
Managing Distributed Workloads
Benjamin Hanser

Miranda Li
Mengdi Lin

Language overview
M/s is language for implementing a distributed system

● A master server distributes work across slave nodes
● User defines a master (main) function, and jobs that

can be run on slaves
● Hides messy socket handling, threading, and

network packet serialization/deserialization for job
inputs and outputs from the user!

● Also provides automatic garbage collection; vectors
and structs; primitives; string; the typical binary and
unary operators; control flow; printing

About the team

Benjamin Hanser
* System architect

* x86-man
* Bears resemblance to

Wagner… (!?)
* Slave #1

Mengdi Lin
* Language guru
* Actual life guru

* Loves bubble tea
* regrets
* regrets

* Slave #2

Miranda Li
* Team’s faaavorite manager

+ tester
* Shift/reduce “guru”

* Slave #3

Stephen Edwards
* “TA Advisor”

* Talks about us in class
* Promised us an A+ at
senior dinner, though

perhaps doesn’t remember…
* Our one true Master

Key features
● job

○ Define jobs as functions: job int f(int a, int b) = { return 1 };
○ Reference a running job: job<int> j = remote gcd(2, 3);
○ get result of job, cancel a job
○ Access job states: running (includes pending), finished, failed

● remote
○ Runs a job remotely, on a slave instance

● vector
○ C++-like vectors; vector<int> a; a::2; a[0] == 2
○ string = vector<char>

● struct
○ C-like structs; struct s {int x; vector<int> v}; struct s a; a->x = 2;

Compiler - Runtime interface

Compiler internetSource .s file

master

slave

llc

Runtime
libmsslave.a

Runtime
libmsmaster.a

Runtime implementation
● Runtime manages running jobs and takes care of network operations

○ Written in C - compiles to two static libraries, libmsmaster.a and libmsslave.a
○ Link .s file from llc against each library to produce master and slave binaries

● Master runtime
○ Provides a main function that calls the compiled M/s code’s “master” function
○ Exposes start_job and reap_job handles, which are called by compiled M/s code
○ One read thread and one write thread per socket
○ Shared job table belongs to all the sockets

■ Queue of jobs pending assignment
■ Stores return values of jobs before they are reaped
■ Restarts a job on a new slave if its current slave is disconnected

● Slave runtime
○ Listens to one socket, spins up a new thread for each job request received

Protocol
● 12 byte header: [ordinal; jid; length]

○ ordinal is a positive integer representing the job function to be run
○ jid is a unique nonnegative integer created for each job - identifies the job’s return

● Data:
○ Each argument is serialized sequentially
○ Structs serialize each field sequentially
○ Vectors serialize the size (4 bytes) and then each element sequentially

Program structure
master {

...

}

job int f(int a, int b) { …}

struct s { int a; int b; }

Compiler implementation
- Th

The rest of the compiler...
● ...is probably exactly what you’d expect*!
● Any questions?

* Scan the input; parse it; make the AST; check semantics; generate code

Testing
Adapted testall.sh to automatically compile and run remote tests, starting
master and slave processes:

Testing
● Passing tests written as we created new features
● Fail tests written for every semant checking case
● Some examples:

○ Jobs: assignment, get, cancel, job states
○ Vector: creation, pushback, access, assignment
○ Structs: declaration, instantiation, field access, assignment
○ Vectors in structs and structs in vectors
○ Remote calls, memory freeing
○ Primitives, doubles, strings

[...]
-n test-remote-doubles...
OK
-n test-remote-int...
OK
-n test-remote-job-get...
OK
-n test-remote-job-states...
OK
-n test-remote-many-ints...
OK
-n test-remote-struct-serialize...
OK
-n test-remote-vector-serialize...
OK
-n test-string-concat...
OK
-n test-string1...
OK
-n test-string2...
OK
-n test-struct-field-copy...
OK
-n test-struct-in-vector...
OK
-n test-struct-nocopy...
OK
[...]
-n test-vector-args...
OK
-n test-vector-assign...
OK
-n test-vector-struct-copy-assign...
OK
-n test-vector-struct-copy-free...
OK
[...]

-n fail-assign-double...
OK
-n fail-assign-string...
OK
-n fail-assign-string1...
[...]
-n fail-func1...
OK
[...]
OK
-n fail-job-cancel...
OK
-n fail-job-get...
OK
-n fail-job-get2...
OK
-n fail-job-state1...
OK
-n fail-job-state2...
OK
OK
-n fail-remote1...
OK
-n fail-return1...
OK
-n fail-return2...
OK
-n fail-string-concat...
OK
-n fail-struct1...
OK
-n fail-struct2...
OK
[...]
OK
-n fail-vector...
OK

Example: test-struct-in-vector.ms
master
{
 vector<struct Books2> bookies;
 struct Books2 book;
 book->b->book_id = 99;
 bookies::book;
 struct Books2 outbook;
 outbook = bookies[0];
 print(outbook->b->book_id);
 print(bookies[0]->b->book_id);

 struct veccy vy; vector<int> v;
 v::5;
 vy->v = v;
 v[0] = 6;
 vy->sz = 1;
 vector<int> vv;
 vv::778;
 vv = vy->v;
 print(vv[0]);
}
struct Books {
 int book_id;
 int d;
};
struct Books2 {
 int book_id;
 int d;
 struct Books b;
};
struct veccy {
 int sz;
 vector<int> v;
};
/* output:
99
99
5
*/

GEP SEGFAULT

ON ME WTF

WHY DID WE DECIDE TO IMPLEMENT

MEM-SAFE VECTOR IN LLIR :(

* Except...

Lessens “lurnd”
Everythin’ was greaaat, and #noragrets*

Demo time!!

Project timeline

Up up away!

