Proposal For C%: A Language For Cryptographic
Applications

Maggie Mallernee, Zachary Silber,
Michael Tong, Richard Zhang, Joshua Zweig

UNIs: mlm2299, zs2266, mct2159, rz2345, jmz2135

1 Describe the language that you plan to implement

Our language is a C-like language designed for applications in cryptography and ab-
stract algebra. The familiar and robust C-like nature of our language will provide pro-
grammers with customary and essential tools for building a wide range of applications
and tools. Additionally, our selection of built in types coupled with a lightweight syntax
designed to handle modular operations will suit this language for implementing crypto-
graphic protocols.

In today's world, modular operations underpin many important applications, ranging
from hashing to cryptography. However, most programming languages offer very little
support for the rich world of moduli. Our language will offer this support in the form of
built in types and operators to remove the programmer's burden of writing difficult series
of modular expressions. In doing so, the workflow of writing programs for modular heavy
arithmetic will become streamlined, and the syntax natural and intuitive. With additional
support for arithmetic on elliptic curves, this language ought to be a cryptologists'delight.

2 Explain what sorts of programs are meant to be
written in your language
2.1 General background

We start with some general background and motivation for the subject. Most common
cryptographic protocols are in the following setting: you start with some prime number p,
say 7, and consider the number system of positive integers less than this prime where the
operation is modular multiplication (i.e., take two numbers less than 7, multiply them as
usual, and then take their remainder when divided by 7). By general theory, there exists
some integer « less than p such that, if you continually multiply it by itself and then
take its remainder when divided by 7, it will at some point equal every positive integers
less than 7; in this case 3 satisfies this property. We call 3 a primitive mod 7. Now,
the goal behind cryptographic protocols is to design a procedure in which two parties
first generate random private keys (typically just random numbers less than p) so that
they can share obfuscated information and be confident that, even if someone sees their
interaction, they won't be able to read the underlying message. Thus, modular arithmetic
is at the heart of such protocols and is widely applicable throughout cryptography.

From a more abstract point of view, however, the core of what we are working with
here is a set of things (in this case, positive integers less than p) with a binary operation
(in this case, modular multiplication). In particular, the binary operation of modular
multiplication enjoys nice properties: it is associative (that is, (a-b)-c=a-(b-c)), it has
an identity element (for every a, we have 1-a = a), and it can be reversed (for every a,

there is some other element b so that a-b = 1). Indeed, in abstract algebra, a set equipped
with a binary operation satisfying these properties is called a group, and cryptography
can be done with general groups instead of just on modular arithmetic. Historically, the
latter has been the standard for real-life implementation for various reasons, however
our language will offer tremendous support for a newer brand of cryptography where
the group in question consists of points lying on an object called an elliptic curve. How
this works is highly technical, but essentially elliptic curves offer a new system for doing
cryptography, with its own various intricacies when compared to the standard model.

2.2 Programs

Our language will be meant for implementing these cryptographic protocols, either for
practical or educational purposes. For simplicity, the following examples will be confined
to the modular arithmetic case, as opposed to the elliptic curve system. That said,
with our language's support for elliptic curves, the knowledgeable user will be able to
easily implement a protocol in this system without having to manually define the rather
technical rules which pervade these techniques.

For practical purposes, if one wanted to implement an RSA cryptosystem for receiving
messages, one could publicize a large product of primes pg (these primes would not be
automatically generated by our program, but chosen by the user) and exponent e. Then
one could use our language to accept incoming encrypted messages and decrypt them
using the decryption exponent d. This can easily be modified to implement a more
realistic protocol that depends on the theory of RSA, such as an SSL handshake.

For educational purposes, having a language which allows for abstract cryptographic
protocols to be easily implemented can help make the concepts more concrete. It can
even help convince a student that a protocol actually works! As an example, there is the
so-called coin-flipping protocol which allows two people, Alice and Bob, to essentially flip
a coin with full trust without either of them being in the same room (the only flaw is
that one of the players can choose to lose without the other knowing). The protocol takes
some background to explain, and even with the knowledge it may not be convincing that
it actually works. One could, using our language, easily implement the protocol and see
that, indeed, about half of the time Alice wins the coin toss and about half of the time
Bob wins the coin toss. And indeed, going through the process of coding this protocol
will make the logic involved more clear, helping the student understand the concepts
involved.

3 Explain the parts of your language and what they
do

We are going to maintain the standard primitives of Integer, Pointer, Array, and
Struct. These are all things that will be relevant to the use cases of our language. Our
language will also allow the user to write For and While loops as well as If statements.
These control flow tools will allow the user flexibility in utilizing the main types of our
language. We have determined that the most relevant building blocks for solving problems
in the domain of cryptography and abstract algebra are ModIntegers, Curves, and Points,
so we will include these as built-in types.

First, we discuss ModIntegers. Many of the problems we want to solve require working
with integers under a certain modulus. This stems from the concept of finite fields

in abstract algebra, which forms a theoretical basis for many cryptographic protocols.
Essentially, our language will be able to easily support operations within a given finite
field, meaning that we will override the addition and multiplication operators (along
with their inverses) to work on integers under a given modulus. For example, under the
modulus of 7,

4-3=5 (mod7)
6+5=4 (mod7)
4—6=5 (mod?7)

It is of course possible to do this arithmetic with regular Int's and a built-in remainder
operation; however, it becomes cumbersome to include the remainder operation in every
step that changes any values. Additionally, the mod operator and the remainder calcu-
lator are actually slightly different, and different programming languages deal with this
in different ways. C, for example, defines the % operator as the remainder and not the
mod operator, which becomes clear when dealing with negative numbers. Consider the
following code snippet:

int rem(int a, int b)
{
int r = a - (Ca’/b) * b);

return r;

int mod(int a, int b)

int r = rem(Ca, b);
return (r > 0) 2 r : r + b;

1t main()

printf(
printf(
printf(

return 0;

The output of this snippet demonstrates the difference between the remainder and
mod operators:

-bash-4.1% gcc mod_test.c
bash-4_.1% ./ a,out

The remainder rem{-5, 3) = -2
The mod answer to mod(-5, 3) =
The percent sign operator -5 %

Some languages, like Haskell, do define both a remainder and a mod operator. We
would like to maintain C-like syntax and the % operator as it is in C, while adding
the ability to easily work with integers under a given modulus. Instead of having to
write a separate function to correct for the % operator as one would have to in C, our
ModIntegers will automatically give the correct results for operations defined in modular
arithmetic.

ModIntegers will be a built-in type defined with two integers; a current value and an
immutable modulus. In theory, dealing with the extremely large primes used in modern
cryptography would necessitate a different method of storing this information, such as
storing the int and a separate pointer (like a smart pointer) to a single stored copy of the
prime. That way, the process of verifying that two ModIntegers have the same modulus
could be done by comparing pointers rather than comparing the very large primes. This
will be a frequent comparison, as operations can only apply to ModIntegers under the
same modulus.

Next, we have Elliptic Curves and Points on that curve. Elliptic curves may be defined
by three integers, or two ModIntegers of the same type. Most standard operations like
addition and multiplication do not make sense between two elliptic curves. However,
Curves are going to be essential in working with Points. We will define each of our Points
with one Curve that can't be changed as well as two Int's that represent the current value
of the Point. When you consider operations between points, they are all under a certain
curve. Above we explained that it only makes sense to consider operations between two
ModIntegers under the same modulus. Similarly, we only consider operations between
two points on the same elliptic curve. Standard operations like addition, multiplication,
etc. are mathematically defined between two points on a curve and we can implement
them through built-in operators.The built in syntax for operating on points and elliptic
will allow programmers to implement elliptic curve cryptographic functions with ease.

This unique and concise set of types will serve as the building blocks for any number
of applications, especially those of cryptography.

4 Include the source code for an interesting program
in your language
This program (really two programs, put together in the same source file for simplicity)

implements the Elliptic Curve variant of the famous Diffie-Hellman protocol between two
parties Alice and Bob.

Bob sends the point B = nP to Alice

1 /* Public keys: E = elliptic curve mod p, <.e. equation y 2 = "3 + az + b (mod p) --
curve defined by a, b, p

2 P = (z, y), a point on E of high order.

3

4 Private keys: Alice’s randomly chosen integer m, Bob’s randomly chosen integer n

5

6 Protocol: Alice sends the point A = mP = (P + ... + P) (m times) to Bob

7

8

9

Alice computes the point { = mB, Bob computes the point § = nd. @ is
their shared private key, and it
10 will be hard for an eavesdropper Eve to calculate { given A and B
without knowledge of m or n.
11
12

13 int prime = 18218358123758917867
14 Curve E = prime(a, b)

15 Point P = E(z, y) */

16

17
18
19
20
21
22
23
24
25
26
27
28
29
30

31
32

33

//Alices Program
/*
Select E, P (public)

Pick m

Compute A = mP
Send A to Bob
(Now Alice has B)
Compute (= mB

*/

int main() {

int prime = 2x*74207281 - 1; //some

mint a = (56, prime);
convert in E

mint b = (3, prime);

curve E = (a, b); //Since a and b are
specified

point P = (E, x, y); //where z, y are

verified at compile time
printf ("%P", P); // make public

int m = rand();
point A = m * P; //int times a point
point B;

printf ("%P", A);
scanf ("J%P", &B);

point Q = m * B;
return O0;

//Bobs Program
/*

Pick n

Compute B = nP
Send B to Alice
(Now Bob has A)
Compute (@ = nA
*/

int main() {
point P;

scanf ("%P", &P);
int n = rand();
point B = n * P;
point A;

printf ("%P", B);
scanf ("%4P", &A);

point Q = n * A;
return O;

large,
//Could alternatively define a,

user generated prime -—-
b as normal

defined by the same prime,

coordinates on the elliptic curve.

tnts and then

it need not be

To be

