
THEATR
an Actor-Model Language so easy, even
an Actor/Model could use it!

“All the GLOBAL SCOPE’s a THEATER ™,

And all the INSTANCES of NON
PRIMITIVE/NON BUILT IN DATA TYPES

...merely ACTORS.”

-William Shakespeare, PLT Spring 1582

Our Team:
Betsy Carroll
Suraj Keshri
Mike Lin
Linda Ortega

The Actor Model

● Actor = the primitive unit of computation
● Actor = sort of like Objects in OO-model languages

■ BUT DIFFERENT!!!

What Actors Can Do
An actor can hold messages in a queue

An actor can dequeue one message

An actor can do 1 of 3 things in response to the dequeued message:

1.) Create more actor(s)
2.) Send message(s) to other actors
3.) Change its internal state (aka designate what it will do with the next

message it dequeues

// upon receiving message:

// change its internal state
(weight)

//send a message to another
actor

//create a new actor

Theatr: actors’ methods are in the form of messages

type.please_do_something | instance

// a message is piped thru to an actor
instance

// the actor then handles the message and
decides what to do in reaction to the
request to do something on its own time
internally

Actor’s Mailbox = message queue
All functions come in the form of a request to do something that is sent to the
actor’s message queue (aka mailbox)

Although multiple actors can run at the same time, an actor will process
messages sequentially

If you send 3 messages to 1 actor, that actor will dequeue them and then process
each message one at a time → asynchronous

Because of this sequential processing, an actor needs a place to store
unprocessed messages as they come in → the message queue.

Message Implementation

Actor

empty queue

state variables..
receive:
 fun1(arg1){}
 fun2(arg2){}
drop:
 dropfn()

match case

Function
Argument

Message Implementation

Actor

empty queue

state variables..
receive:
 fun1(arg1){}
 fun2(arg2){}
drop:
 dropfn()

match case

Function
Argument

Message Implementation

Actor

empty queue

state variables..
receive:
 fun1(arg1){}
 fun2(arg2){}
drop:
 dropfn()

match case

Function
Argument

Message Implementation

Actor

state variables..
receive:
 fun1(arg1){}
 fun2(arg2){}
drop:
 dropfn()

match case

Function
Argument

Message Implementation

Actor

state variables..
receive:
 fun1(arg1){}
 fun2(arg2){}
drop:
 dropfn()

match case

Function
Argument

Message Implementation

Actor

state variables..
receive:
 fun1(arg1){}
 fun2(arg2){}
drop:
 dropfn()

match case

Function
Argument

Message Implementation

Actor

state variables..
receive:
 fun1(arg1){}
 fun2(arg2){}
drop:
 dropfn()

match case

Function
Argument

Message Implementation

Actor

state variables..
receive:
 fun1(arg1){}
 fun2(arg2){}
drop:
 dropfn()

match case

Function
Argument

Message Implementation

Actor

empty queue

state variables..
receive:
 fun1(arg1){}
 fun2(arg2){}
drop:
 dropfn()

match case

Function
Argument

Message Implementation

Actor

empty queue

state variables..
receive:
 fun1(arg1){}
 fun2(arg2){}
drop:
 dropfn()

match case

Function
Argument

Why use Actor Model?
“Let it Crash” Philosophy

The programmer shouldn’t have to anticipate and try to account
for all possible problems.

Instead: you should just let it crash (gracefully).

“Let it Crash”
In THEATR

Drop method

“Let it Crash” Philosophy
Instead: you should just let it crash (gracefully). Actor model does this well:

- actors just drop messages that they don’t know how to handle.
- They don’t freak out, they continue to be in the stable state they were in before, the program

just moves on.

- You can make actors whose sole job is to watch the various
actors/processes

- “One ant is no ant”…. But ants are cheap and so are actors! So you can go wild with em
- Have supervisor actors who watch other actors and and reset them to stable state if

something does crash

Implementation
From C:

pthread_create

Queue implementation

Mutexes and condition variables

LLVM:

Everything else

Implementation - Actors in Threads
Q: How do we get actors to run independently?

- For each actor declaration, build a function
representing these statements to be passed
to pthread_create whenever a new
actor of that type is made

Implementation - Actors in Threads
Q: How do we get actors to run independently?

- For each actor declaration, build a function
representing these statements to be passed
to pthread_create whenever a new
actor of that type is made

1) Copy formals and locals onto the stack

2) An invisible argument is a pointer to the
message queue that this thread will read
from

Implementation - Actors in Threads
Q: How do we get actors to run independently?

- For each actor declaration, build a function
representing these statements to be passed
to pthread_create whenever a new
actor of that type is made

3) Transform the receive and drop functions into a
switch-case block running in an infinite loop.

- At each iteration of the loop, a new message
is pulled off the queue and the
corresponding case statement is called

- A StringMap is built to keep track of function
names to case numbers

Implementation - Actors in Threads
Theatr code written Equivalent C-code generated in LLVM

Implementation - Features of Message Statements

Similar scoping as nested functions.

Associated with a unique case number.

Implementation - Message Cases

Implementation - Message Cases
Gets message.

Gets case num, actuals
struct, and sender ptr
from messages.

Switches to branch
based on case num.

Implementation - For every message case,

Executes Message Stmts.

Casts Actuals Struct to Formals
Struct.

Branches back to while loop.

Implementation - Special Message Cases,
When actor receives
an unknown message.

Executes drop() code.

When actor receives die().

Implementation - Actors in Threads
Q: What happens when a new actor is created?

- A new message queue is created, and is
passed along with formals as arguments
to a pthread_create call running that
actor type’s function

- Specifically: a struct is created containing
the message queue pointer and the
actuals, and a pointer to that is passed
along with the function pointer to
pthread_create

Implementation - Sending Messages to Actors
Q: How are messages sent to actors?

- d is resolved to a pointer to a message
queue

- dolphin.eat is resolved to an int
representing the case number in the
actor’s switch statement at compile time

- A message struct is formed placing the
case number and a struct containing the
arguments and enqueued on d’s message
queue

Implementation - Sending Messages to Actors
Q: How are messages sent to actors?

- The address of an actor resolves to its
message queue!

- d can be passed around to other actors
- Anyone with the address of d can send it

a message

Implementation - Joining Actors and Metadata
Q: How are the threads joined?

- A global array of message queues is kept
from the inception of the program

- When main() returns, it iterates over the
array, joining each tid

- Metadata is also kept with the message
queues (like tid)

Demo

