 -0400

fixed comma parsing

commit 797f77159fe0f41c2523e7e38fbec367be029dbb

Author: Sam Nnodim <sam.nnodim@gmail.com>

Date: Wed May 10 00:40:54 2017 -0400

working openfile()

commit 19d53384¢00fda0295061fba33eef65983d8a8bc
Author: cassiewes <ciw2109@columbia.edu>

Date: Tue May 9 23:46:32 2017 -0400

quick fix

commit 968226172a2bc589232152d5e32db884a8059457
Author: Cassie Wes <ciw2109@columbia.edu>

Date: Tue May 9 22:53:07 2017 -0400

cleaned up files

commit 5ef0123ba2809bddcba7bfacff2dSe7b7f33dfesS
Author: Cassie Wes <ciw2109@columbia.edu>

Date: Tue May 9 22:30:16 2017 -0400

marilyn filters all working woohooooo

commit edb6719ddfbS87fdfd53b50d5ae88b496c63808f
Author: Sarina Xie <sx2166@columbia.edu>

Date: Tue May 9 21:00:09 2017 -0400

cyanblue

commit 499aa4b05a0941f94ca8426e7e3f03618a487199
Author: Sarina Xie <sx2166(@columbia.edu>

Date: Tue May 9 20:58:19 2017 -0400

changedfilternames

commit 3b350e868623a1f5¢16c0712bc82769d8b1d2¢60
Author: Sarina Xie <sx2166@columbia.edu>

Date: Tue May 9 20:23:36 2017 -0400

filters again

commit 49201ae2elbad022a6¢3¢93a0713ccd776318055
Author: Sam Nnodim <sam.nnodim@gmail.com>

Date: Tue May 9 19:43:20 2017 -0400

late msg

commit 906e5¢0ee8002947524eb2155a¢6d94595189b4f
Author: Sarina Xie <sx2166@columbia.edu>

Date: Tue May 9 17:22:30 2017 -0400

minor changes

commit b32307d46237d080d60f780fc7c1c264ae821161
Author: Cassie Wes <ciw2109@columbia.edu>

Date: Tue May 9 17:01:54 2017 -0400

testing marilyn

commit 4fal1e4298670b0939¢f306a87ba0374f176baled
Author: Cassie Wes <ciw2109@columbia.edu>

Date: Tue May 9 16:29:18 2017 -0400

thank you sarina

commit 7aad05417cd5165b24cf8a44841a191606f16612
Author: Martina Atabong <maa2247@columbia.edu>

Date: Tue May 9 07:19:03 2017 -0400

Got a hang of how to do printing. Also fixed how we treat ppm matrices

commit d38d8c900cb50bda2a48b576f423db921a023b2b
Merge: 14bc671 7a8cadb
Author: Cassie Wes <ciw2109@columbia.edu>

Date: Mon May 8 23:41:10 2017 -0400

praying this works

commit 14bc671b217fa42ebd18fb45d71ec4a606ffadc4
Author: Cassie Wes <ciw2109@columbia.edu>

Date: Mon May 8 23:37:08 2017 -0400

praying this works

commit 7a8ca4b2554141ec68abSe217854ac23c047dbf1
Author: Sarina Xie <sx2166(@columbia.edu>

Date: Mon May 8 22:16:43 2017 -0400

merged Kesi's changes in

commit 81ccl1145¢c2991249ad71c3f04fefb03c20032
Author: Cassie Wes <ciw2109@columbia.edu>

Date: Mon May 8 21:48:11 2017 -0400

for sarina

commit 6918e4e0f62bb930a17526430ed17fcc6277afob
Author: Cassie Wes <ciw2109@columbia.edu>

Date: Mon May 8 14:19:03 2017 -0400

changed *->@

commit 15ff4910fb2bc721a9ab9168b319e0019a34f27d
Author: Cassie Wes <ciw2109@columbia.edu>

Date: Mon May 8 14:17:51 2017 -0400

changed to @s

commit e6ad500ect5f9353e3b6dece69c589b65865cfch
Author: Cassie Wes <ciw2109@columbia.edu>

Date: Mon May 8 14:03:09 2017 -0400

filterall function

commit 9adda8bc7e60ed0dbc3felel8b4b2bdf9322905¢
Author: Cassie Wes <ciw2109@columbia.edu>

Date: Mon May 8 14:01:53 2017 -0400

ppm

commit 3f7a948¢cf2c5f36719664235250396a60597a7a2
Merge: 3a090a3 4767603
Author: Cassie Wes <ciw2109@columbia.edu>

Date: Mon May 8 11:53:43 2017 -0400

Merge branch 'master' of https://github.com/samnnodim/warhol

commit 3a090a3662281b670a92d59030772579867d436f

Author: Cassie Wes <ciw2109@columbia.edu>

Date: Mon May 8 11:53:37 2017 -0400

filters

commit 19f07b8cc46a7a38c3a408d94fe8e2746909b15¢
Author: cdn2118 <cdn2118@columbia.edu>

Date: Mon May 8 11:48:58 2017 -0400

Openfile: Working

commit d00f5a6fbc51c00a82594¢3890b986030d3889fd
Author: Martina Atabong <maa2247@columbia.edu>

Date: Mon May 8 09:21:31 2017 -0400

As far as make and basic functionality goes, this is what you should be using

commit af082ac6f868¢49927d54d28e¢4d73b48934cbbe8
Author: Martina Atabong <maa2247@columbia.edu>

Date: Mon May 8 07:57:16 2017 -0400

Why is make broken...

commit 47676039435c¢29f40d08db532f0680d9abb7{df1
Author: Sarina Xie <sx2166@columbia.edu>

Date: Mon May 8 02:10:20 2017 -0400

readme

commit dca9663b52473¢26806b408a1647c416bd4b087¢
Merge: 5012e0f 75021bf
Author: Sarina Xie <sx2166(@columbia.edu>

Date: Mon May 8 01:25:39 2017 -0400

filters

commit 5012e0f6439f239d43113096436209fa6c4cc523
Author: Sarina Xie <sx2166@columbia.edu>

Date: Mon May 8 01:16:04 2017 -0400

filters folder

commit 75021bf66aa5f34eedcace3ea263df3d52b80115
Author: Martina Atabong <maa2247@columbia.edu>

Date: Mon May 8 00:38:18 2017 -0400

Comments in tfpink.wl

commit 0cf5298975bdace5¢31967¢8ba597d3a654114cl
Author: cdn2118 <cdn2118@columbia.edu>

Date: Mon May 8 00:24:12 2017 -0400

Openfile: Fatal exception error

commit 9f30f58435a8a9fc89b5207fb9eb2f0c9af43954
Author: Cassie Wes <ciw2109@columbia.edu>

Date: Mon May 8 00:03:41 2017 -0400

filter functions

commit 7aa0951051904d5399b149¢9191771c964ac7be5
Author: Cassie Wes <ciw2109@columbia.edu>

Date: Sun May 7 23:33:35 2017 -0400

marilyn.ppm

commit 4ff7bfed0a8582192aae3e64ac5a5e79cc340f6b
Author: Sarina Xie <sx2166(@columbia.edu>

Date: Sun May 7 22:54:47 2017 -0400

filter pink

commit 9bb942cbaa93edf67a5aab0bfeec6948f56abf5a
Author: Sarina Xie <sx2166@columbia.edu>

Date: Sun May 7 22:29:05 2017 -0400

for cassie

commit 4512fb7cd221fc0e9e8621dcldcac3e4479bad88
Author: Sarina Xie <sx2166(@columbia.edu>

Date: Sun May 7 22:26:40 2017 -0400

fyellow

commit 9a758509f7c0bcc60a7db75b0afb870b583bc75¢
Author: cdn2118 <cdn2118@columbia.edu>

Date: Sun May 7 20:25:42 2017 -0400

Opentfile: adding function definitions. Not working yet

commit 6a9¢1b55281174498bd4c3ce2c420d66£f7656¢1
Author: Sarina Xie <sx2166(@columbia.edu>

Date: Sun May 7 20:04:29 2017 -0400

test images

commit a0d27b5406ef8d66154d3692a8alb6fe0be3256¢
Merge: 79397dd b446d24
Author: Sarina Xie <sx2166@columbia.edu>

Date: Sun May 7 19:56:03 2017 -0400

git problems

commit 79397dd25{649b40c4102fdb8570dc9e184918d2
Author: Sarina Xie <sx2166@columbia.edu>

Date: Sun May 7 19:50:42 2017 -0400

2dmatrices ptrs

commit 0f612395ab98f7fb12ec5e¢6£799774c57fd21e21
Author: Martina Atabong <maa2247@columbia.edu>

Date: Sun May 7 18:53:15 2017 -0400

Use script to run any file cuz links libraries

commit 69¢d6aaf99203a78384a613b95f065c6ea08b2f7
Author: Sarina Xie <sx2166(@columbia.edu>

Date: Sun May 7 18:35:56 2017 -0400

added ptrs from DARN

commit 4dc52e41b311d6501c51c1ae8102a957c¢0667081
Author: Sarina Xie <sx2166@columbia.edu>

Date: Sun May 7 18:35:36 2017 -0400

added pointers from DARN

commit b446d2444109fef8dfe23ec8638d6baa551d9¢35
Author: Cassie Wes <ciw2109@columbia.edu>

Date: Sun May 7 18:25:24 2017 -0400

semant 1D matrices

commit 623bald5ad87717398329d4c9384a88c1bc9e67d
Author: cdn2118 <cdn2118@columbia.edu>

Date: Sun May 7 18:02:16 2017 -0400

Openfile: Openfile links to warhol. Only prints string

commit 66¢9532eb57a4d7a22d5b446bf5£60292045de58
Author: cdn2118 <cdn2118@columbia.edu>

Date: Sun May 7 16:02:17 2017 -0400

Accident: removed hello world and adding back

commit ce49488dcec3ba9b840b35af66f77fe129ed635¢
Merge: 0db625f 57¢el11a
Author: Sarina Xie <sx2166(@columbia.edu>

Date: Sun May 7 15:54:49 2017 -0400

merged in controlflow

commit 57e111a384b5140f67f341dcf57b59¢18659c84a

Author: Sarina Xie <sx2166@columbia.edu>

Date: Sun May 7 15:45:40 2017 -0400

edited semant, ready for merge

commit 0db625f60f3345a54d4cbaf0fb611b8afe3beb12
Author: Sarina Xie <sx2166(@columbia.edu>

Date: Sun May 7 13:18:31 2017 -0400

location of variable decl

commit 3357fc6£7628249¢ceb971e3b3aaa7b2cbb13d12b
Author: Sarina Xie <sx2166@columbia.edu>

Date: Sun May 7 13:09:52 2017 -0400

declare variable anywhere

commit c4f67fd050a77287f54d465b3fe5a9722a24424d
Author: cdn2118 <cdn2118@columbia.edu>

Date: Sun May 7 09:15:30 2017 -0400

Strings: Print Strigns function working

commit 036ffc6077ee7013cdc7db5321ab75¢1b245¢7b9
Author: Martina Atabong <maa2247@columbia.edu>

Date: Sat May 6 18:48:11 2017 -0400

Semant works, doesn't include string/char/matrices though

commit 675625192133fefa74971542a3b0d6497b26087¢
Author: Martina Atabong <maa2247@columbia.edu>

Date: Sat May 6 13:19:24 2017 -0400

Actually merged with string literals

commit 1feal75e7c01a59abdf292edcca7366c6al4a819
Merge: a601866 77a0375
Author: Martina Atabong <maa2247@columbia.edu>

Date: Sat May 6 13:16:16 2017 -0400

Shit

commit 77a0375d1758da45d7bfa7cb585¢c2a66ee487b51
Merge: €206064 67d457¢c
Author: cdn2118 <cdn2118@columbia.edu>

Date: Sat May 6 13:10:17 2017 -0400

Merge Contflict: conflict between math and controlflow

commit 67d457c3fcb5c05b10b0832825dcb089¢3517b2d
Author: cdn2118 <cdn2118@columbia.edu>

Date: Sat May 6 12:57:23 2017 -0400

Strings: added String and Char Literals

commit a6018661d454ba27ffec666f800da519450b3539
Merge: €206064 7¢97349
Author: Martina Atabong <maa2247@columbia.edu>

Date: Sat May 6 12:51:30 2017 -0400

Attempts at merging

commit a389b7fbf40f0ddb23bfd27488b439a78408c9a6
Author: cdn2118 <cdn2118@columbia.edu>

Date: Sat May 6 11:23:31 2017 -0400

Strings: Only prints ascii value of first char in string

commit €2060645f60d5cae4f8a231a928cbdb06d705737
Author: Martina Atabong <maa2247@columbia.edu>

Date: Sat May 6 03:33:32 2017 -0400

Working relational operators

commit 55204a1a9d8d971aa85¢c64b4730f343£5d09102f
Author: Martina Atabong <maa2247@columbia.edu>

Date: Sat May 6 01:34:12 2017 -0400

Added logic operators and arithmetic operators that went missing

commit 7¢9734917051141122215572503¢146¢52416659
Author: Sam Nnodim <sam.nnodim@gmail.com>

Date: Fri May 5 22:40:35 2017 -0400

updated gitignore

commit e849461e08d47862b498a52144029d543b2e5b86
Merge: 85ece61 3ed47¢9
Author: Sam Nnodim <sam.nnodim@gmail.com>

Date: Fri May 5 22:28:16 2017 -0400

Merge branch 'controlflow' of https://github.com/samnnodim/warhol into math

commit 339d9ecalf7d9c2e59dblef343ea9cdOcfc2d4bo
Author: Sarina Xie <sx2166(@columbia.edu>

Date: Fri May 5 20:32:27 2017 -0400

commented 1l files

commit e81c¢7cc67¢73b534ea6b40c6a89a2d312¢461537
Author: Sarina Xie <sx2166@columbia.edu>

Date: Fri May 5 20:11:10 2017 -0400

looking at array llvm

commit 949295b81dfa45a9757ccd04d00c899df6fc8354
Author: Sarina Xie <sx2166(@columbia.edu>

Date: Fri May 5 19:48:26 2017 -0400

more comments in codegen

commit aba8f5f121563d566c6bad8aclfac01217fd2ede
Author: Sarina Xie <sx2166@columbia.edu>

Date: Fri May 5 19:33:47 2017 -0400

started variable size arrays

commit da524f6a22eba49d11a0a407fc774f1bf406bal5
Author: Sarina Xie <sx2166(@columbia.edu>

Date: Fri May 5 18:10:05 2017 -0400

can declare variables in middle of function

commit 7fb4753c050da95ed5a8ac65b52749af551e8426
Merge: 75¢f239 699d0bb
Author: Sarina Xie <sx2166@columbia.edu>

Date: Thu May 4 22:06:15 2017 -0400

var decls

commit 75¢f239cbe89162534fcd83405¢c161cactfe0b091
Author: Sarina Xie <sx2166(@columbia.edu>

Date: Thu May 4 21:45:43 2017 -0400

working on var decl

commit 3ed47e9¢805d61b712196a26891cc779ad5b7738
Author: Martina Atabong <maa2247@columbia.edu>

Date: Thu May 4 10:52:01 2017 -0400

Boolean, If/Else, For, and While all work

commit 85ece61cb9bd50802c4a08cb7fd23527e3f61054
Author: Sam Nnodim <sam.nnodim@gmail.com>

Date: Thu May 4 03:28:18 2017 -0400

updated parts of scanner [old]

commit €a894268b7eb75cf2e97tb5a56b4618c69ac42ef
Author: Sam Nnodim <sam.nnodim@gmail.com>

Date: Fri Apr 28 17:46:22 2017 -0400

fixed shift/reduce error

commit 0fb068999¢5f718c672a8d1177e7480a67bff4bd
Author: Sam Nnodim <sam.nnodim@gmail.com>

Date: Fri Apr 28 16:28:36 2017 -0400

added left associativity

commit 6al162c8547aa2a8aaa803168ecb3bfYabba340b8
Author: Sam Nnodim <sam.nnodim@gmail.com>

Date: Fri Apr 28 15:51:34 2017 -0400

added: add,subtract,multiply,divide to scanner,parser,and AST

commit 67dd4{8{352¢c40f11f6c7e119a0dbb4{4d815¢cf2
Author: Sarina Xie <sx2166(@columbia.edu>

Date: Fri Apr 28 00:34:02 2017 -0400

test for declaration, assignment, array

commit 128f984beaeee95ec3904418e47b362127d213bl
Merge: 00236¢cc 87169d4
Author: Sarina Xie <sx2166@columbia.edu>

Date: Fri Apr 28 00:30:26 2017 -0400

Merge branch 'master' of https://github.com/samnnodim/warhol

commit 00236ccd87fe9cb25966¢92cd0tbda73ff0cacdo
Author: Sarina Xie <sx2166@columbia.edu>

Date: Fri Apr 28 00:29:47 2017 -0400

used microc to get variable dec and assignment working, used darn to get arrays working

commit 699d0bbf96e100eb47296cd1777d126294a412¢
Merge: 0313751 87169d4
Author: cassiewes <ciw2109@columbia.edu>

Date: Wed Apr 12 20:50:53 2017 -0400

Merge branch 'master' into sarina

Conflicts:

ast.ml

parser.mly
scanner.ml

commit 87169d42cefcef6397fa30a029599914c¢78a9a26
Author: cassiewes <ciw2109@columbia.edu>

Date: Wed Apr 12 20:30:25 2017 -0400

how to run hello world

commit 5e21f500b538d427b99a9¢133¢96cce43639a0dd

Author: Sarina Xie <sx2166@columbia.edu>

Date: Tue Apr 11 15:52:09 2017 -0400

printed 42 albeit with many warnings

commit 39fdf552¢741e9873506fbf82527300f6badb2d6
Author: Sarina Xie <sx2166(@columbia.edu>

Date: Fri Apr 7 15:17:24 2017 -0400

parser working

commit 06alc2865¢106497f6d4afdf51eadacda097al57
Author: cassiewes <ciw2109@columbia.edu>

Date: Fri Apr 7 13:26:50 2017 -0400

lessons from other groups

commit 8c1345bffabb5435893633db325¢ca816744ba322
Merge: a52b03a 7cb1b0a
Author: cassiewes <ciw2109@columbia.edu>

Date: Wed Apr 5 16:29:44 2017 -0400

Merge branch 'cassie’

commit 7cb1b0a2e8fcbbla7e69d0e6397ef124869d9315

Merge: 575dee(a52b03a

Author: cassiewes <ciw2109@columbia.edu>

Date: Wed Apr 5 16:27:37 2017 -0400

Merge branch 'master' into cassie

commit 575dee0f8883e57397921ec1627b834c00ca800d
Author: cassiewes <ciw2109@columbia.edu>

Date: Wed Apr 5 16:27:34 2017 -0400

added to parser

commit a52b03acf6cfde1d93f1b8bbeac822b42e89ed30
Author: samnnodim <sam.nnodim@gmail.com>

Date: Tue Apr 4 22:41:09 2017 -0400

added semant.ml and updated test script.

commit 8¢7783590ccel134925de27bcc72096dedebebaf
Author: samnnodim <sam.nnodim@gmail.com>

Date: Tue Apr 4 21:45:50 2017 -0400

added test.sh

commit e5b5a09570fc7b3062d2312ed4e92bfd555245fe
Author: samnnodim <sam.nnodim@gmail.com>

Date: Tue Apr4 21:36:13 2017 -0400

rm the scanner

commit 433ff489e¢94204cb5209b5bb560a3388486¢58b1
Merge: 7054536 59817¢el
Author: samnnodim <sam.nnodim@gmail.com>

Date: Tue Apr 4 21:35:06 2017 -0400

Merge branch 'master' into sam

commit 70545362ae0f6£2d5f4064c47c¢7720847¢t61fc6
Author: samnnodim <sam.nnodim@gmail.com>

Date: Tue Apr 4 21:14:07 2017 -0400

addded a build script

commit 59817eleeccadb73cc3eebbbeffOc36433c5f6a
Merge: 83e5bd6 5ad48a3
Author: cassiewes <ciw2109@columbia.edu>

Date: Tue Apr 4 21:06:03 2017 -0400

Merge branch 'cassie’'

commit 5ad48a30089084415bad4419ff31{f2f326a89329
Author: cassiewes <ciw2109@columbia.edu>

Date: Tue Apr4 21:01:45 2017 -0400

condensed

commit b4a40eecde5e9bb94cS552¢88eefe1d0f80d8f95d
Merge: a95e03¢ 83e5bd6
Author: cassiewes <ciw2109@columbia.edu>

Date: Mon Mar 27 09:42:17 2017 -0400

Merge branch 'master' into cassie

commit 03f3751389600cdf9ffdcalebecb68b118b27fd8a
Author: Charvinia Neblett <cdn2118@columbia.edu>

Date: Sun Mar 26 19:48:23 2017 -0400

Testing Declarations: current state of rejection

commit 83e5bd6b39d8bce0c66849¢181bea634a97ed920
Author: samnnodim <sam.nnodim@gmail.com>

Date: Sun Mar 26 18:44:08 2017 -0400

added new test line to the README.

commit 202ac2dfb15f467c14e448b670672aa3255aacea
Author: samnnodim <sam.nnodim@gmail.com>

Date: Sun Mar 26 18:34:57 2017 -0400

updated parser

commit a95e03¢5¢983f17d3d1198552a7c¢0231blefa68d
Merge: 7d91390 36ab8ca
Author: cassiewes <ciw2109@columbia.edu>

Date: Sun Mar 26 18:30:12 2017 -0400

Merge branch 'master' into cassie

commit 36ab8cab8a9¢a57963990a7d47355a35b6ca6903
Author: samnnodim <sam.nnodim@gmail.com>

Date: Sun Mar 26 18:28:02 2017 -0400

added a test help document.

commit 305¢531ce573c1b486caSacl7be7bda705f57¢cd6
Author: samnnodim <sam.nnodim@gmail.com>

Date: Sun Mar 26 18:23:38 2017 -0400

unneccessary folder

commit 3b072b98449a7cc1c2eb44a72682bSfebe059dee
Merge: 6df79bf 7d91390
Author: cassiewes <ciw2109@columbia.edu>

Date: Sun Mar 26 18:18:38 2017 -0400

Merge branch 'cassie’

commit 7d91390767680017d27bf69611e002b7824244f3
Author: cassiewes <ciw2109@columbia.edu>

Date: Sun Mar 26 18:18:18 2017 -0400

update scanner.mll

commit 3d9a55d72725b89b8cfc600b159a326a8a9a50dS
Author: samnnodim <sam.nnodim@gmail.com>

Date: Sun Mar 26 18:11:03 2017 -0400

-a

commit 36067b29c¢07fb1fd2fa6a3cb41d52bf223d76¢c6d
Merge: 57a6be8 6df79bf
Author: cassiewes <ciw2109@columbia.edu>

Date: Sun Mar 26 18:07:29 2017 -0400

Merge branch 'master' of https://github.com/samnnodim/warhol into cassie

commit 6df79bf50a2deeab7bed8a79c8313 Ibacbbae51f
Author: samnnodim <sam.nnodim@gmail.com>

Date: Sun Mar 26 18:01:08 2017 -0400

added the online example.

commit a682789cde01ac78950¢2903a5¢aa5738¢eebab4a
Author: Sarina Xie <sx2166(@columbia.edu>

Date: Sun Mar 26 18:00:07 2017 -0400

started looking at the ast too

commit 9866dc1¢c561808b7061014ab2aeda090abead520
Author: samnnodim <sam.nnodim@gmail.com>

Date: Sun Mar 26 17:30:48 2017 -0400

working tests.

commit 7cdfe657df86eac2fcfdd966832dcdc788eae8dd
Author: samnnodim <sam.nnodim@gmail.com>

Date: Sun Mar 26 17:28:48 2017 -0400

updated the gitignore

commit d57919e3555e2aad4b804d89e1e63fb3520437b6
Author: samnnodim <sam.nnodim@gmail.com>

Date: Sun Mar 26 17:21:56 2017 -0400

made a test directory. and put a test in it.

commit £143f637d1daf3e72c1baed9be8b30252b35¢cc68
Merge: 28ad16¢ 66af78f
Author: Sarina Xie <sx2166@columbia.edu>

Date: Sun Mar 26 11:34:28 2017 -0400

Merge branch 'master' into sarina

Trying to update sarina

commit 28ad16¢929300e32be3b644479352d34619de13d
Author: Sarina Xie <sx2166@columbia.edu>

Date: Sun Mar 26 11:34:18 2017 -0400

tiny change

commit 66af78f2c95fe92d6debae5153181818942¢ccaaft
Merge: d7e49a5 6986¢63
Author: Sarina Xie <sx2166(@columbia.edu>

Date: Sun Mar 26 11:17:52 2017 -0400

Merge branch 'master' of https://github.com/samnnodim/warhol

commit d7e49a5576fd8a208d126141de354260e8dd9¢93
Author: Sarina Xie <sx2166@columbia.edu>

Date: Sun Mar 26 11:16:37 2017 -0400

started parser, working on vars

commit 5169{8e3a9bc390b969{88b0e844178dc7764808
Merge: 52a3505 9cc2637
Author: Sarina Xie <sx2166(@columbia.edu>

Date: Sun Mar 26 11:14:09 2017 -0400

whoops merge del some lines

commit 52a3505c4bcclcadb7fe4d004ad19495a7bf5ale
Author: Sarina Xie <sx2166@columbia.edu>

Date: Sun Mar 26 11:11:52 2017 -0400

started parser, doing vars first

commit 6986c6357bcbe7ebe3Sed476e1bd8cc043930a4f
Author: cassiewes <ciw2109@columbia.edu>

Date: Fri Mar 24 22:58:21 2017 -0400

change to scanner

commit 57a6be84076¢c1a0a836e875b5c0706ac8f39a576
Merge: fd5feOe 394143
Author: cassiewes <ciw2109@columbia.edu>

Date: Fri Mar 24 22:57:45 2017 -0400

Merge branch 'master' into cassie

commit 39414e328aee2feb82d81f0661ded1ef52a72a31
Author: cassiewes <ciw2109@columbia.edu>

Date: Fri Mar 24 22:52:13 2017 -0400

scanner progress

commit fd5fe0e762128608466733a8d3fc578bcf78ed51
Author: cassiewes <ciw2109@columbia.edu>

Date: Fri Mar 24 22:42:50 2017 -0400

scanner progress

commit 7b0cb89bf7505eb5f738e4cd66fd9af449db6767
Merge: 17bcb51 9¢cc2637
Author: cassiewes <ciw2109@columbia.edu>

Date: Fri Mar 24 21:04:20 2017 -0400

Merge branch 'master' into cassie

commit 17bcb51¢216b20£30368263a4f13ef02a178843a
Author: cassiewes <ciw2109@columbia.edu>

Date: Fri Mar 24 21:04:17 2017 -0400

commit 9¢c2637773353115d054¢3d7b25b29ef3d8a5963
Author: samnnodim <sam.nnodim@gmail.com>

Date: Fri Mar 24 21:00:52 2017 -0400

little change to the scanner.

commit a8aab257b5ad5057c47d8dac8cd999¢9d9e9547¢
Merge: 7f188ff 4a40458
Author: samnnodim <sam.nnodim@gmail.com>

Date: Fri Mar 24 20:41:51 2017 -0400

Merge branch 'master' of https://github.com/samnnodim/warhol

commit 7f188ff7¢77059676¢cb351d3d5d5¢a659¢5499d1
Author: samnnodim <sam.nnodim@gmail.com>

Date: Fri Mar 24 20:41:30 2017 -0400

updated the scanner

commit 4a404586911924d085bbe0ee5840111c96af6919
Author: sam <sam.nnodim@gmail.com>

Date: Fri Mar 24 20:41:07 2017 -0400

update that readme

commit 10c1ac07f0e6bb8c19a01f2bbbba83ed4602e26d
Merge: a4044e5 2fd9a33
Author: samnnodim <sam.nnodim@gmail.com>

Date: Fri Mar 24 20:37:28 2017 -0400

Merge branch 'sam'

commit 2fd9a334ac47ebb7c9aa6f134e9e51b94b32b72b
Author: samnnodim <sam.nnodim@gmail.com>

Date: Fri Mar 24 20:36:57 2017 -0400

semi-working scanner.

commit a4044e5d85cd5d8baect1c7239¢0a58791cal fdd
Author: samnnodim <sam.nnodim@gmail.com>

Date: Fri Mar 24 20:01:23 2017 -0400

readme tweak

commit 104f9f6aecScad76¢c76147d5b3669c6c1a3 1b646
Author: samnnodim <sam.nnodim@gmail.com>

Date: Fri Mar 24 19:43:57 2017 -0400

updated the le readme

commit 2abbc95243886d648bd6ff0e29e1b4betb1a3205
Author: samnnodim <sam.nnodim@gmail.com>

Date: Fri Mar 24 19:40:28 2017 -0400

working scanner

commit a7ad81bae6f03643ala35f4eb96fa30bScecSaea
Merge: b06a30d 0697¢79
Author: samnnodim <sam.nnodim@gmail.com>

Date: Fri Mar 24 19:31:18 2017 -0400

Merge branch 'master' of https://github.com/samnnodim/warhol

commit b06a30da78399a864eda9069a311e807d6bS57aee
Author: samnnodim <sam.nnodim@gmail.com>

Date: Fri Mar 24 19:31:01 2017 -0400

updates to the readme

commit 0697e7919tbf7b3690267aeef1555d7f53ab2701
Author: cassiewes <ciw2109@columbia.edu>

Date: Fri Mar 24 19:30:58 2017 -0400

this should work

commit f39b7bff114a918ff4cdf2309065¢cda651613b92
Author: cassiewes <ciw2109@columbia.edu>

Date: Fri Mar 24 19:22:16 2017 -0400

here ya go

commit a545ff8cce2eclbed73adc45¢78cd23289a3188¢e
Author: cassiewes <ciw2109@columbia.edu>

Date: Fri Mar 24 19:10:57 2017 -0400

ast.ml, main.ml, parser.mly, scanner.mll

commit 0d00f1e4300006c2b672ba3a88d719b637b2fa8f
Author: sam <sam.nnodim@gmail.com>

Date: Fri Mar 24 18:44:51 2017 -0400

language reference manual

commit 1bca23b69ba37ef611c1c4611b107bf383ebd9eb
Author: sam <sam.nnodim@gmail.com>

Date: Fri Mar 24 18:38:35 2017 -0400

deleted it b/c it didn't work.

commit 06¢87107d77b1e25a314291e¢574b032459¢24382
Author: sam <sam.nnodim@gmail.com>

Date: Fri Mar 24 18:38:13 2017 -0400

added language ref manual

commit 91alla27cc04f8d1al0744c4e085abdd5beb61bl
Author: sam <sam.nnodim@gmail.com>

Date: Fri Mar 24 18:30:25 2017 -0400

Initial commit

