Z
Managing Distributed Workloads

Benjamin Hanser
Miranda Li
Mengdi Lin

Language overview

M/s is language for implementing a distributed system

A master server distributes work across slave nodes
User defines a master (main) function, and jobs that
can be run on slaves

Hides messy socket handling, threading, and
network packet serialization/deserialization for job
inputs and outputs from the user!

Also provides automatic garbage collection; vectors
and structs; primitives; string; the typical binary and
unary operators; control flow; printing

About the team

Benjamin Hanser
* System architect
* x86-man
* Bears resemblance to
Wagner... (1?)
* Slave #1

Mengdi Lin
* Language guru
* Actual life guru
* Loves bubble tea
* regrets
* regrets
* Slave #2

Miranda Li Stephen Edwards

* Team’s faaavorite manager *“TA Advisor”
+ tester * Talks about us in class
* Shift/reduce “guru” * Promised us an A+ at
* Slave #3 senior dinner, though

perhaps doesn’t remember...
* Qur one true Master

Key features

e Jjob
o Define jobs as functions: job int f(int a, int b) = { return 1 };
o Reference arunning job: job<int> j = remote gcd (2, 3);
o getresult of job, cancel a job
o Access job states: running (includes pending), finished, failed
® remote
o Runs ajob remotely, on a slave instance
® vector
o (C++-like vectors; vector<int> a; a::2; a[0] ==
o string = vector<char>
® struct

o C-like structs; struct s {int x; vector<int> v}; struct s a; a->x = 2;

Compiler - Runtime interface

Runtime master
libmsmaster.a

Source Compiler lic s file internet

Runtime slave
libmsslave.a

Runtime implementation

e Runtime manages running jobs and takes care of network operations
o Written in C - compiles to two static libraries, libmsmaster.a and libmsslave.a
o Link .sfile from llc against each library to produce master and slave binaries

e Master runtime
o Provides a main function that calls the compiled M/s code’s “master” function
o Exposes start_job and reap_job handles, which are called by compiled M/s code
o One read thread and one write thread per socket
o Shared job table belongs to all the sockets
m Queue of jobs pending assignment
m Stores return values of jobs before they are reaped
m Restarts ajob on a new slave if its current slave is disconnected

e Slave runtime
o Listens to one socket, spins up a new thread for each job request received

Protocol

e 12 byte header: [ordinal; jid; length]
o ordinal is a positive integer representing the job function to be run
o jidis a unigue nonnegative integer created for each job - identifies the job's return

o Data:
o Each argument is serialized sequentially
o Structs serialize each field sequentially
o Vectors serialize the size (4 bytes) and then each element sequentially

Program structure

master {

}
jobintf(int a, intb) {...}

structs {inta; intb; }

Compiler implementation

job vector<int: fool(int a) {
vector<int> demo;
demo::{a+2);
return demo;

}

master {
job<vector<int»> foo = remote foo(l@);
vector<int> result = get foo;
print(size result);
result = foo(l@);
print(size result);

master {
vector<struct simple> demo;
struct simple a;
a-—>e =1;
demo::a; //copied

vector<struct veccy> demo2;
struct veccy b;

b—>e =a; //copied
vector<int> hey;

b—>v = hey; //copied
demo2::b; //copied

//cleanups after scope

}

struct simple {

int e;

&

struct veccy {
int e;
vector<int> v;
struct simple e;

};

The rest of the compiler...

e ..is probably exactly what you'd expect*!
e Any questions?

* Scan the input; parse it; make the AST; check semantics; generate code

Jesting

Adapted testall.sh to automatically compile and run remote tests, starting
master and slave processes:

generatedfiles="$generatedfiles ${basename}.1l ${basename}.out"

Run "$MSCOMPILE"™ "<" $1 ">" "${basename}.11"

Run "1lc ${basename}.11"

Run "gcc -L. ${basename}.s -lmsmaster —pthread -lm -0 ${basename}-master"
Run "gcc -L. ${basename}.s -lmsslave -pthread -lm -o ${basename}-slave"

Run './${basename}-master $PORT > ${basename}.out & PID=$! ; while [-z "netstat -an | grep $PORT""] ; do :
; done ; ./${basename}-slave $PORT ; wait $PID'
Compare ${basename}.out ${reffile}.out ${basename}.

Jesting

e Passing tests written as we created new features

e Fail tests written for every semant checking case
e Some examples:

O

O O O O O

Jobs: assignment, get, cancel, job states

Vector: creation, pushback, access, assignment

Structs: declaration, instantiation, field access, assignment
Vectors in structs and structs in vectors

Remote calls, memory freeing

Primitives, doubles, strings

[..

-Nn
OK
-n
OK
-Nn
OK
-n
OK
-Nn
OK
-n
OK
-Nn
OK
-n
OK
-Nn
OK
-n
OK
-Nn
OK
-n
OK
-Nn
OK

-n
OK
-n
OK
-n
OK
-n
OK

-]

test-remote-doubles...
test-remote-int...
test-remote-job-get...
test-remote-job-states...

test-remote-many-ints...

test-remote-struct-serialize...

test-remote-vector-serialize...

test-string-concat...
test-stringl...
test-string2...
test-struct-field-copy...
test-struct-in-vector...
test-struct-nocopy...

]

test-vector-args...

test-vector-assign...

test-vector-struct-copy-assign...

test-vector-struct-copy-free...

-]

-n
OK
-n
OK
-n

-n
OK

-n
OK
-n
OK
-n
OK
-n
OK
-n
OK
OK
-n
OK
-n
OK
-n
OK
-n
OK
-n
OK
-n
OK

OK
-n
OK

OK

fail-assign-double...
fail-assign-string...

fail-assign-stringl...

]

fail-funcl...

-]

fail-job-cancel...

fail-job-get...

fail-job-get2...
fail-job-statel...

fail-job-state2...

fail-remotel...

fail-returnl...

fail-return2...

fail-string-concat...

fail-structl..

fail-struct2...

.

fail-vector...

Example: test-struct-in-vector.ms

master

{

vector<struct Books2> bookies;

struct Books2 book;

book->b->book_id = 99;

bookies: :book;

struct Books2 outbook;

outbook = bookies[0];
print(outbook->b->book_id);
print(bookies[@]->b->book_id);

struct veccy vy;

v::5;
Vy->V = V;
v[e] = 6;

vy->sz = 1;
vector<int> vv;
vv::778;
VV = Vy->V;
print(vv[e]);

}

struct Books {
int book_id;
int d;

¥

struct Books2 {
int book_id;
int d;
struct Books b;

s

struct veccy {
int sz;
vector<int> v;

s

/* output:

99

99

5

*/

vector<int> v;

Lessens “lurnd”

WHY DID WE DECIDE TO IMPLEMENT
MEM-SAFE VECTOR IN LLIR :(

Demo time!!

Project timeline

60
40

20

Feb 19 Feb 26 Mar 05 Mar 12

Mar 19

Mar 26

Apr 02

Apr 09

Apr 16

Apr 23

Apr 30

May 07

