Z
Managing Distributed Workloads

Benjamin Hanser
Miranda Li
Mengdi Lin



Language overview

M/s is language for implementing a distributed system

A master server distributes work across slave nodes
User defines a master (main) function, and jobs that
can be run on slaves

Hides messy socket handling, threading, and
network packet serialization/deserialization for job
inputs and outputs from the user!

Also provides automatic garbage collection; vectors
and structs; primitives; string; the typical binary and
unary operators; control flow; printing
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Key features

e Jjob
o Define jobs as functions: job int f(int a, int b) = { return 1 };
o Reference arunning job: job<int> j = remote gcd (2, 3);
o getresult of job, cancel a job
o Access job states: running (includes pending), finished, failed
® remote
o Runs ajob remotely, on a slave instance
® vector
o (C++-like vectors; vector<int> a; a::2; a[0] ==
o string = vector<char>
® struct

o C-like structs; struct s {int x; vector<int> v}; struct s a; a->x = 2;



Compiler - Runtime interface

Runtime master
libmsmaster.a

Source Compiler lic s file internet

Runtime slave
libmsslave.a



Runtime implementation

e Runtime manages running jobs and takes care of network operations
o  Written in C - compiles to two static libraries, libmsmaster.a and libmsslave.a
o Link .sfile from llc against each library to produce master and slave binaries

e Master runtime
o Provides a main function that calls the compiled M/s code’s “master” function
o Exposes start_job and reap_job handles, which are called by compiled M/s code
o One read thread and one write thread per socket
o Shared job table belongs to all the sockets
m  Queue of jobs pending assignment
m Stores return values of jobs before they are reaped
m Restarts ajob on a new slave if its current slave is disconnected

e Slave runtime
o Listens to one socket, spins up a new thread for each job request received



Protocol

e 12 byte header: [ordinal; jid; length]
o ordinal is a positive integer representing the job function to be run
o jidis a unigue nonnegative integer created for each job - identifies the job's return

o Data:
o Each argument is serialized sequentially
o  Structs serialize each field sequentially
o Vectors serialize the size (4 bytes) and then each element sequentially



Program structure

master {

}
jobintf(int a, intb) {...}

structs {inta; intb; }



Compiler implementation

job vector<int: fool(int a) {
vector<int> demo;
demo::{a+2);
return demo;

}

master {
job<vector<int»> foo = remote foo(l@);
vector<int> result = get foo;
print(size result);
result = foo(l@);
print(size result);



master {
vector<struct simple> demo;
struct simple a;
a-—>e =1;
demo::a; //copied

vector<struct veccy> demo2;
struct veccy b;

b—>e =a; //copied
vector<int> hey;

b—>v = hey; //copied
demo2::b; //copied

//cleanups after scope

}

struct simple {

int e;

&

struct veccy {
int e;
vector<int> v;
struct simple e;

};



The rest of the compiler...

e ..is probably exactly what you'd expect*!
e Any questions?

* Scan the input; parse it; make the AST; check semantics; generate code



Jesting

Adapted testall.sh to automatically compile and run remote tests, starting
master and slave processes:

generatedfiles="$generatedfiles ${basename}.1l ${basename}.out"

Run "$MSCOMPILE"™ "<" $1 ">" "${basename}.11"

Run "1lc ${basename}.11"

Run "gcc -L. ${basename}.s -lmsmaster —pthread -lm -0 ${basename}-master"
Run "gcc -L. ${basename}.s -lmsslave -pthread -lm -o ${basename}-slave"

Run './${basename}-master $PORT > ${basename}.out & PID=$! ; while [ -z "netstat -an | grep $PORT"" ] ; do :
; done ; ./${basename}-slave $PORT ; wait $PID'
Compare ${basename}.out ${reffile}.out ${basename}.




Jesting

e Passing tests written as we created new features

e Fail tests written for every semant checking case
e Some examples:

O

O O O O O

Jobs: assignment, get, cancel, job states

Vector: creation, pushback, access, assignment

Structs: declaration, instantiation, field access, assignment
Vectors in structs and structs in vectors

Remote calls, memory freeing

Primitives, doubles, strings
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test-remote-doubles...
test-remote-int...
test-remote-job-get...
test-remote-job-states...

test-remote-many-ints...

test-remote-struct-serialize...

test-remote-vector-serialize...

test-string-concat...
test-stringl...
test-string2...
test-struct-field-copy...
test-struct-in-vector...
test-struct-nocopy...

]

test-vector-args...

test-vector-assign...

test-vector-struct-copy-assign...

test-vector-struct-copy-free...
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fail-assign-double...
fail-assign-string...

fail-assign-stringl...

]

fail-funcl...

-]

fail-job-cancel...

fail-job-get...

fail-job-get2...
fail-job-statel...

fail-job-state2...

fail-remotel...

fail-returnl...

fail-return2...

fail-string-concat...

fail-structl..

fail-struct2...

.

fail-vector...

Example: test-struct-in-vector.ms

master

{

vector<struct Books2> bookies;

struct Books2 book;

book->b->book_id = 99;

bookies: :book;

struct Books2 outbook;

outbook = bookies[0];
print(outbook->b->book_id);
print(bookies[@]->b->book_id);

struct veccy vy;

v::5;
Vy->V = V;
v[e] = 6;

vy->sz = 1;
vector<int> vv;
vv::778;
VV = Vy->V;
print(vv[e]);

}

struct Books {
int book_id;
int d;

¥

struct Books2 {
int book_id;
int d;
struct Books b;

s

struct veccy {
int sz;
vector<int> v;

s

/* output:

99

99

5

*/

vector<int> v;



Lessens “lurnd”

WHY DID WE DECIDE TO IMPLEMENT
MEM-SAFE VECTOR IN LLIR :(



Demo time!!
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