
Damo
A language for symbolic 
functions

Ian Covert Abhiroop Gangopadhyay Srihari Devaraj Alan Gou

Project Manager Language Guru System Architect Testing



I. Introduction
Why...



CORE FEATURES

● Scripting language

● Symbolic expressions

● Standard library for symbolic function evaluation, 
automatic differentiation



MOTIVATION

● Ease of development for applications requiring 
automatic differentiation

● Useful for many kinds of machine learning, such as 
SGD algorithm for neural networks

● Historical note:
○ Damo was child of Theano – a popular Python deep learning 

library



II. Project Management
Responsibilities, lessons 

learned



EVERYONE BECOMES A DEVELOPER

Abhiroop Built SAST, semantic checking and tests

Ian Implemented parser, standard library and tests 

Hari Implemented codegen and tests

Alan Took the worst classes of his life this semester



LESSONS LEARNED

● Iterative development makes life easier

● Specialization is helpful, but dangerous

● Realistic deadlines are necessary

● Never assume that something works



III. The Damo Language
Speaking our dialect



// Single line comment

/* 

   Multiline

   comment

*/

// VARIABLE DECLARATION

int i;

int j = 1;

SYNTAX BASICS
/*

OPERATORS

+ - * / ^ _ % 

and or not

< > <= >= == !=

TYPES

int 

num

bool

string

symbol

*/



SIMPLE PROGRAMS
print(“Hello world”);

// FUNCTION DECLARATION

def sayHello(string name) : void {

print(“Hello, “);

print(name);

}

sayHello(“Stephen”);

num a;

num b;

num c;

a = 1;

b = 2.0;

c = a * b;

print_num(c);



CONTROL FLOW
// C-like loops

int i;

print(“Going up”);

for (i = 0; i < 10; i = i + 1){

print_int(i);

}

print(“Going down”);

while (i > 0){

print_int(i);

i = i - 1;

}

// C-like if-elseif-else statements

if (i < 0){

print(“i less than 0”);

}

elseif (i < 10){

print(“i less than 10”);

}

else {

print(“i greater than 10”);

}



SYMBOLIC EXPRESSIONS
// Declare symbols

symbol a;

symbol b;

symbol c;

// Set symbolic expression

a = b + c;

a = a * (b - c);

// Set symbols to constant values

b = 4;

c = 5;

// DEPENDENCY GRAPH

b = 4 c = 5

+ –

a
*



// Function evaluation

symbol a; symbol b; symbol c;

a = b * c;

b = 4;

c = 5;

num result = eval(a);

num deriv = partialDerivative(a, b);

THE STANDARD LIBRARY



IV. How it works
Implementation details



OUR COMPILATION PIPELINE
Source code Program written in Damo

Linked with 
stdlib Standard library prepended

Symbols Scanner

AST Parser

SAST Semantic checking

LLVM Codegen

Executable C compiler: links with C code



ABSTRACT SYNTAX TREE

● A Damo program is a list of variable declarations, 
function declarations, and statements

● Arbitrary ordering

● Semantic checking verifies proper usage of variables 
and functions



HEAP ALLOCATED SYMBOLS

● Invoke C functions to allocate heap memory

symbol_malloc = Llvm.declare_function “createSymbol” (Llvm.function_type 

symbol_t [| |] the_module

...

A.Symbol -> let global_variable = L.build_call symbol_malloc [| |] “symbolmal”      

builder in ignore(L.build_store global_variable s_v builder);



THE SYMBOL STRUCT

● Underlying C struct represents symbol type

struct symbol {

symbol *left;

symbol *right;

int isConstant;

int isInitialized;

double value;

};



LINKING WITH C CODE

● Makefile builds symbol.c, a library we wrote to handle 
routines relating to symbols
○ Heap memory allocation
○ Accessor, mutator functions

● Damo executables are linked with C standard library, 
and symbol.o



V. Testing
It works, we promise



UNIT AND INTEGRATION TESTS

● We tested for every feature of the Damo language
○ Operators

○ Functions

○ Global variables

○ Standard library functions

○ Etc.



THE ULTIMATE TEST

● Showing off in our demo – a big integration test



Let’s demo it!


