

ManiT Final Report
COMS 4115

Akiva Dollin - acd2164
Irwin Li - izl2000

Seungmin Lee - sl3254
Dong Hyeon (Paul) Seo - ds3457

Contents

1. Introduction
2. Tutorial
3. Language Reference Manual
4. Project Plan
5. Architecture
6. Test Suite
7. Conclusions
8. Full Code Listing

ManiT Final Project

1. Introduction

1.1 Motivation
The goal of ManiT is to design a language that allows for the user to easily create and
manipulate complex data types. ManiT will allow the user to easily define data types in
the form of structs, manipulate files, and manage executables using a library of built-in
functions.

1.2 Language Description
ManiT is a general purpose, object oriented programming language. ManiT draws
inspiration from C and Python, with the aim of creating user defined datatypes in the
form of structs allowing for ease of use in the form of type inference. Syntactically,
ManiT is a mixture of Python and C. Like Python, ManiT does not have a defined entry
point, such as the main function in C, and instead will execute the code sequentially.

1.3 Source Code
The source code is available at

ManiT Final Project

2. Tutorial
2.1 Environment
The ManiT compiler was built and tested in OS X, Ubuntu 14.04, and Ubuntu 16.04
virtual machine. The compiler translates ManiT source code into LLVM, a portable
assembly-like language.
The compiler can be found in:
GitHub: https://github.com/akdollin/ManiT

To download the compiler, simply go to the terminal and type:
$ git clone https://github.com/akdollin/ManiT

If the following fails and you do not have git in your terminal, then for:
Mac OS X,download and install the file in: https://git-scm.com/download/mac
Ubuntu, simply go to the terminal and type:
$ sudo apt-get install git

As ManiT was written using OCaml programming language and LLVM library, it is
necessary that the system running ManiT has the two.
For more information about OCaml and LLVM:
http://www.ocaml.org/docs/install.html
http://llvm.org/docs/GettingStarted.html

Inside the ManiT project folder, there will be a subdirectory called “src”, which contains
the source code for the ManiT programming language. Go into the folder and type
“make”. This will create the ManiT compiler called “manit.native”. The compiler takes in
a file in ManiT language and outputs a file containing LLVM byte code. The ManiT file
extension if “.mt”. To generate LLVM byte code for a specific file, type:

./manit.native < <manit_file_name.mt> > <output_file_name.ll>

In order to execute the LLVM bytecode, pass it through the LLVM interpreter using:

lli <output_file_name.ll>

Running and Testing
Once all the prerequisites (OCaml and LLVM) are installed and the compiler has been
cloned to the local system, open the terminal and trace to the compiler folder.
Then type the following on the terminal:
$ cd src

https://github.com/akdollin/ManiT
http://llvm.org/docs/GettingStarted.html
https://git-scm.com/download/mac
https://github.com/akdollin/ManiT
http://www.ocaml.org/docs/install.html

ManiT Final Project

$ make
This should run all OCaml modules into the compiler.

To run the test suite file, simply type the following on the terminal upon doing the steps
above to run all OCaml modules into the compiler.
$./testshall.sh

Alternatively, the following will also run the test suite:
$ make test

To create and run your own program, save the code in an *.mt file.
A simple method of running your own program is upon saving the *.mt file:
$./manit.native < *.mt > output.ll
$ lli output.ll
in which *.mt is the filename of the your program.

2.3 Program Structure
A ManiT program is a list of statements. A statement can broken down into one of the
three categories: can be broken down into three segments.
1. Function definition. Function definitions are similar to C, except that the keyword def
is needed before the return type. The types of formal parameters and the return type
must be specified in function definition.
2. Struct definition. Struct definitions are also similar to C. The types of the members of
the struct must be specified in struct definition.
3. Other statements.

ManiT does not have a defined entry point (main function), and the list of statements are
executed sequentially from top to bottom. Function definition must occur above the
corresponding function calls and struct definition must occur above creating an instance
of the struct type. A variables that are declared outside of a scope is a global variable.

Type Inference
ManiT has partial type inference.
Function definitions and struct definitions need to be specified. An instance of a struct
type is declared by specifying the type in a declaration statement. Other variables are
declared when it is assigned a value. The type of a variable is determined by the type of
the assigned literal, which can be one of the primitive literals or an array literal. The type
of a variable cannot change in the scope that it is declared. Another variable with same
name and different type can be declared outside of the scope.

ManiT Final Project

Built-in Functions
ManiT supports several built-in functions that are helpful for file manipulation and
forking. ManiT supports the following built-in functions:

● open() opens a file. It takes two string arguments, the filename and the mode to
open the file in (“w” for write, “r” for read, “a” for append, ...). open() returns a
string pointer type that contains information about the file pointer. Example:

f = open(“fname”, “w”);
● close() closes a file. close() takes one argument, which is a string pointer type

containing information about the file pointer. It will return an integer 0 if
successfully closed and an EOF if there is an error. Example:

/* open a file first */
f = open(“fname”, “w”);

/* close the file */
close(f);

● write() writes to file. Write takes four arguments. The first argument is a string
which contains the data to write to file. The second argument is an integer for the
length of the string, or how many characters the user wants to write to file. The
third argument is an integer for the size of each element. For a character, the
size is 1. The final argument is a string pointer for the file. Write will return an
integer for the number of elements written. Example:

/* open a file first */
f = open(“fname”, “w”);

/* write to file */
write(“hello world”, 1, 1, f);

/* close the file */
close(f);

● fork() splits the running process into a child process and a parent process.
The fork() function will not take any arguments and will return 0 if the current
process is the child process and will return the parent process id if the current
process is the parent process. The child process will continue its execution after
the fork call. Example:

pid = fork();
● execlp() will replace the current line of execution with the called process.

execlp() takes four arguments (3 strings and 1 integer). The first argument is
the process to execute, the second argument is the name of the process, the

ManiT Final Project

third argument will take in an argument, and the final argument will the integer 0
to act as a null terminator. It will -1 if there is an error. Example:

execlp(“echo”, “echo”, “hello world”, 0);
● sleep() will sleep for a specified number of seconds. Sleep take an integer for

the number of seconds to sleep. Example:
/* sleep for 5 seconds */
sleep(5);

● len() will return the length of a string. It takes one argument, which is a string.
Example:

A = len(“hello”); /* A will be 5 */

2.4 Basics
2.4.1 Primitives

ManiT supports the following primitives:
- int
- float
- boolean
- string

2.4.2 Arrays
Since ManiT is to compiled into LLVM, an array of size n and type t is an allocated block
of memory that holds n contiguous values all of type t. Arrays are allocated on stack.
The values that an array contains must be of the same type.

2.4.3 Structs
Structs are just like in C. The types of the members must be declared in struct definition.
All members of a struct are public by default. Unlike array, an instance of a struct type is
declared by specifying the struct as the type of the variable.

2.4.4 Operators
Airthmetic: +, -, *, ^, \
Logical: &&, ||
Relational: ==, <, <=, !=, >, >=

2.4.5 Control Flow
ManiT supports standard control flow constructs, such as if-else statements, for loop,
and while loops.

ManiT Final Project

3. Language Reference Manual
Introduction
ManiT is a programming language inspired from Python and C that compiles into LLVM.
ManiT includes partial type-inference in addition to a number of built-in functions for
manipulating files and working with processes.

3.1 Lexical Conventions
This section will describe how ManiT code will be processed and how tokens are
generated.

Identifiers:
Identifiers are used to name variables, functions, and user defined struct type names as
in programming languages such as C and Python. An identifier can be any letter
followed by any sequence of letters, numbers, or underscores. The letters may be either
lowercase or capitalized. The set of keywords, which will be listed later, cannot be used
as identifiers and are reserved. Here is the regular expression for identifiers in ManiT:

Id = ['a'-'z' 'A'-'Z']['a'-'z' 'A'-'Z' '0'-'9' '_']*

Float literals consist of an integer part,

Types:
When declaring variables, users will not have to specify types.

Type Description Syntax

Boolean A one byte number 0 or 1. 0
corresponds to false and 1 corresponds
to true.

a = true;
b = false;

Integer Numbers without a decimal point (also
known as Integers)

a = 5;
b = 3;
c = 89;

Float Number that contains a decimal point. a = 5.1;
b = 6.3;
c = 89.99909;

String A sequence of characters inside a pair
of “”.

string1 = “hello”;
a = “world”;

ManiT Final Project

test = “plt”;

Array A container to hold multiple data of the
same datatype. An array is denoted by
square brackets. [].

a = [1.1,2.2];
b = [1,2,3];

Integers are 32-bit signed integers as defined by two’s complement. All integers are
utilized within ManiT programs using base 10. Strings are zero or more unicode
characters surrounded by double quotes. They utilize at most the same amount of
memory as characters in the string. Both integers, floats, and strings are immutable and
cannot be changed once initialized. When changing the value of one of these types,
underlying storage is collected and replaced. Arrays are mutable and therefore utilize
references to their values in storage. When arrays are passed or returned from
functions or structs, they are passed by reference.

Lexical Conventions:

When processing a program written in the ManiT language, the program is
reduced to a sequence of tokens. There are five classes of tokens: identifiers,
keywords, literals, operators, and other separators. In our language, spaces, tabs,
newlines, single and multi-line comments are considered to be white-space. In general,
white-space is ignored by program. Some white-space, however, is required to separate
otherwise adjacent identifiers, keywords and constants.

Comments:

The ManiT language supports multi-line commenting. Comments do not nest,
and cannot exist within a string or character literals. Code placed inside the /* and */ are
regarded as comments and ignored by the ManiT compiler.

/* ... */ Multi-line comment

Identifiers:
An identifier is a sequence of letters or digits that identifies some data that the
programmer will interact with. Identifiers can be any length and use any combination of
letters and numbers, but must start with a letter.

Keywords:

ManiT Final Project

Keywords are a set of reserved words that serve a specific purpose in the ManiT
language, and may not be used by the user. The list of keywords is as follows:

if int
else string
return bool
while def
for true
void false
struct

The following keywords are used specifically to specify the type of a value:
int bool
string float
void

Each one of these keywords has a specific meaning that will be elaborated upon below.

Literals:

Any sequence of one or more digits in decimal is treated as an integer literal or
constant. A negative sign is used to specify a negative integer (-1). The integer literal
corresponds to the int type. Special characters such as the newline character can be
specified using the backslash (\) character. The following escape sequences may be
used in string literals:

Newline NL \n

Horizontal tab HT \t

Backslash \ \\\\

Double quote " \"

Single quote ' \'

Integers literals consist a sequence of one or more digits in decimal. Negative
integers are prefixed by a negative or a minus sign.

Floating literals consist of a integer part, decimal part, and a fraction part. The
integer and fraction portions consists of a sequence of one or more digits. The decimal

ManiT Final Project

portion delimits the integer and fraction portions and is specified using the period
character (.). A floating literal may be written as 1.5. Floats may be represented through
the following regex:

[+-] ? ([0-9] * [.]) ? [0-9] +

A string literal is written as a sequence of zero or more ASCII characters or
escape sequences surrounded by double quotes. Special characters such as the
newline character may be defined using the same escape sequences used for character
literals. The string literal is of the string type. The following is a regex to accept string
literals in ManiT:

let ascii = ([' '-'!' '#'-'[' ']'-'~'])
let escape = '\\' ['\\' ''' '"' 'n' 'r' 't'] | '\\'
let string = '"' ((ascii | escape)* as s) '"'

Boolean literals are explicitly the identifiers true and false. The former represents

the logical true and the latter represents the logical false. These identifiers are reserved.

Separators:
Separators are used in separating tokens. Separators in ManiT language include the
following:

{}[];,.()

Operators:
ManiT consists of the following operators:

Operator Name Associativity

= Assign Right

== Equal to -

!= Not equal to -

> Greater than -

>= Greater than or equal to -

<= Less than or equal to -

< Less than -

+ Addition Left

ManiT Final Project

- Subtraction Left

* Multiplication Left

/ Division Left

. Dot/access Left

&& Logical AND Left

|| Logical OR Left

! Logical NOT Right

- Negative Right

The precedence for the operators is as follows:
.
! - (negative)
* /
+ - (subtraction)
> < >= <=
== !=
&&
||
=

Unary Operators:
The negative and logical not operators are unary operators in ManiT.

Expressions:
An expression is composed of one of the following in ManiT:

● One of the literals described in the literals section
● Unary and binary operations between expressions
● Identifier
● Assign expressions
● Function calls
● Array definition
● Array access
● Struct access

ManiT Final Project

Assignment expressions:
Assignment expressions consist of a variable name, assignment operator, and an
expression. If the variable name is undeclared inside a given scope, assignment
expressions evaluates the expression and declares the variable with the type of the
expression, and initializes the variable with the expression. If the variable name has
been declared previously inside the scope, assignment expression changes the value of
the variable to that of the expression. The entire assignment expression is evaluated to
the value of the right-hand-side expression.

Function calls:
Function call consist of a function name, opening parenthesis, comma-separated
sequence of actual parameters, and a closing parenthesis. The function of the specified
name must be defined prior to the call, and the type and the number of arguments must
match those of the function definition.

Array definition:
Array definition consist of an opening bracket, a comma-separated sequence of literals,
and a closing bracket. The sequence must consist of at least one literal and each literal
in the sequence must have the same type.

Array access:
Array access consist of an outer expression, opening bracket, an index expression, and
a closing bracket. The outer expression must evaluate to a previously defined array
variable and the index expression must evaluate to an integer between 0 and length of
the array minus one. The Array access expression evaluates to the value and the type
of the indexed element in the array.

Struct access:
Struct access consist of an expression, a dot operator, and an identifier. The expression
must evaluate to a previously defined instance of a struct type, and the identifier must
be the name of one of the members of the struct type. Because all members of struct
are public by default, all members of a struct can be accessed.

Statements:
ManiT executes all statements in sequence. As ManiT does not allow for classes, a
program in ManiT is consisted of a list of statements. These statements are executed in
sequence. A statement in ManiT can be any one of the following:

ManiT Final Project

● An expression followed by a semicolon
● A list of statements prefixed by a “{” and followed by a “}”
● An if statement with an else or without an else
● A For or a while loop
● Struct declarations
● A struct definition

End of Statement:

All statements must be closed by semicolons:
‘;’

Expression Statement:
An expression statement is an expression followed by a semicolon. An

expression statement causes the expression in the statement to be evaluated. The
syntax for expression statements are:

expression;

Control Flow Statement:

The if statement is used to execute the block of statements in the if-clause
when the specified condition is met. If the specified condition is not met, then the
statement is skipped over. If there is an else statement, and the condition is not met,
then the code within the else statement will be executed.

Ifs and Elses are chained to create conditional statements. Expressions are
given for each case as well as statements to be executed. If the expression evaluates to
true, the statements provided are executed. If the expression evaluates to false, then
the else’s provided statement is executed is there is an else. Control flow statements
may or may not have an else statement. If there is no else statement, then the
statements within the if statement will be ignored.

Here is an example of control flow:

if (expr) {
stmts;

}

ManiT may also have control flow with else statements:

if (expr) {
stmts;

} else {
stmts;

ManiT Final Project

}

In order to have multiple conditions, ManiT supports the following:

if (expr) {
stmts;

} else if (expr) {
stmts;

} else {
stmts;

}

For Statement:

The for structure is similar to C and Java. Three expressions must be provided.
An initializer, a condition, and an increment. The for loop executes until the condition
evaluates to false which is evaluated at the beginning of each loop. At the end of each
execution, the increment is evaluated. During the loop, the provided statement is
executed:

for (expr; expr; expr) {
stmts;

}
The first expression is served to initialize the iterator counter. The second expression is
the condition for the loop and the final expression is used to increment the iterator
counter.

for (expressionInit; expressionCondition; expressionIncre){
stmts;

}

While Statement:

While expressions are evaluated after each execution of the provided statement.
The statement is executed for as long as the expression evaluates to true:

while (expr) {
stmts;

}

Return Statement:

return statements exits functions and returns to the function call. If an expression
is given, it is evaluated and then returned.

return expr;

ManiT Final Project

Function Definitions:
A function definition defines executable code that can be invoked, passing a fixed
number of values as formal parameters. ManiT uses the def keyword for function
definition. After the def keyword, ManiT requires the user to pass another keyword to
specify the return type. Type keywords include int, float, bool, string,
void. This is followed by an identifier that serves as the function name. It is followed by
a list of formal parameters listed inside parentheses. The body of the function is
contained between braces after the list of formal parameters.
A function definition is specified using the following parsing rule:

def typ ID (formal_list) {
stmts;

}
Each formal in the list must be accompanied by its type. The following is an example
function definition:

def int function_name (int param_a, int param_b) {
/* code here */
return 0;

}

Scope:
Scope refers to which variables, functions, and structs are accessible at a given point of
a program. Broadly speaking, variables may be declared in four different places:

1. Local Variables are declared inside a function or a block using the assignment
operator. They can only be used or accessed from within the function or block
that they are defined in.

2. Formal Parameters declared within a function definition. The scope of formal
parameters is limited to the function block in which they are declared. Formal
parameters may be used throughout their corresponding functions.

3. Global Variables are declared outside all functions and will be available
throughout the entire program.

4. Struct Variables are specified within a user defined struct type and may be used
only with reference to accessing an instance of the user defined struct type.

Struct Definition:
Struct definitions define a user-defined struct type that is used to define an instance of
struct. ManiT uses the struct keyword to denote the beginning of struct definition.
Struct definition contains a non-empty list of variable declarations, which specify the
members of a struct. Unlike variable declarations outside of struct definition, the

ManiT Final Project

member variable declarations must specify the type of each member. All members are
defined as public by default.

Structs are defined in the following manner:
struct_decl:
 ID LBRACE vdecl_list RBRACE SEMI

Where vdecl_list is defined as follows:
vdecl_list:
 vdecl_list vdecl

vdecl:
 any_typ_not_void ID SEMI

ManiT uses struct keyword

in a similar manner to functions but do not utilize the parenthesis after the identifier.
Within the curly braces of the struct is a sequence of member declarations defining the
structure. These declarations are the members of the struct.

Struct definitions allow
Structs are declared in the following manner:
struct_decl:
 ID LBRACE vdecl_list RBRACE SEMI

Where vdecl_list are defined as follows:
vdecl_list:
 vdecl_list vdecl

vdecl:
 any_typ_not_void ID SEMI

Struct Variable Declarations:
The variable declarations inside each struct must be set with an type identifier (e.g.
int, string, float, ...). Each of one these type identifiers are reserved
keywords.

ManiT Final Project

Variable Declarations/Struct Declarations:
Variable declarations are a statement in the ManiT language. The only type of variable
declaration that ManiT allows without assignment for as statements is the declaration of
an instance of a user-defined struct type. Struct declarations are specified using the
struct keyword followed by the user specified identifier to describe the user-defined
struct type. After this identifier is a variable identifier, which is used to specify the name
of the struct instance. This is specified in the following:

STRUCT ID ID;

The first identifier is the name of the user-defined struct type that is defined in the struct
definition. The second identifier is the name of the struct instance. Here is an example
of a struct declaration:

/* struct definition */
struct pt {

int x;
int y;

};

/* struct declaration */
struct pt a;

/* struct access and assign */
a.x = 1;
a.y = 2;

Grammar:
program:
 stmts EOF

stmts:
 /* nothing */ { [] }
 | stmts stmt

stmt:
 expr SEMI
 | RETURN SEMI
 | RETURN expr SEMI
 | LBRACE stmts RBRACE

ManiT Final Project

 | IF LPAREN expr RPAREN stmt %prec NOELSE
 | IF LPAREN expr RPAREN stmt ELSE stmt
 | FOR LPAREN expr_opt SEMI expr SEMI expr_opt RPAREN stmt
 | WHILE LPAREN expr RPAREN stmt
 | func
 | STRUCT struct_decl
 | vdecl

expr_opt:
 /* nothing */ { [] }
 | expr

struct_typ:
 | STRUCT ID

any_typ_not_void:
 | STRING
 | FLOAT
 | INT
 | BOOL
 | struct_typ

any_typ:
 | any_typ_not_void
 | VOID

vdecl_list:
 { [] }
 | vdecl_list vdecl

vdecl:
 any_typ_not_void ID SEMI

func:
 DEF any_typ ID LPAREN formals_opt RPAREN LBRACE stmts RBRACE

struct_decl:
 ID LBRACE vdecl_list RBRACE SEMI

ManiT Final Project

formals_opt:
 /* nothing */ { [] }
 | formal_list

formal_list:
 any_typ_not_void ID
 | formal_list COMMA any_typ_not_void ID

expr:
 INTLIT
 | FLOATLIT
 | STRINGLIT
 | TRUE
 | FALSE
 | ID
 | expr PLUS expr
 | expr MINUS expr
 | expr TIMES expr
 | expr DIVIDE expr
 | expr EQ expr
 | expr NEQ expr
 | expr LT expr
 | expr LEQ expr
 | expr GT expr
 | expr GEQ expr
 | expr AND expr
 | expr OR expr
 | MINUS expr %prec NEG
 | NOT expr
 | LPAREN expr RPAREN
 | ID ASSIGN expr
 | ID LPAREN exprs_opt RPAREN
 | expr DOT ID
 | LBRACK exprs_list RBRACK
 | expr LBRACK expr RBRACK

exprs_opt:
 /* nothing */ { [] }
 | exprs_list

ManiT Final Project

exprs_list:
 expr
 | exprs_list COMMA expr

The grammar uses the following precedence rules:
%token SEMI LPAREN RPAREN LBRACE RBRACE COMMA
%token LBRACK RBRACK
%token PLUS MINUS TIMES DIVIDE ASSIGN NOT
%token EQ NEQ LT LEQ GT GEQ TRUE FALSE AND OR
%token RETURN IF ELSE FOR WHILE
%token DEF GLOBAL STRUCT DOT

%token INT FLOAT BOOL STRING VOID
/* token VOID */

/* Literals */
%token <int> INTLIT
%token <float> FLOATLIT
%token <string> STRINGLIT
%token <string> ID
%token EOF

%nonassoc NOELSE
%nonassoc ELSE
%right ASSIGN
%left OR
%left AND
%left EQ NEQ
%left LT GT LEQ GEQ
%left PLUS MINUS
%left TIMES DIVIDE
%right NOT NEG
%left DOT LBRACK RBRACK

ManiT Final Project

4. Project Plan
Overview
As we did not have any prior experience with OCaml, we began our project with MicroC
as our base. Hence, our compiler has its basic framework similar to that of MicroC with
files such as ast, parser, scanner, semant, and codegen.
After understanding how MicroC worked, we began modifying the code in MicroC to add
in features such as structs, arrays, and type inference. Upon finishing each sections of
the ManiT, we would compile the code to test the code through writing test code in the
test folder. We would then see the output of the test file and kept repeating this method
until we were satisfied with the outputs from our language. When our tests did result in
errors such as parser error, we would continuously patch our code.

Planning
We set milestones by different subfeatures. We began with basic scanner, parser, and
codegen from MicroC. After adding rudimentary semant and SAST for partial type
inference, we iteratively added arrays, structs, built_in functions to our language.
Our team met on regular team meetings once a week. The group meeting was every
Friday afternoon with the TA, Graham Gobieski.

Challenges and Changes
Our project initially began with the goal to modify any large numbers with ease.
However, with the help of our TA, we slowly shifted our plan to recreate a language
based off of C and Python.
The main challenge came from redesigning the front end for partial time inference and
to parse the program as a list of statements. ManiT does not have a defined entry point
(main function) and parses a program as a list of statements, whereas MicroC does not
have type inference and parses a program as a tuple of global variables and functions
(including main function). As a result, we had to redesign the semantics checker to
recursively annotate types to each expression from AST and generate an SAST, while
maintaining the semantics checking from MicroC. Additionally, having a list of
statements required us to maintain scope of the global and local variables differently.
Redesigning much of the front end to tackle these complexities was the main challenge
of our project.
The other challenges came from understanding the LLVM interface. For example, using
LLVM functions to define and assign variables of string type and to access struct
members using the index of the member caused minor difficulties.

Roles and Responsibilities:

ManiT Final Project

Roles:
Manager: Akiva Dollin
System Architect: Seungmin Lee
Language Guru: Irwin Li
Tester: Dong Hyeon Seo

Team Member Files

Akiva Dollin Parser, AST, SAST, Semant, CodeGen,
Test Suite, Demo

Seungmin Lee Scanner, Parser, Semant, AST, SAST,
CodeGen, Docs

Irwin Li Scanner, Parser, AST, Semant, SAST,
CodeGen, Test Suite, Demo, Docs

Dong Hyeon Seo Scanner, Parser, AST, Docs

Team Member Breakdown of Contributions

Akiva Dollin Initial docs. AST, SAST, Codegen, and
Semant for struct declaration, struct
assign, and array assign. Test suite lead.
Demo. Stress testing. Error handling.

Seungmin Lee Initial docs. AST, SAST, Codegen, and
Semant for all functions, arrays, and
struct access. Partial type inference lead.
Final docs.

Irwin Li Initial docs. Demo lead. Stress testing
lead. Codegen lead. AST, SAST,
Codegen, and Semant for printing, built-in
functions, and struct assignment. AST,
SAST, Semant bug handling. Final docs.

Dong Hyeon Seo Initial docs. Initial Scanner, Parser, and
AST. Final docs.

Team Responsibilities:

ManiT Final Project

Though we initially split our roles to the project into different sections, we were willing to
also work upon different roles throughout the project. We tried our best meeting every
Friday with the TA and we initially began the project working together on one or two
computers. As we began struggling with the language, we decided to slowly split tasks
to pairs or alone to finish the project in time.

Tools Used:
Unix:

All code was ran on UNIX environment machines. All four of us utilized Ubuntu
with two using PLT official virtual image through VirtualBox. This was done to ensure
hardware consistency in our project.
LLVM:

We used the most recent LLVM that was compatible with our machine for the
project.
Github:

Github was utilized to ensure our codes were up to date and to store codes
securely throughout the project. However, we were hesitant throughout the semester
with pushing our work as much of the code failed to run, and we did not want to modify
the master branch until absolutely necessary.
Google Drive:

We stored our project notes from the TA, proposal, LRM, final report, and
presentation to Google Drive so that all the team members could both view and edit the
above files listed.
Sublime Text / Atom / Vim:

We used these three open source text editors for our codes. We did not feel any
standardization for this as they were all just ‘text editors’ at the end of the day.

ManiT Final Project

5. Architectural Design

The figure above is the overview of our Compiler Architectural design.
The ManiT compiler has overall a standard structure that was learned during class. The
front end contains the lexical Scanner and parser while the back end contains the rest
including Semant and Codegen before the LLVM IR code generation.

Scanner.mll
This is the start of the front end of the ManiT programming language. It reads a ManiT
Source File (*.mt) and parses it into tokens.

Parser.mly
This takes in the tokens from the Scanner module and then converts the tokens into an
Abstract Syntax Tree (AST). If the Parser recognized the tokens from the Scanner
module is not defined, then the Parser terminates as it would then imply the Source File
has a syntax error in the code.

Semant.ml
This takes in the AST and then produces and SAST (Semantic Checking AST). The
Semant checks for the semantic errors of the program itself. In other words, the Semant
checks for errors such as type mismatch, valid function calls, etc.

Codegen.ml
The Codegen, also known as Code Generator, takes in the SAST and translates it into
an LLVM IR.

ManiT Final Project

6. Test Plan
Test cases in our compiler can be found in ManiT/src/tests. The test cases test for many
of the basics of Java, C, and Python which can be figured out from the test file names.
E.g.:
Test file for array access would be named “accessArray1.mt” or any filename with a *.mt
file.
The output of the test files are then compared with a *.out file. For instance,
“accessArray1.mt” output would be compared to “accessArray1.out”. If the outputs are
the same, the test suite prints an “OK”. Otherwise, the test file fails and hence prints
“FAILED” to the terminal.

ManiT Final Project

The following file, testall.sh, runs all the tests in the ManiT/src/tests folder.
The test files will also be listed in the Full Code Listing. This file can be ran through
two methods:

1. $./testall.sh
2. $ make tests

Testall.sh

#!/bin/sh

Path to the LLVM interpreter
LLI="lli"
#LLI="/usr/local/opt/llvm/bin/lli"

Path to the LLVM compiler
LLC="llc"

Path to the manit compiler. Usually "./manit.native"
Try "_build/manit.native" if ocamlbuild was unable to create a symbolic link.
MANIT="./manit.native"
#MICROC="_build/manit.native"

Set time limit for all operations
ulimit -t 30

globallog=testall.log
rm -f $globallog
error=0
globalerror=0

keep=0

Usage() {
 echo "Usage: testall.sh [options] [.mt files]"
 echo "-k Keep intermediate files"
 echo "-h Print this help"
 exit 1
}

SignalError() {
 if [$error -eq 0] ; then
 echo "FAILED"
 error=1
 fi
 echo " $1"
}

Compare <outfile> <reffile> <difffile>
Compares the outfile with reffile. Differences, if any, written to difffile
Compare() {
 generatedfiles="$generatedfiles $3"
 echo diff -b $1 $2 ">" $3 1>&2
 diff -b "$1" "$2" > "$3" 2>&1 || {
 SignalError "$1 differs"
 echo "FAILED $1 differs from $2" 1>&2
 }

ManiT Final Project

}

Run <args>
Report the command, run it, and report any errors
Run() {
 echo $* 1>&2
 eval $* || {
 SignalError "$1 failed on $*"
 return 1
 }
}

RunFail <args>
Report the command, run it, and expect an error
RunFail() {
 echo $* 1>&2
 eval $* && {
 SignalError "failed: $* did not report an error"
 return 1
 }
 return 0
}

Check() {
 error=0
 basename=`echo $1 | sed 's/.*\\///
 s/.mt//'`
 reffile=`echo $1 | sed 's/.mt$//'`
 basedir="`echo $1 | sed 's/\/[^\/]*$//'`/."

 echo -n "$basename..."

 echo 1>&2
 echo "###### Testing $basename" 1>&2

 generatedfiles=""

 generatedfiles="$generatedfiles ${basename}.ll ${basename}.s ${basename}.exe
${basename}.out" &&
 Run "$MANIT" "<" $1 ">" "${basename}.ll" &&
 Run "$LLI" "${basename}.ll" ">" "${basename}.out" &&
 Compare ${basename}.out ${reffile}.out ${basename}.diff

 # Report the status and clean up the generated files

 if [$error -eq 0] ; then
 rm -f $generatedfiles
 echo "OK"
 echo "###### SUCCESS" 1>&2
 else
 echo "###### FAILED" 1>&2
 globalerror=$error
 fi
}

CheckFail() {
 error=0
 basename=`echo $1 | sed 's/.*\\///
 s/.mt//'`
 reffile=`echo $1 | sed 's/.mt$//'`

ManiT Final Project

 basedir="`echo $1 | sed 's/\/[^\/]*$//'`/."

 echo -n "$basename..."

 echo 1>&2
 echo "###### Testing $basename" 1>&2

 generatedfiles=""

 generatedfiles="$generatedfiles ${basename}.err ${basename}.diff" &&
 RunFail "$MANIT" "<" $1 "2>" "${basename}.err" ">>" $globallog &&
 Compare ${basename}.err ${reffile}.err ${basename}.diff

 # Report the status and clean up the generated files

 if [$error -eq 0] ; then
 if [$keep -eq 0] ; then
 rm -f $generatedfiles
 fi
 echo "OK"
 echo "###### SUCCESS" 1>&2
 else
 echo "###### FAILED" 1>&2
 globalerror=$error
 fi
}

while getopts kdpsh c; do
 case $c in
 k) # Keep intermediate files
 keep=1
 ;;
 h) # Help
 Usage
 ;;
 esac
done

shift `expr $OPTIND - 1`

LLIFail() {
 echo "Could not find the LLVM interpreter \"$LLI\"."
 echo "Check your LLVM installation and/or modify the LLI variable in testall.sh"
 exit 1
}

which "$LLI" >> $globallog || LLIFail

if [$# -ge 1]
then
 files=$@
else
 files="tests/*.mt"
fi

for file in $files
do
 Check $file 2>> $globallog
done

ManiT Final Project

rm -f *.ll *.s *.out *.err
exit $globalerror

ManiT Final Project

Test Suite Log
The following is the test suite log which contains tests for the various features in our
compiler:

ManiT Final Project

Tests

a.mt

struct test {
int tmp;

};

struct test a;

a.out

ManiT Final Project

accessArray1.mt

a = [1,23,3];
b = a[0];
c = a[2];
d = a[0];

accessArray1.out

ManiT Final Project

accessArray2.mt

def void foo() {

a = [1,23,3];
b = a[0];
c = a[2];
d = a[0];

}

foo();

accessArray2.out

ManiT Final Project

accessArray3.mt

def int foo() {

a = [1,23,3];
b = a[0];
c = a[2];
d = a[0];
return d;

}

temp = foo();
print(temp);

accessArray3.out

1

ManiT Final Project

accessArray4.mt

def float foo() {
a = [1.1,1.0,1.000001];
b = a[0];
c = a[2];
d = a[0];
return d;

}

temp = foo();

accessArray4.out

ManiT Final Project

accessArray5.mt

def float foo() {

arra = [1.0,23.1,0.2];
e = arra[0];
g = arra[0];
arra[0] = 7.9;
return arra[0];

}

tempFloat = foo();
print(tempFloat);

accessArray5.out

7.900000

ManiT Final Project

add.mt

a = 2 + 2;
print(a);

add.out

4;

ManiT Final Project

and.mt

if (true && true) {

print("hi");
}

if (true && false) {

print("no seen");
}

and.out

hi

ManiT Final Project

array1.mt

a = [1,2];
b = [1,2,3,4,5];

array1.out

ManiT Final Project

array2.mt

b = [1];
d = [1.1,2.0];

array2.out

ManiT Final Project

array3.mt

def void foo() {

a = [1,2];
}

foo();

array3.out

ManiT Final Project

arrayArray.mt

a = [1];
b = [2,1];
c = [1.1,1.2,1.3];

arrayArray.out

ManiT Final Project

arrayDec.mt

a = [1,2];

arrayDec.out

ManiT Final Project

arrayMani.mt

a = [1,2,3,4];

arrayMani.out

ManiT Final Project

arrayStruct.mt

struct test {

int a;
string b;

};

struct test temp;

struct c {

int d;
};

struct c temp2;

arrayStruct.out

ManiT Final Project

arraytest.mt

a = [1,3];

arraytest.out

ManiT Final Project

arraytest2.mt

a = [1,2,3,4];
b = a[3];
print(b);
print(4);

arraytest2.out

4
4

ManiT Final Project

assign.mt

a = 4;
b = "hi";
c = true;

print(a);
print(b);
print(c);

assign.out

4
hi
1

ManiT Final Project

assigntest.mt

a = 2;
b = a;

assigntest.out

ManiT Final Project

b.mt

a = "hello";

b.out

ManiT Final Project

bintest.mt

a = 1+1;
b = 1-1;
c = 1*1;
d = 1/1;

bintest.out

ManiT Final Project

bool.mt

temp = false;
temp2 = true;

bool.out

ManiT Final Project

boollit.mt

a = true;
b = false;

boollit.out

ManiT Final Project

calltest.mt

def void foo() {

a = 2;
b = "hello";
if(a == 2) {

b = "test";
}

}

foo();

calltest.out

ManiT Final Project

close.mt

f = open("tests/close.out", "w");

close(f);

close.out

ManiT Final Project

comments.mt

/*Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt
ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco
laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in
voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat
cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.*/

/*test text*/

print("Comment test succesful");

comments.out

Comment test succesful

ManiT Final Project

comments2.mt

def int foo() {

a = [1,23,3];
b = a[0];
c = a[2];
/*Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor

incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud
exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor
in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur
sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est
laborum.*/

d = a[0];
return d;

}

temp = foo();
print(temp);

comments2.out

1

ManiT Final Project

comments3.mt

def int foo() {

a = [1,23,3];
b = a[0];
c = a[2];
d = a[0];
return d;

}

temp = foo();
/*Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt
ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco
laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in
voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat
cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.*/
print(temp);
/*Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt
ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco
laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in
voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat
cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.*/

comments3.out

1

ManiT Final Project

divid.mt

a = 4/2;
b = 1/2;

print(a);
print(b);

divid.out

2
0

ManiT Final Project

equal.mt

a = 4;
b = 4;
if(a == b) {

print("OK");
}

equal.out

OK

ManiT Final Project

execlp1.mt

execlp("echo", "echo", "hello world\n", 0);

execlp1.out

hello world

ManiT Final Project

execlp2.mt

execlp("cat", "cat", "tests/execlp2.out", 0);

execlp2.out

Test

ManiT Final Project

float.mt

a = 1.1;
b = 0.01;
c = 11.0;
d = 1.000000000000000001;

float.out

ManiT Final Project

floatlit.mt

a = 1.1;
b = 2.1;
c = 0.3;

floatlit.out

ManiT Final Project

for.mt

i = 0;
for(i = 0; i<5; i=i+1) {

a = 4;
}

for.out

ManiT Final Project

forkexec.mt

/* fork into execlp */

pid = fork();

if (pid != 0)
{

execlp("echo", "echo", "hi", 0);
}

forkexec.out

hi

ManiT Final Project

forktest.mt

pid = fork();

if (pid != 0) {

print("forked");
}

forktest.out

forked

ManiT Final Project

funcall.mt

def void foo() {

print("OK");
}

foo();

funcall.out

OK

ManiT Final Project

globalasstest.mt

a = 5;
def int foo() {

a = 6;
return a;

}

c = foo();
print(c);

globalasstest.out

6

ManiT Final Project

great.mt

a = 4;
b = 2;

if(a > b) {

print("OK");
}

great.out

OK

ManiT Final Project

greator.mt

a = 4;
b = 4;

if(a >= b) {

print("OK");
}

greator.out

OK

ManiT Final Project

helloworld.mt

print("Hello World");

helloworld.out

Hello World

ManiT Final Project

idtest.mt

a = 1;
b = "string";

idtest.out

ManiT Final Project

if.mt

if(1 == 1) {

a = 4;
}

if.out

ManiT Final Project

int.mt

a = 1;
b = 2;
c = 3;

int.out

ManiT Final Project

intlit.mt

a = 1;
b = 2;

intlit.out

ManiT Final Project

len.mt

s = "hello world";

length = len(s);

print(length);

len.out

11

ManiT Final Project

less.mt

a = 4;
b = 2;

if(b < a) {

print("OK");
}

less.out

OK

ManiT Final Project

lessor.mt

a = 2;
b = 2;

if(b <= a) {

print("OK");
}

lessor.out

OK

ManiT Final Project

math.mt

a = 2 + 2;
b = 2 - 2;
c = 2 * 2;
d = 2/2;
e = (2+2) * 2;

print(a);
print(b);
print(c);
print(d);
print(e);

math.out

4
0
4
1
8

ManiT Final Project

minus.mt

a = 4;
b = 3;
c = a - b;

if(c == 1) {

print("OK");
}

minus.out

OK

ManiT Final Project

neg.mt

a = -6;
b = 2;

if(a + b == -4) {

print("OK");
}

neg.out

OK

ManiT Final Project

nequal.mt

a = 4;
b = 2;

if(b != a) {

print("OK");
}

nequal.out

OK

ManiT Final Project

not.mt

a = false;

if(!a) {

print("OK");
}

not.out

OK

ManiT Final Project

open.mt

/* open test */

f = open("tests/open.mt", "r");

close(f);

print("opened");

open.out

opened

ManiT Final Project

or.mt

a = 2;
b = 3;

if(a == 3 || b == 3) {

print("OK");
}

or.out

OK

ManiT Final Project

print.mt

print("Hello");
print(2);
print(true);
print(false);
a = 2;
b = 2.2;
c = true;
d = false;
print(a);
print(c);
print(d);

print.out

Hello
2
1
0
2
1
0

ManiT Final Project

sleep.mt

sleep(1);

print("slept");

sleep.out

slept

ManiT Final Project

stringlit.mt

a = "string";

stringlit.out

ManiT Final Project

strings.mt

a = "1";
b = "12";
c = "123";
d = "1234";
e = "12345";
f = "123456";
g = "1234567";
h = "12345678";
i = "123456789";
j = "1234567890";
k = "123456789010";
l = "a";
m = "aa";
n = "aaaaaaaaaaaaaaaa";
o = "q1q1q1q1q1q1q1q1q1q";
p = "1.01.101.10.10.10.10''s";

strings.out

ManiT Final Project

struct1.mt

struct hello {

int a;
string b;
float c;
int d;
string e;

};

struct temp {

int a;
};

struct temp1 {

int a;
};

struct temp b;

struct temp1 c;

struct1.out

ManiT Final Project

struct2.mt

struct hello {

int a;
string b;
float c;
int d;
string e;

};

struct temp {

int a;
};

struct temp1 {

int a;
};

struct2.out

ManiT Final Project

struct3.mt

struct hello {

int a;
string b;
float c;
int d;
string e;

};

struct temp {

int a;
};

struct temp1 {

int a;
};

struct temp b;

struct temp1 c;

b.a = 4;
print(b.a);

struct3.out

4

ManiT Final Project

structAccess.mt

struct test {

int a;
};

struct test tester;
b = tester.a;

structAccess.out

ManiT Final Project

structArray.mt

struct test {

int a;
string b;

};

struct test temp;

struct c {

int d;
};

struct c temp2;

temp2.d = 10;

a = temp2.d;

structArray.out

ManiT Final Project

structCreate.mt

struct test {

int a;
};

struct test tester;

structCreate.out

ManiT Final Project

structDec.mt

struct test {

int a;
float b;
string c;
bool e;

};

structDec.out

ManiT Final Project

structStruct.mt

struct test {

int a;
string b;

};

struct test temp;

structStruct.out

ManiT Final Project

structtest.mt

struct tester {

int a;
string c;
bool d;

};

struct tester b;
b.a = 1;

structtest.out

ManiT Final Project

structtype.mt

struct a {

int b;
};

structtype.out

ManiT Final Project

textPrint.mt

a = " _______ _________ _______ _______ _______ _ _______ ______
_______ _______ ______ _______";
b = "(____ __ __/(____ \\\\(____)|\\\\ /|(____ \\\\((/| (____
\\\\(__ \\\\ |\\\\ /|(___)(____)(__ \\\\ (____ \\\\";
c = "| (\\\\/) (| (\\\\/| ()||) (|| (\\\\/| \\\\ (| | (
\\\\/| (\\\\)|) (|| () || ()|| (\\\\)| (\\\\/";
d = "| (_____ | | | (__ | (____)|| (___) || (__ | \\\\ | | | (__ | |) ||
| _ | || (___) || (____)|| |) || (_____";
e = "(_____) | | | __) | _____)| ___ || __) | (\\\\ \\\\) | | __) | | |
|| |()| || ___ || __)| | | |(_____)";
f = ") | | | | (| (| () || (| | \\\\ | | (| |) ||
|| || || () || (\\\\ (| |) |) |";
g = "/____) | | | | (____/\\\\|) |) (|| (____/\\\\|) \\\\ | |
(____/\\\\| (__/)| () () ||) (||) \\\\ __| (__/)/____) |";
h = "_______))_((_______/|/ |/ \\\\|(_______/|/)_)
(_______/(______/ (_______)|/ \\\\||/ __/(______/ _______)";

print(a);
print(b);
print(c);
print(d);
print(e);
print(f);
print(g);
print(h);

textPrint.out

_______ _________ _______ _______ _______ _ _______ ______
_______ _______ ______ _______
(____ __ __/(____ \(____)|\ /|(____ \((/| (____ \(__ \ |\
/|(___)(____)(__ \ (____ \
| (\/) (| (\/| ()||) (|| (\/| \ (| | (\/| (\)|) (
|| () || ()|| (\)| (\/
| (_____ | | | (__ | (____)|| (___) || (__ | \ | | | (__ | |) || | _ |
|| (___) || (____)|| |) || (_____
(_____) | | | __) | _____)| ___ || __) | (\ \) | | __) | | | || |()|
|| ___ || __)| | | |(_____)
) | | | | (| (| () || (| | \ | | (| |) || || ||
|| () || (\ (| |) |) |
/____) | | | | (____/\|) |) (|| (____/\|) \ | | (____/\| (__/)| () ()
||) (||) \ __| (__/)/____) |
_______))_((_______/|/ |/ \|(_______/|/)_) (_______/(______/
(_______)|/ \||/ __/(______/ _______)

ManiT Final Project

times.mt

a = 4;
b = 2;
c = a * b;
print(c);

times.out

8

ManiT Final Project

typeinfer.mt

i = 1;
f = 1.11;
s = "String Test";
bt = true;
bf = false;

print(i);
print(s);
print(bt);
print(bf);

typeinfer.out

1
String Test
1
0

ManiT Final Project

uoptest.mt

a = 1;
b = a+1;

c = 2;
d = c-1;

uoptest.out

ManiT Final Project

while.mt

i = 0;
while(i < 10) {

i = i+1;
}

while.out

ManiT Final Project

write.mt

/* write test */

f = open("tests/write.out", "w");

/* first argument is the data, */
write("hello", 5,1,f);
close(f);

print("hello");

write.out

hello

ManiT Final Project

7. Conclusions
Lessons Learned

Akiva Dollin

As Professor Edwards states in class, OCaml sucks until you understand it. As
Professor Edwards states in class, start early. Professor Edwards knows what he’s
talking about. The most difficult part of this class is getting to the point where Ocaml
makes sense. This cannot be done by looking at past semesters code. This cannot be
done by asking the TA for help. The only way to accomplish this is by sitting down and
failing miserably for a few weeks. After this period, everything is much more
manageable. Additionally, starting early will save your life. If we had the chance to do it
over again, we would complete the basic functionality at least a month before the
deadline. This would allow us to spend much more time on the additional functionality.

To conclude, OCaml is actually pretty cool.
Seungmin Lee

Whereas large design choices should be made carefully with foresight, features
should be added incrementally by testing small bits at a time. Because ManiT has type
inference and parses the program as a list of statements, the architectural design of the
compiler had to be changed significantly from MicroC. Because we had initially made
some invalid assumptions regarding the design of our compiler, we had to redesign
large portions of the codebase to accommodate the design changes multiple times
throughout the project. On the other hand, I often tried to add multiple subfeatures and
test them at once using more general test case for faster development. Ironically, this
significantly lengthened the debugging process, especially because I was less familiar
with Ocaml and LLVM errors throughout the earlier half of the semester. Consequently,
I believe that I learned an important lesson about software design in general; first
understand and design the layers correctly with foresight and then fill in the layers
incrementally by utilizing test suites that test most specific behaviors.

Irwin Li

Something that we really struggled with as a group was time management. Every
member of our group had difficult course loads and it was very difficult to schedule
meetings where we could all meet. We needed to schedule regular meeting times so
that we could proceed smoothly through the project. The benchmarks that Professor
Edwards set are really meant to be met. A lot of the information related to building a
compiler have to be self-learned. Once you get the micro-C compiler, you need to start
immediately. While the class may help you learn some of the information, the majority of

ManiT Final Project

the project is self contained and largely unrelated to the course. The class is intended to
give you general information related to languages and compilers. The project is
intended to make you learn the specifics.

Another problem that we struggled with was communication. We used facebook
as our communication platform. Although we were able to organize some meetings in
the end, I soon realized that facebook was not the most reliable platform. Not all of our
members would actively check for facebook messages, and sometimes group members
would be unresponsive.

Finally, I learned that you should not be afraid to move away from the structure of
micro-C. I believe that Professor Edwards intended for us to use micro-C to help
understand how compilers may be built in the general sense. The structure and
conventions set by the micro-C compiler like are helpful, but that doesn’t mean that you
can blindly copy the code and expect results. Building a compiler is learned.

Dong Hyeon Seo

OCaml has a high learning curve without a doubt. Unlike many other languages
like Java, it is a language that takes time for the language to be somewhat intuitive.
However, the language seems to be powerful with the right approach; the ability to
pattern match while working recursively in a function was something I had not
experienced in coding with other languages like Java and C.

That said, as of the project itself, I felt it was a humbling experience. I got to work
with phenomenal team members who were greatly supportive throughout the semester.
And as tough as the project itself was at times, we managed to pull off towards our goal.

A few notes I would have liked to message my pre-PLT semester project
deadline self are: setting earlier deadline and learning to utilize Github more efficiently.
Deadlines I noticed could not always be kept when utilizing a programming language
that had great differences from many of the common C based languages. I felt that
creating earlier deadlines could have been better due to this as typing codes with a
language I was not familiar with could imply that finishing certain parts of the project
would take longer than anticipated. As for Github usage, I felt that I lacked the
necessary knowledge to be more efficient with it. Merge conflicts and branches on top
of branches were quite a nuisance in the beginning of the project and I felt that having
the knowledge of Github prior to this course could have saved me some headache.

Having concluded these notes, I came to have more respect towards the concept
of compilers. The notion of having an orderly system of Scanner, Parser, Semantic
Checker, and Code Generator to compile a code into LLVM was definitely a neat
surprise. Overall, I have enjoyed the course and am thankful to have had the
opportunity to work with these awesome team members throughout the project.

ManiT Final Project

ManiT Final Project

Full Code Listing:
Scanner.mll

(* Ocamllex scanner for ManiT *)

{

 open Parser
 let unescape s = Scanf.sscanf ("\"" ^ s ^ "\"") "%S%!" (fun x -> x)
}

let digit = ['0'-'9']
let digits = digit+

let ascii = ([' '-'!' '#'-'[' ']'-'~'])
let escape = '\\' ['\\' ''' '"' 'n' 'r' 't'] | '\\'
let string = '"' ((ascii | escape)* as s) '"'

let float = ['+' '-']? (digits '.' ['0'-'9']* | '.' digits) (['e' 'E'] (['+' '-']? digits))?

rule token = parse

(* recursive call to eat white space *)

 [' ' '\t' '\r' '\n'] { token lexbuf } (* Whitespace *)

| "/*" { comment lexbuf } (* Comments *)

| '(' { LPAREN }

| ')' { RPAREN }

| '{' { LBRACE }

| '}' { RBRACE }

| ';' { SEMI }

| ',' { COMMA }

| '[' { LBRACK }

| ']' { RBRACK }

(* Operators *)

| '+' { PLUS }

| '-' { MINUS }

| '*' { TIMES }

| '/' { DIVIDE }

| '=' { ASSIGN }

| "==" { EQ }

| "!=" { NEQ }

| '<' { LT }

| "<=" { LEQ }

| ">" { GT }

| ">=" { GEQ }

| "&&" { AND }

ManiT Final Project

| "||" { OR }

| "!" { NOT }

| "." { DOT }

(* branch control *)

| "if" { IF }

| "else" { ELSE }

| "for" { FOR }

| "while" { WHILE }

| "return" { RETURN }

(* half-way type inf *)

| "int" { INT }

| "bool" { BOOL }

| "float" { FLOAT }

| "string" { STRING }

| "void" { VOID }

| "def" { DEF } (* keyword for func decl. see parser.*)

| "global" { GLOBAL } (* keyword for global assignment. see python *)

| "struct" { STRUCT }

(* Literals for each type.

Order matters if same token matches two regexes

need regex for types: char, float, array,

*)

| "true" { TRUE }

| "false" { FALSE }

| string { STRINGLIT(unescape s) }

| digits as lxm { INTLIT(int_of_string lxm) }

| float as lxm { FLOATLIT (float_of_string lxm) }

| ['a'-'z' 'A'-'Z']['a'-'z' 'A'-'Z' '0'-'9' '_']* as lxm { ID(lxm) }

| eof { EOF }

| _ as char { raise (Failure("illegal character " ^ Char.escaped char)) }

and comment = parse

 "*/" { token lexbuf }
| _ { comment lexbuf }

Parser.mly

/* Ocamlyacc parser for ManiT */

%{

 open Ast;;
 let unescape s = Scanf.sscanf ("\"" ^ s ^ "\"") "%S%!" (fun x -> x)

ManiT Final Project

%}

%token SEMI LPAREN RPAREN LBRACE RBRACE COMMA
%token LBRACK RBRACK
%token PLUS MINUS TIMES DIVIDE ASSIGN NOT
%token EQ NEQ LT LEQ GT GEQ TRUE FALSE AND OR
%token RETURN IF ELSE FOR WHILE
%token DEF GLOBAL STRUCT DOT

%token INT FLOAT BOOL STRING VOID
/* token VOID */

/* Literals */

%token <int> INTLIT
%token <float> FLOATLIT
%token <string> STRINGLIT
%token <string> ID
%token EOF

%nonassoc NOELSE
%nonassoc ELSE
%right ASSIGN
%left OR
%left AND
%left EQ NEQ
%left LT GT LEQ GEQ
%left PLUS MINUS
%left TIMES DIVIDE
%right NOT NEG
%left DOT LBRACK RBRACK

%start program
%type <Ast.program> program

%%

program:
 stmts EOF { List.rev $1 }

stmts:
 /* nothing */ { [] }
 | stmts stmt { $2 :: $1 }

stmt:
 expr SEMI { Expr $1 }
 | RETURN expr SEMI { Return $2 }
 | LBRACE stmts RBRACE { Block(List.rev $2) }
 | IF LPAREN expr RPAREN stmt %prec NOELSE { If($3, $5, Block([])) }
 | IF LPAREN expr RPAREN stmt ELSE stmt { If($3, $5, $7) }

ManiT Final Project

 | FOR LPAREN expr_opt SEMI expr SEMI expr_opt RPAREN stmt
 { For($3, $5, $7, $9) }
 | WHILE LPAREN expr RPAREN stmt { While($3, $5) }
 | func { Func($1) }
 | STRUCT struct_decl { Struc($2) }
 | vdecl { Vdecl($1) }

expr_opt:
 expr { $1 }

struct_typ:
 | STRUCT ID { $2 }

any_typ_not_void:
 | STRING { String }
 | FLOAT { Float }
 | INT { Int }
 | BOOL { Bool }
 | struct_typ { Struct_typ($1) }

any_typ:
 | any_typ_not_void { $1 }
 | VOID { Void }

/*only used for structs*/

vdecl_list:
 { [] }
 | vdecl_list vdecl { $2 :: $1 }

vdecl:
 any_typ_not_void ID SEMI { ($1, $2) }

func:
 DEF any_typ ID LPAREN formals_opt RPAREN LBRACE stmts RBRACE

 { { typ = $2;
 fname = $3;
 formals = $5;
 body = List.rev $8 } }

struct_decl:
 ID LBRACE vdecl_list struct_fdecls RBRACE SEMI

 { { sname = $1;
 vdecls = List.rev $3;
 fdecls = List.rev $4 } }

struct_fdecls:
 /* nothing */ { [] }
 | func struct_fdecls { $1::$2 }

ManiT Final Project

formals_opt:
 /* nothing */ { [] }
 | formal_list { List.rev $1 }

formal_list:
 any_typ_not_void ID { [($1, $2)] }
 | formal_list COMMA any_typ_not_void ID { ($3, $4) :: $1 }

expr:
 INTLIT { IntLit($1) }
 | FLOATLIT { FloatLit($1) }
 | STRINGLIT { StringLit(unescape $1) }
 | TRUE { BoolLit(true) }
 | FALSE { BoolLit(false) }
 | ID { Id($1) }
 | expr PLUS expr { Binop($1, Add, $3) }
 | expr MINUS expr { Binop($1, Sub, $3) }
 | expr TIMES expr { Binop($1, Mult, $3) }
 | expr DIVIDE expr { Binop($1, Div, $3) }
 | expr EQ expr { Binop($1, Equal, $3) }
 | expr NEQ expr { Binop($1, Neq, $3) }
 | expr LT expr { Binop($1, Less, $3) }
 | expr LEQ expr { Binop($1, Leq, $3) }
 | expr GT expr { Binop($1, Greater, $3) }
 | expr GEQ expr { Binop($1, Geq, $3) }
 | expr AND expr { Binop($1, And, $3) }
 | expr OR expr { Binop($1, Or, $3) }
 | MINUS expr %prec NEG { Unop(Neg, $2) }
 | NOT expr { Unop(Not, $2) }
 | LPAREN expr RPAREN { $2 }
 | expr ASSIGN expr { Assign($1, $3) }
 | ID LPAREN exprs_opt RPAREN { Call($1, $3) }
 /* structs and arrays */
 | expr DOT ID { Struct_access($1, $3) }
 | LBRACK exprs_list RBRACK { Array_create($2) }
 | expr LBRACK expr RBRACK { Array_access($1,$3) }

exprs_opt:
 /* nothing */ { [] }
 | exprs_list { List.rev $1 }

exprs_list:
 expr { [$1] }
 | exprs_list COMMA expr { $3 :: $1 }

Ast.ml

ManiT Final Project

(* Abstract Syntax Tree. Contains Ocaml types so that parser can generate these types from
tokens *)

type op = Add | Sub | Mult | Div | Equal | Neq | Less | Leq | Greater | Geq |
 And | Or

type uop = Neg | Not

type typ = Int | Bool | Float | String | Void | Struct_typ of string | Array_typ of typ *
int

type bind = typ * string

type expr =
 IntLit of int
 | FloatLit of float
 | BoolLit of bool
 | StringLit of string
 | Id of string
 | Binop of expr * op * expr
 | Unop of uop * expr
 | Assign of expr * expr
 | Call of string * expr list (*fname and actuals*)
 | Array_create of expr list
 | Array_access of expr * expr
 | Struct_access of expr * string

type stmt =
 Block of stmt list
 | Expr of expr
 | Return of expr
 | If of expr * stmt * stmt
 | For of expr * expr * expr * stmt
 | While of expr * stmt
 | Func of func
 | Struc of strc
 | Vdecl of bind

and

func = {
 typ : typ;
 fname : string;
 formals : (typ * string) list;
 body : stmt list;
}

and

strc = {
 sname : string;

ManiT Final Project

 vdecls : bind list;
 fdecls : func list;
}

type program = stmt list

Semant.mll

(* Semantic checking for the ManiT compiler.
Checks semantics of AST and returns SAST. *)

open Sast
module A = Ast
module StringMap = Map.Make(String)

let built_in = [("print", A.String, A.Int)]

let global_env = {
(* define standard library functions*)
 funcs = [
 { typ = A.String; fname = "open"; formals = [(A.String,"a"); (A.String,"b")]; body =
[] };
 { typ = A.Int; fname = "write"; formals = [(A.String,"a"); (A.Int,"b"); (A.Int,"c");
(A.String,"d")]; body = [] };
 { typ = A.String; fname = "fgets"; formals = [(A.String,"a"); (A.Int,"b");
(A.String,"c")]; body = [] };
 { typ = A.Int; fname = "len"; formals = [(A.String,"a")]; body = [] };
 { typ = A.Int; fname = "close"; formals = [(A.String,"a")]; body = [] };
 { typ = A.Int; fname = "fork"; formals = []; body = [] };
 { typ = A.Int; fname = "sleep"; formals = [(A.Int,"a")]; body = [] };
 { typ = A.String; fname = "execlp"; formals = [(A.String,"a"); (A.String,"b");
(A.String,"c");(A.Int,"d")]; body = [] };
]
}

let structs_hash:(string, A.strc) Hashtbl.t = Hashtbl.create 10

(* whether t2 is assignable to t1. Add rules as necessary *)
let is_assignable t1 t2 = match t1, t2 with
 t1, t2 when t1 = t2 -> true
 (* add tables *)
 | _ -> false
(* let is_assignable t1 t2 = if t1 = t2 then true else false *)

let all_the_same = function

ManiT Final Project

 [] -> true
 | lst -> let hd = (List.hd lst) in List.for_all ((=) hd) lst

(* finds var in scope *)
let rec find_var scope name = try
 (*List.find ('a -> bool) -> a' list
 finds first element in a' list that satisfies predicate (a' -> bool) *)
 List.find (fun (s, _) -> s = name) scope.variables with Not_found ->
 (*if not found in our scope, try parent's scope or raise not found *)
 match scope.parent with

 (* parent is also a scope. if parent is None, do nothing. *)

 Some(parent) -> find_var parent name

 | _ -> raise Not_found

let find_built_in name = try

 List.find (fun (id, _ , _) -> id = name) built_in with Not_found -> raise Not_found

let find_func name = try

 List.find (fun f -> f.fname = name) global_env.funcs with Not_found -> raise Not_found

let exist_func name = try

 ignore(List.find (fun f -> f.fname = name) global_env.funcs); true with Not_found -> false

let check_duplicate_struct strctName =

(* Hashtbl.find structs_hash strct; true with Not_found -> false *)

 try ignore(Hashtbl.find structs_hash strctName); true with Not_found -> false

(* Helper function to check for dups in a list *)

let report_duplicate exceptf list =

 let rec helper = function

 n1 :: n2 :: _ when n1 = n2 -> raise (Failure (exceptf n1))

 | _ :: t -> helper t

 | [] -> ()

 in helper (List.sort compare list)

(*check_expr: core type-matching function that recursively annotates type of each expr. *)

let rec check_expr (env : environment) = function

 (* literals *)

 Ast.IntLit(value) -> IntLit(value), A.Int

 | Ast.FloatLit(value) -> FloatLit(value), A.Float

 | Ast.StringLit(value) -> StringLit(value), A.String

 | Ast.BoolLit(value) -> BoolLit(value), A.Bool

 (* Variable access *)

 | Ast.Id(name) -> let (name, typ) = try find_var env.scope name with

 Not_found -> raise (Failure("undeclared identifier! " ^ name)) in

 Id(name), typ

 (* Assignment(string, expr)

ManiT Final Project

 checks expr of R.H.S, and compares type of expr to that of L.H.S from its declaration.

 populates scope's variable if not found. *)
 | Ast.Assign(lhs, expr) ->
 let check = match lhs with
 A.Id(name) ->
 let (expr, right_typ) = check_expr env expr in (* R.H.S typ *)
 let sast_assign = (* (n, (e, e's typ)), n's typ *)
 try let (name, left_typ) = find_var env.scope name in
 if left_typ <> right_typ (* type mismatch. depends on rule. *)
 then raise (Failure (" type mismatch "))
 else Assign((Id(name), left_typ), (expr, right_typ)), right_typ
 with Not_found -> (* new name. declaration. *)
 let decl = (name, right_typ) in
 env.scope.variables <- (decl :: env.scope.variables);
 Assign((Id(name), right_typ), (expr, right_typ)), right_typ
 in sast_assign
 | A.Array_access(_, _) ->
 let (expr, right_typ) = check_expr env expr in (* R.H.S typ *)
 let (arr, left_typ) = check_expr env lhs in
 if left_typ <> right_typ (* type mismatch. depends on rule. *)
 then raise (Failure (" type mismatch in array assign"))
 else Assign((arr, left_typ), (expr, right_typ)), right_typ
 | A.Struct_access(_, _) ->
 let (expr, right_typ) = check_expr env expr in (* R.H.S typ *)
 let (strct, left_typ) = check_expr env lhs in
 if left_typ <> right_typ (* type mismatch. depends on rule. *)
 then raise (Failure (" type mismatch in struct assign"))
 else Assign((strct, left_typ), (expr, right_typ)), right_typ
 | _ -> raise(Failure("Not a valid assign: We only allow id, struct, and array
assign"))

 in check
 (* Binop(expr, op, expr)
 checks types of L.H.S and R.H.S*)
 | Ast.Binop (e1, op, e2) ->
 let e1 = check_expr env e1
 and e2 = check_expr env e2 in

 let _, t1 = e1
 and _, t2 = e2 in

 let binop_type t1 op t2 = match op with
 A.Add | A.Sub | A.Mult | A.Div ->
 (match t1, t2 with
 A.Int, A.Int -> A.Int
 | A.Float, A.Float -> A.Float
 | _, _ -> raise(Failure("binary op type mismatch")))
 | A.Less | A.Leq | A.Greater | A.Geq ->
 (match t1, t2 with

ManiT Final Project

 A.Int, A.Int -> A.Bool
 | A.Float, A.Float -> A.Bool
 | _, _ -> raise(Failure("binary op type mismatch")))
 | A.Equal | A.Neq ->
 (match t1, t2 with
 A.Int, A.Int -> A.Bool
 | A.Float, A.Float -> A.Bool (* float comparison ok? *)
 | A.Bool, A.Bool -> A.Bool
 | _, _ -> raise(Failure("binary op type mismatch")))
 | A.And | A.Or ->
 (match t1, t2 with
 A.Bool, A.Bool -> A.Bool
 | _, _ -> raise(Failure("binary op type mismatch")))

 in let typ = binop_type t1 op t2 in
 Binop(e1, op, e2), typ

 (* Unop(uop, expr)
 uop is either Neg or Not*)
 | Ast.Unop(uop, e) ->
 let (e, typ) = check_expr env e in (
 match uop with
 A.Neg ->
 (if typ != A.Int && typ != A.Float
 then raise(Failure("unary minus opeartion does not support this type ")));
 Unop(uop, (e, typ)), typ
 | A.Not ->
 (if typ != A.Bool
 then raise(Failure("unary not operation does not support this type ")));
 Unop(uop, (e, typ)), typ
)

 (* Function Call *)
 | Ast.Call(name, actuals) -> (
 (* check types to each actuals and get types of formals from fdecl. *)
 let typed_actuals = List.map (fun e -> (check_expr env e)) actuals in
 match name with
 | "print" -> Call("print", typed_actuals), A.Int
 | _ -> (* non-print functions *) (
 let func = try find_func name with Not_found ->
 raise(Failure("undefined function was called.")) in

 let match_types formals actuals = match formals, actuals with
 | (ftyp, _) :: _, (_ , atyp) :: _ ->
 if not(is_assignable ftyp atyp) then raise(Failure("typ of actuals do not match
those of formals"));
 if not(List.length formals = List.length actuals) then
 raise(Failure("number of actuals and formals do not match")); ()
 | _, _ -> if not(List.length formals = List.length actuals) then

ManiT Final Project

 raise(Failure("number of actuals and formals do not match"))

 in match_types func.formals typed_actuals;
 Call(name, typed_actuals), func.typ (* return name and f_typ from fdecl *)
))
 | A.Struct_access(var_expr, attr) ->
 (* convert to str *)
 let var = (match var_expr with
 A.Id(s) -> s
 | _ -> raise(Failure("struct access: complex vars not supported as of now."))) in

 let (name,temp) = find_var env.scope var in (* find the instance of struct that was
declared in current scope *)
 let structName = match temp with
 A.Struct_typ(typTemp) -> typTemp
 | _ -> raise(Failure("unknown struct access")) in
 let strc = Hashtbl.find structs_hash structName in (* find strc type definition *)
 let (typ, _) = List.find (fun (_, id) -> id = attr) strc.A.vdecls in (* typ of attr *)
 (* find index of attr in struct. this index is used in codegen *)
 let rec index_of_list x l = (match l with
 hd::tl -> let (_,id) = hd in if id = x then 0 else 1 + index_of_list x tl
 | _ -> raise(Failure("index_of_list failed"))) in
 let index = index_of_list attr strc.A.vdecls in
 Struct_access(name, attr, index), typ

 | A.Array_create(expr_list) ->
 let length = List.length expr_list in
 let checked_expr_list = List.map (fun expr -> check_expr env expr) expr_list in
 let typs = List.map (fun (_,typ) -> typ) checked_expr_list in
 (match all_the_same typs with
 false -> raise(Failure("typs elements in array are not coherent"))
 | true -> Array_create(checked_expr_list), Ast.Array_typ(List.hd typs, length))

 | A.Array_access(var_expr, index_expr) ->
 (* convert to str *)
 let var = (match var_expr with
 A.Id(s) -> s
 | _ -> raise(Failure("array access: complex vars not supported as of now."))) in
 (* find var first *)
 let (var, temp) = try find_var env.scope var with Not_found ->
 raise(Failure("array variable not found")) in

 let (var_typ1, length1) = match temp with
 A.Array_typ(var_typ, length) -> var_typ, length
 | _ -> raise(Failure("unknown array access")) in

 (* need to check if arr typ *)
 (* check index expr *)
 let (index_expr, index_expr_typ) = check_expr env index_expr in

ManiT Final Project

 if index_expr_typ != A.Int then raise(Failure("array access requires int arg"))
 (* need separate function to evaluate the expr.*)
 else match index_expr with
 IntLit(index) ->
 if index < 0 || index > length1 - 1
 then raise(Failure("access out of bounds"))
 else Array_access(var, index), var_typ1
 | _ -> raise(Failure("array access: only int lit allowed for now"))

(* gets return types from checked stmts with typed expressions *)
let rec get_return_types typ_list stmt = match stmt with
 Return((_, t)) -> t :: typ_list
 | Block(sl) -> List.fold_left get_return_types typ_list sl
 | If(_, s1, s2) -> (get_return_types typ_list s1) @ (get_return_types typ_list s2)
 | While (_, s) -> (get_return_types typ_list s)
 | For (_, _, _, s) -> (get_return_types typ_list s)
 | _ -> typ_list

(* checks typ of func from fdecl with those in fbody *)
let check_return_types func_typ func_body =
 let ret_typs = List.fold_left get_return_types [] func_body in
 List.iter (fun each_ret_typ -> (if (each_ret_typ != func_typ)
 then raise(Failure("return types in fbody do not match with fdecl")));) ret_typs

(* check_stmt *)
let rec check_stmt env = function
 | Ast.Expr(e) -> Expr(check_expr env e)
 | Ast.Return(e) -> Return(check_expr env e)
 | Ast.Block(stmtlist) ->
 (* sets a new scope to scope passed in *)
 let new_scope = { parent = Some(env.scope); variables = [] } in
 let new_env = { scope = new_scope } in
 (* populates variables and annotates exprs by calling check_stmt *)
 (* adds new env to all stmts *)
 let stmtlist = List.map (fun s -> check_stmt new_env s) stmtlist in
 (* setting to *)
 new_env.scope.variables <- List.rev new_scope.variables;
 Block(stmtlist) (* new_env *)

 (* Func.
 checks env. checks if all return types match with fdecl. adds fdecl to env. *)
 | Ast.Func(func) ->
 (* add fdecl to global env if it hasn't declared previously. *)
 (match exist_func func.A.fname with

 false ->

 (* make new scope and env with formals *)

 let flipped_formals = List.map (fun (t, id) -> (id, t)) func.A.formals in

 let new_scope = { parent = Some(env.scope); variables = flipped_formals } in

 let new_env = { scope = new_scope } in

ManiT Final Project

 (* iterate thru stmtlist like a block *)

 let sast_fbody = List.map (fun stmt -> check_stmt new_env stmt) func.A.body in

 let sast_func = { typ = func.A.typ; fname = func.A.fname; formals = func.A.formals;

body = sast_fbody } in

 global_env.funcs <- (sast_func :: global_env.funcs);

 (* check return typs within fbody and ftype. calls check_expr again on return stmts.

*)

 check_return_types func.A.typ sast_fbody;

 Func(sast_func)

 | true -> raise(Failure("cannot redeclare function with same name"));)

 (* struct stmt *)

 | Ast.Struc(strc) ->

 (* ignore(check_duplicate_struct strc); *)

 (match check_duplicate_struct strc.A.sname with

 false ->

 ignore(report_duplicate (fun n -> "duplicate struct field " ^ n) (List.map (fun n ->

snd n) strc.A.vdecls));

 let struct_sast = { sname = strc.A.sname; vdecls = strc.A.vdecls } in

 Hashtbl.add structs_hash strc.A.sname strc;

 Struc(struct_sast)

 | true -> raise(Failure("cannot redeclare struct with same name")))

 | Ast.Vdecl(typ, name) ->

 (match typ with (* check if struct typ *)

 A.Int |A.Bool|A.Float|A.String| A.Void|A.Array_typ(_,_)-> raise(Failure("ManiT is type

inferred"))

 | A.Struct_typ(strc_name) ->

 try ignore(find_var env.scope name); raise(Failure("Cannot redeclare an existing

variable name!")) with

 Not_found ->

 (match check_duplicate_struct strc_name with (* check if struct typ exists *)

 true -> (* add to scope variables and return Vdecl *)

 let decl = (name, typ) in

 env.scope.variables <- (decl :: env.scope.variables);

 Vdecl(typ,name)

 | false -> raise(Failure("Struct not declared!")))

 |_-> raise(Failure("ManiT is type inferred, you dun messed up!")))

 (* conditionals *)

 | Ast.If(e, s1, s2) ->

 let (e, typ) = check_expr env e in

 (if typ != A.Bool then raise (Failure ("If stmt does not support this type")));

 If((e, typ), check_stmt env s1, check_stmt env s2)

 | Ast.While(e, s) ->

 let (e, typ) = check_expr env e in

 (if typ != A.Bool then raise (Failure ("While stmt does not support this type")));

 While((e, typ), check_stmt env s)

 | Ast.For(e1, e2, e3, s) ->

ManiT Final Project

 let (e1, typ1) = check_expr env e1 (*need to have empty expr *)

 and (e2, typ2) = check_expr env e2

 and (e3, typ3) = check_expr env e3 in

 (if typ2 != A.Bool then raise(Failure("For stmt does not support this type")));

 For((e1, typ1), (e2, typ2), (e3, typ3), check_stmt env s)

(* environment is a record with scope and return type.

scope is subrecord with parent and variables.*)

let init_env =

 let init_scope = {

 parent = None;

 variables = [];

 }

 in { scope = init_scope; }

(* outter-most function that is called in manit.ml

in: (bind_global list, functions, statements)

out: same triple in SAST types, semantically checked.

*)

let check_program program =

 let env = init_env in

 List.map (fun stmt -> check_stmt env stmt) program

Sast.ml

(* semantically checked AST.
semant.ml takes AST and produces SAST while checking semantics
*)

type bind = Ast.typ * string

type expr_det =
 IntLit of int
 | FloatLit of float
 | BoolLit of bool
 | StringLit of string
 | Id of string
 | Binop of expr_t * Ast.op * expr_t
 | Unop of Ast.uop * expr_t
 | Call of string * expr_t list
 | Assign of expr_t * expr_t
 | Array_create of expr_t list (* Ast.typ holds length info *)
 | Array_access of string * int (* var, index *)
 | Struct_access of string * string * int (* var, attr, index, type *)

 and expr_t = expr_det * Ast.typ (* typ comes first to match use in codegen *)

ManiT Final Project

type stmt_t =
 Block of stmt_t list
 | Expr of expr_t
 | Return of expr_t
 | If of expr_t * stmt_t * stmt_t
 | For of expr_t * expr_t * expr_t * stmt_t
 | While of expr_t * stmt_t
 | Func of func_t
 | Struc of strc_t
 | Vdecl of bind

 and
 func_t = {
 typ : Ast.typ;
 fname : string;
 formals : (Ast.typ * string) list;
 body : stmt_t list; (* need typed statements *)
 }

 and strc_t = {
 sname : string;
 vdecls : bind list;
 }

type symbol_table = {
 parent : symbol_table option;
 mutable variables: (string * Ast.typ) list
}

type environment = {
 scope: symbol_table;
}

type global_environment = {
 mutable funcs: func_t list;
}

type program = stmt_t list

Codegen.ml

(* codgen.ml
takes SAST and generates LLVM IR *)

module L = Llvm

ManiT Final Project

module S = Sast
module A = Ast
module StringMap = Map.Make(String)

let context = L.global_context ()
let the_module = L.create_module context "ManiT"

(* each is lltype *)
(* and i64_t = L.i64_type context *)
let d_t = L.double_type context
let i64_t = L.i64_type context
let i32_t = L.i32_type context
let i8_t = L.i8_type context
let i1_t = L.i1_type context
let void_t = L.void_type context
let str_t = L.pointer_type i8_t

(* struct types *)
let struct_types:(string, L.lltype) Hashtbl.t = Hashtbl.create 10

(* globals are initially empty *)
let globals:(string, L.llvalue) Hashtbl.t = Hashtbl.create 50

(* finds struct typ *)
let find_struct_typ name = try Hashtbl.find struct_types name
 with Not_found -> raise(Exceptions.InvalidStruct name)

(* Ast type to llvm type *)
let rec ltype_of_typ = function
 A.Int -> i32_t
 | A.Float -> d_t
 | A.String -> str_t
 | A.Bool -> i1_t
 | A.Void -> void_t
 | A.Struct_typ(sname) -> find_struct_typ sname (* assume that all struct typs all already
made *)
 | A.Array_typ(elem_typ, length) -> L.array_type (ltype_of_typ elem_typ) length

(* Ast type to llvm value. *)
let rec lvalue_of_typ typ = match typ with
 A.Int | A.Bool | A. Void -> L.const_int (ltype_of_typ typ) 0
 | A.Float -> L.const_float (ltype_of_typ typ) 0.0
 | A.String -> L.const_pointer_null (ltype_of_typ typ)
 | A.Struct_typ(sname) -> L.const_named_struct (find_struct_typ sname) [||]
 | A.Array_typ(elem_typ, length) -> L.const_array (ltype_of_typ elem_typ) (Array.make
length (lvalue_of_typ elem_typ))

(* declares struct typ *)

ManiT Final Project

let declare_struct_typ s =
 let struct_t = L.named_struct_type context s.S.sname in
 Hashtbl.add struct_types s.S.sname struct_t

(* builds the body of struct typ *)
let define_struct_body s =
 let struct_typ = try Hashtbl.find struct_types s.S.sname
 with Not_found -> raise(Exceptions.ErrCatch "undefined struct typ") in
 let vdecl_types = List.map (fun (typ, _) -> typ) s.S.vdecls in
 let vdecl_lltypes = Array.of_list (List.map ltype_of_typ vdecl_types) in
 L.struct_set_body struct_typ vdecl_lltypes false

(* ********* FUNCTIONS BEGIN HERE ********* *)
(* translates all functions to llvm IR *)
let translate_functions functions the_module =

(* Declare printf(), which the print built-in function will call *)
let printf_t = L.var_arg_function_type i32_t [| L.pointer_type i8_t |] in
let printf_func = L.declare_function "printf" printf_t the_module in

(* file open and close *)
(*

 * * fopen takes 2 arguments, a filename, which is a string, and a mode (e.g. rw)
 * * It returns a file pointer on success.
 * *)
let open_file_t = L.function_type str_t [| str_t ; str_t |] in
let open_file_func = L.declare_function "fopen" open_file_t the_module in

let close_file_t = L.function_type i32_t [| str_t |] in
let close_file_func = L.declare_function "fclose" close_file_t the_module in

let fputs_t = L.function_type i32_t [| i32_t ; str_t |] in
let _ = L.declare_function "fputs" fputs_t the_module in

(*Args: str, num of chars to copy, file pointer*)
let fgets_t = L.function_type str_t [| str_t; i32_t; str_t |] in
let fgets_func = L.declare_function "fgets" fgets_t the_module in

let fwrite_t = L.function_type i32_t [| str_t; i32_t; i32_t; str_t |] in
let fwrite_func = L.declare_function "fwrite" fwrite_t the_module in
(* ******************* END FILE READ WRITE ******************** *)

let strlen_t = L.function_type i32_t [| str_t |] in
let strlen_func = L.declare_function "strlen" strlen_t the_module in

(* forking *)
let fork_t = L.function_type i32_t [||] in

ManiT Final Project

let fork_func = L.declare_function "fork" fork_t the_module in
(* sleep *)
let sleep_t = L.function_type i32_t [|i32_t|] in
let sleep_func = L.declare_function "sleep" sleep_t the_module in
(* execlp *)
let execlp_t = L.function_type i32_t [|str_t ; str_t; str_t; i32_t |] in
let execlp_func = L.declare_function "execlp" execlp_t the_module in

(* build function prototypes *)
let prototypes =

 let build_proto m fdecl =
 let name = fdecl.S.fname
 and formal_types =
 Array.of_list (List.map (fun (t, _) -> ltype_of_typ t) fdecl.S.formals) in
 let ftype = L.function_type (ltype_of_typ fdecl.S.typ) formal_types in
 StringMap.add name (L.define_function name ftype the_module, fdecl) m in
List.fold_left build_proto StringMap.empty functions in

(* format strings for printing. only in main_func *)
let (main_func, _) = try StringMap.find "main" prototypes
with Not_found -> raise(Exceptions.ErrCatch "main function does not exist") in
let builder = L.builder_at_end context (L.entry_block main_func) in
let int_format_str = L.build_global_stringptr "%d\n" "fmt" builder
and float_format_str = L.build_global_stringptr "%f\n" "fmt" builder
and string_format_str = L.build_global_stringptr "%s\n" "fmt" builder in

(* Core method that build llvm IR for fbody *)
let build_function fdecl =

 (* search prototype and get builder *)
 let (the_function, _) = StringMap.find fdecl.S.fname prototypes in
 let builder = L.builder_at_end context (L.entry_block the_function) in

 (* create formals. *)
 let formals =
 let add_formal m (t, id) param = L.set_value_name id param;
 (* allocate the formal and store param *)
 let formal = L.build_alloca (ltype_of_typ t) id builder in
 ignore (L.build_store param formal builder);
 StringMap.add id formal m in
 (* expr below evaluates to a map. see fold_left2 *)
 List.fold_left2 add_formal StringMap.empty fdecl.S.formals
 (Array.to_list (L.params the_function)) in

 (* at start, formals are the only locals. added extra step to use hashtbl *)
 let locals:(string, L.llvalue) Hashtbl.t = Hashtbl.create 50 in
 let _ = StringMap.iter (fun id formal -> Hashtbl.add locals id formal) formals in

ManiT Final Project

 (* original lookup: Return the value for a variable or formal argument *)
 let find_var id = try Hashtbl.find locals id with Not_found -> Hashtbl.find globals id in

 (* Allocates lhs when assignment is declaration *)
 let alloc_expr id typ in_block builder =
 let init = match typ with
 A.Int | A.Float | A.Bool | A.String | A.Array_typ(_,_) -> lvalue_of_typ typ
 | _ -> raise(Failure("cannot alloc for exprs of these typs"))
 in

 (* if not in main and not in block, global. else, local *)
 (if ("main" = fdecl.S.fname) && not in_block
 (* delcare and add to map *)
 then let global = L.define_global id init the_module in Hashtbl.add globals id global
 else let local = L.build_alloca (ltype_of_typ typ) id builder in Hashtbl.add locals id
local);
 builder in

 (* Allocates lhs in vdecl stmt *)
 let alloc_stmt id typ builder in_block =
 let init = match typ with
 A.Struct_typ(_) -> lvalue_of_typ typ
 | _ -> raise(Failure("cannot alloc for stmts of these typs")) in

 (* same as above *)
 (if ("main" = fdecl.S.fname) && not in_block
 then let global = L.define_global id init the_module in Hashtbl.add globals id global
 else let local = L.build_alloca (ltype_of_typ typ) id builder in Hashtbl.add locals id
local);
 builder in

 (* Returns addr of expr. used for lhs of assignment expr *)
 let addr_of_expr expr typ in_b builder = match expr with
 S.Id(id) ->
 (* allocate space for lhs *)
 let var = try find_var id with Not_found ->
 (ignore(alloc_expr id typ in_b builder); find_var id) in var
 | S.Struct_access (var, _, index) ->
 let llvalue = find_var var in (* llvalue from build_alloca *)
 let addr = L.build_struct_gep llvalue index "tmp" builder in addr
 | S.Array_access(arrayName,index) ->
 let llvalue = try find_var arrayName with Not_found ->
 raise(Failure("Cannot assign to array that doesnt exist - Codegen")) in
 let addr = L.build_gep llvalue [| L.const_int i32_t 0; L.const_int i32_t index |]
"array" builder in addr
 | _ -> raise(Failure("cannot get addr of LHS")) in

 (* Construct code for an expression; return its value *)

ManiT Final Project

 let rec build_expr builder in_b = function
 S.IntLit i, _ -> L.const_int i32_t i
 | S.FloatLit f, _ -> L.const_float d_t f
 | S.BoolLit b, _ -> L.const_int i1_t (if b then 1 else 0)
 | S.StringLit s, _ -> L.build_global_stringptr s "" builder
 | S.Id s, _ -> L.build_load (find_var s) s builder (* R.H.S lookup *)
 | S.Binop (e1, op, e2), _ ->
 let e1' = build_expr builder in_b e1
 and e2' = build_expr builder in_b e2 in
 (match op with
 A.Add -> L.build_add
 | A.Sub -> L.build_sub
 | A.Mult -> L.build_mul
 | A.Div -> L.build_sdiv
 | A.And -> L.build_and
 | A.Or -> L.build_or
 | A.Equal -> L.build_icmp L.Icmp.Eq
 | A.Neq -> L.build_icmp L.Icmp.Ne
 | A.Less -> L.build_icmp L.Icmp.Slt
 | A.Leq -> L.build_icmp L.Icmp.Sle
 | A.Greater -> L.build_icmp L.Icmp.Sgt
 | A.Geq -> L.build_icmp L.Icmp.Sge
) e1' e2' "tmp" builder
 | S.Unop(op, e), _ ->
 let e' = build_expr builder in_b e in
 (match op with

 A.Neg -> L.build_neg

 | A.Not -> L.build_not) e' "tmp" builder
 | S.Assign ((lhs, _), rhs), typ ->
 let l_val = (addr_of_expr lhs typ in_b builder)
 in
 (* build rhs and store *)
 let e' = build_expr builder in_b rhs in
 ignore (L.build_store e' l_val builder); e'
 | S.Call ("print", [(e, expr_t)]), _ ->

 let var = build_expr builder in_b (e,expr_t) in

 (match expr_t with

 A.Int ->

 L.build_call printf_func [| int_format_str ; (var) |]

 | A.Float ->

 L.build_call printf_func [| float_format_str ; (var) |]

 | A.Bool ->

 L.build_call printf_func [| int_format_str ; (var) |]

 | A.String ->

 L.build_call printf_func [| string_format_str ; (var) |]

 | A.Void ->

 L.build_call printf_func [| string_format_str ; (L.build_global_stringptr "" ""

builder) |]

 | _ -> raise(Failure("Call semant failed"))) "printf" builder

ManiT Final Project

 (* built in functions *)

 | S.Call ("open", e), _ ->

 let actuals = List.rev (List.map (build_expr builder in_b) (List.rev e)) in

 L.build_call open_file_func (Array.of_list actuals) "fopen" builder

 | S.Call ("execlp", e), _ ->

 let actuals = List.rev (List.map (build_expr builder in_b) (List.rev e)) in

 L.build_call execlp_func (Array.of_list actuals) "execlp" builder

 | S.Call ("fgets", e), _ ->

 let actuals = List.rev (List.map (build_expr builder in_b) (List.rev e)) in

 L.build_call fgets_func (Array.of_list actuals) "fgets" builder

 | S.Call ("write", e), _ ->

 let actuals = List.rev (List.map (build_expr builder in_b) (List.rev e)) in

 L.build_call fwrite_func (Array.of_list actuals) "fwrite" builder

 | S.Call ("len", e), _ ->

 let actuals = List.rev (List.map (build_expr builder in_b) (List.rev e)) in

 L.build_call strlen_func (Array.of_list actuals) "strlen" builder

 | S.Call ("close", e), _ ->

 let actuals = List.rev (List.map (build_expr builder in_b) (List.rev e)) in

 L.build_call close_file_func (Array.of_list actuals) "fclose" builder

 | S.Call ("fork", _), _ ->

 L.build_call fork_func (Array.of_list []) "fork" builder

 | S.Call ("sleep", e), _ ->

 let actuals = List.rev (List.map (build_expr builder in_b) (List.rev e)) in

 L.build_call sleep_func (Array.of_list actuals) "sleep" builder

 | S.Call (f, act), _ ->

 let (fdef, fdecl) = StringMap.find f prototypes in

 let actuals = List.rev (List.map (build_expr builder in_b) (List.rev act)) in

 let result = (match fdecl.S.typ with A.Void -> ""

 | _ -> f ^ "_result") in

 L.build_call fdef (Array.of_list actuals) result builder

 (* build array literal *)

 | S.Array_create (expr_list), arr_typ ->

 (match arr_typ with

 A.Array_typ(typ, length) ->

 let revElem_list = List.rev (expr_list) in

 let elems = Array.of_list (List.map (fun expr -> build_expr builder in_b expr)

revElem_list) in

 let each_type = ltype_of_typ typ in

 let array_type = L.array_type each_type length in

 L.const_array array_type elems

 | _ -> raise(Failure("non-array types in create")))

 | S.Array_access (arr, index), _ ->

 let arr_lvalue = find_var arr in

 ignore(L.build_load arr_lvalue "loaded" builder);

 let elem_ptr = L.build_gep arr_lvalue (*loaded_lvalue*) [|L.const_int i32_t 0;

L.const_int i32_t index|] "arr addr" builder in

 L.build_load elem_ptr "array_access" builder

ManiT Final Project

 | S.Struct_access (var, _ , index), _ ->

 let llvalue = find_var var in

 let addr = L.build_struct_gep llvalue index "tmp" builder in

 L.build_load addr "struct_access" builder

 in

 (* Invoke "f builder" if the current block doesn't already
 have a terminal (e.g., a branch). *)
 let add_terminal builder f =
 match L.block_terminator (L.insertion_block builder) with
 Some _ -> ()
 | None -> ignore (f builder)
 in

 (* Build the code for the given statement; return the builder for
 the statement's successor *)
 let rec build_stmt builder in_b = function

 | S.Expr e -> ignore (build_expr builder in_b e); builder

 | S.Return e -> ignore (match fdecl.S.typ with

 A.Void -> L.build_ret_void builder

 | _ -> L.build_ret (build_expr builder in_b e) builder); builder

 (* if entering a block, need to keep track *)

 | S.Block sl -> List.fold_left (fun builder stmt -> build_stmt builder (*true*) in_b

stmt) builder sl

 | S.If (predicate, then_stmt, else_stmt) ->

 let bool_val = build_expr builder true predicate in

 let merge_bb = L.append_block context "merge" the_function in

 let then_bb = L.append_block context "then" the_function in

 add_terminal (build_stmt (L.builder_at_end context then_bb) true then_stmt)

 (L.build_br merge_bb);

 let else_bb = L.append_block context "else" the_function in

 add_terminal (build_stmt (L.builder_at_end context else_bb) true else_stmt)

 (L.build_br merge_bb);

 ignore (L.build_cond_br bool_val then_bb else_bb builder);

 L.builder_at_end context merge_bb

 | S.While (predicate, body) ->

 let pred_bb = L.append_block context "while" the_function in

 ignore (L.build_br pred_bb builder);

 let body_bb = L.append_block context "while_body" the_function in

 add_terminal (build_stmt (L.builder_at_end context body_bb) true body)

 (L.build_br pred_bb);

ManiT Final Project

 let pred_builder = L.builder_at_end context pred_bb in

 let bool_val = build_expr pred_builder true predicate in

 let merge_bb = L.append_block context "merge" the_function in

 ignore (L.build_cond_br bool_val body_bb merge_bb pred_builder);

 L.builder_at_end context merge_bb

 | S.For (e1, e2, e3, body) -> build_stmt builder true

 (S.Block [S.Expr e1 ; S.While (e2, S.Block [body ; S.Expr e3])])

 (* vdecl for structs. type checked in semant *)

 | S.Vdecl(typ, id) -> alloc_stmt id typ builder in_b

 | _ -> raise(Failure("Something went bad in codegen checkStatement"))

 in

 (* build code for each stmt in body.*)

 let builder = build_stmt builder false (S.Block fdecl.S.body) in

 (* Add a return if the last block falls off the end *)

 add_terminal builder (match fdecl.S.typ with

 A.Void -> L.build_ret_void

 | t -> L.build_ret (L.const_int (ltype_of_typ t) 0))

in

List.iter build_function functions;

the_module

(* ******* translate function ends here ****** *)

(* function to split fdecls and stmts. store stmts in main's body *)
let split stmts =
 let split1 (fdecls, sdecls, main_body) stmt = match stmt with
 S.Func(fdecl) -> fdecls@[fdecl], sdecls, main_body
 | S.Struc(sdecl) -> fdecls, sdecls@[sdecl], main_body
 | _ -> fdecls, sdecls, main_body@[stmt]
 and init = ([],[],[]) in
 List.fold_left split1 init stmts

(* tranlsate *)
let translate (stmts) =
 let (fdecls, sdecls, main_body) = split stmts in

 (* main_func *)
 let main_func = {
 S.fname = "main";
 S.typ = A.Int;
 S.formals = [];
 S.body = main_body
 } in

ManiT Final Project

 (* functions *)
 let functions = [main_func]@fdecls in
 let structs = sdecls in

 let _ = List.iter declare_struct_typ structs in
 let _ = List.iter define_struct_body structs in
 let the_module = translate_functions functions the_module in
the_module

Manit.ml

(* Top-level of the ManiTcompiler: scan & parse the input,
 check the resulting AST, generate LLVM IR, and dump the module *)

let _ =
 let lexbuf = Lexing.from_channel stdin in
 let ast = Parser.program Scanner.token lexbuf in
 let sast = Semant.check_program ast in
 let m = Codegen.translate sast in
 Llvm_analysis.assert_valid_module m;
 print_string (Llvm.string_of_llmodule m)

(* version with options. commented out due to errors in prettyprinter
type action = Ast | LLVM_IR | Compile

let _ =
 (* command line options. *)
 let action = if Array.length Sys.argv > 1 then
 List.assoc Sys.argv.(1) [("-a", Ast); (* Print the AST only *)

 ("-l", LLVM_IR); (* Generate LLVM, don't check *)
 ("-c", Compile)] (* Generate, check LLVM IR *)

 (* w/o command line options *)

 else Compile in

 let lexbuf = Lexing.from_channel stdin in (* set input stream *)

 (* scan input to tokens, parse the tokens to get AST *)

 let ast = Parser.program Scanner.token lexbuf in

 (* semantic checker takes AST, checks input, produces SAST *)

 let sast = Semant.check_program ast in

 (* depends on command line options. default is Compile *)

 match action with

ManiT Final Project

 (* Ast.string_of_program is the pretty-print func in AST. *)

 Ast -> print_string (Prettyprint.string_of_program sast)

 | LLVM_IR -> print_string (Prettyprint.string_of_llmodule (Codegen.translate sast))

 (* Codegen translates SAST (or AST) to IR of type module.

 run that module through LLVM analyzer for debugging.

 if valid module, translate module to string and syscall print. *)

 | Compile -> let m = Codegen.translate sast in

 Llvm_analysis.assert_valid_module m;

 print_string (Llvm.string_of_llmodule m)

*)

Makefile

Make sure ocamlbuild can find opam-managed packages: first run

eval `opam config env`

Easiest way to build: using ocamlbuild, which in turn uses ocamlfind

.PHONY : manit.native

manit.native :
ocamlbuild -use-ocamlfind -pkgs llvm,llvm.analysis -cflags -w,+a-4 \

manit.native

"make clean" removes all generated files

.PHONY : clean
clean :

ocamlbuild -clean
rm -rf testall.log *.diff manit scanner.ml parser.ml parser.mli
rm -rf *.cmx *.cmi *.cmo *.cmx *.o pic*

#to test for shift/reduce conflicts and other stuff

.PHONY : parse
parse :

ocamlyacc -v parser.mly

#run all tests

.PHONY : test
test :

./testall.sh

#run hello world test

.PHONY : test2
test2 :

ManiT Final Project

./manit.native < helloworld.mt > output.ll
lli output.ll

#run demo

.PHONY : demo
demo :

./manit.native < demo.mt > output.ll
lli output.ll

More detailed: build using ocamlc/ocamlopt + ocamlfind to locate LLVM

OBJS = ast.cmx codegen.cmx parser.cmx scanner.cmx semant.cmx manit.cmx

manit : $(OBJS)
ocamlfind ocamlopt -linkpkg -package llvm -package llvm.analysis $(OBJS) -o manit

scanner.ml : scanner.mll
ocamllex scanner.mll

parser.ml parser.mli : parser.mly
ocamlyacc -v parser.mly

%.cmo : %.ml
ocamlc -c $<

%.cmi : %.mli
ocamlc -c $<

%.cmx : %.ml
ocamlfind ocamlopt -c -package llvm $<

Generated by "ocamldep *.ml *.mli" after building scanner.ml and parser.ml

ast.cmo :
ast.cmx :
codegen.cmo : ast.cmo
codegen.cmx : ast.cmx
manit.cmo : semant.cmo scanner.cmo parser.cmi codegen.cmo ast.cmo
manit.cmx : semant.cmx scanner.cmx parser.cmx codegen.cmx ast.cmx
parser.cmo : ast.cmo parser.cmi
parser.cmx : ast.cmx parser.cmi
scanner.cmo : parser.cmi
scanner.cmx : parser.cmx
semant.cmo : ast.cmo
semant.cmx : ast.cmx
parser.cmi : ast.cmo

