
 
 

shux 

Language Reference Manual 
 

Lucas Schuermann (lvs2124) 
John Hui (jzh2106) 

Mert Ussakli (mu2228) 
Andy Xu (lx2180) 

 
  



Table of Contents 
1. Introduction 
2. Lexical Conventions 

a. Identifiers 
b. Keywords 

i. Declarations 
ii. Control Flow 
iii. Types 

c. Literals 
i. Integer 
ii. Scalar 
iii. Boolean 
iv. Escape Sequences 
v. Strings 

d. Data Types 
i. Mutable Names 
ii. Primitives 

1. Boolean 
2. Integer 
3. Scalar 
4. String 

iii. Collections 
1. Arrays 
2. Structs 
3. Vectors 

e. Comments 
f. Operations 

i. Value binding 
ii. Operators 

3. Syntax 
a. Program Structure and Global Namespace 

i. Namespacing 
ii. Global Constant Declarations 
iii. Named Function Declarations 
iv. Lookback 

b. Local Namespace 
i. Declarations 

c. Expressions 
i. Assignment Expressions 
ii. Conditional Expressions 



iii. Functional Expressions 
1. Maps and Filters 
2. Function Expressions 

iv. Iterative Expressions 
v. Unit Expressions 

4. Standard Library 
a. Graphics 
b. Streams 

i. Standard Streams 
ii. File Operations 

c. Algorithms 
d. Linear Algebra 
e. Pervasives 

5. Appendix 
a. Toolchain 
b. References 

6. Grammar (AST) 
 

 
  



(1) Introduction 
Though physics simulation is a massive field with many areas of active research, much 
emphasis is given to so-called “Lagrangian” problems, or particle-based discretization schemes, 
commonly encountered when modeling phenomena such as granular materials, fluid dynamics, 
cloth, and many others. 
 
shux is a language optimized for expressing, simulating, and rendering particle-based 
(Lagrangian) physics problems. Currently, though many implementations of solvers for such 
problems exist, they are frequently overly verbose, poorly organized and poorly optimized, and 
cluttered with helper code for rendering, spatial gridding, and multiprocessing. By introducing a 
revised syntax, better-suited semantics and adequate abstraction, shux aims to function as a 
general-purpose language better catered towards the needs of particle-based physics 
simulations. 
 
shux is fundamentally based upon generators and pure functions (kernels), which can be 
processed asynchronously over the set of all simulated particles. Other features, such as 
variable state lookback, strong typing, and built-in functional mathematical expression 
representation and optimization features help to facilitate a maximally concise and minimally 
error-prone user experience when solving domain-specific problems, largely in physical 
phenomena simulation, as modeled by particle-discretized partial differential equations. 
 

 
  



(2) Lexical Conventions 

(2.a) Identifiers 
An identifier in shux, also known as a programmer-defined name, can be any ASCII string that 
begins with an alphabetic character or an underscore, followed by any number of 
lowercase/uppercase letters, underscores, and numbers. 
 
[‘a’-’z’ ‘A’-’Z’ ‘_’][‘a’-’z’ ‘A’-’Z’ ‘_’ ‘0’-’9’]* 

(2.b) Keywords 

(2.b.i) Declarations 
shux uses the following modifiers to indicate the type of variable bindings in a global scope 
(outside of function definitions): 
ns 
let 
kn 
gn 
 
Within functions, the following keyword is used to indicate a mutable value (rather than 
immutable defaults): 
var 

(2.b.ii) Control Flow 
shux attempts to limit imperative programming by introducing conditional and looping constructs 
as expressions rather than statements, as follows: 
if … then … [elif] … else 
for 
do...while 
 
shux does support C-style while-loops, which can be used to implement C-style for-loops and 
do-while-loops, but as doing so requires mutable values, it is highly discouraged. 

(2.b.iii) Types 
shux uses the following keywords to refer to types. shux's typing system is discussed in detail in 
Section (2.d). 
 



primitives: 
bool 
int 
scalar 
string 
 
collections: 
array 
struct 
vector 

(2.c) Literals 
shux supports all of its primitive types as literals in code, defined as follows. 

(2.c.i) Integer 
ints are 32-bit signed integers. They consist of at least one digit. Integer literals are defined 
using the following regular expression: 
 

['0'-'9']+ 

(2.c.ii) Scalar 
scalars are 64-bit signed floating point numbers. They are structured just like doubles in C.  
 
The decimal point character . defines scalars. The part before the decimal point is the integer 
part of the scalar, and the part after the decimal is point is the fraction part of the scalar. 
 
To be maximally compatible with scientific calculations, shux scalars support scientific notation, 
which indicates the decimal exponential of the scalar. It is the character e, followed by a +/- and 
then an integer. 
 
These can be defined by the following regular expression: 

((['0'-'9']+ '.' ['0'-'9']* | ['0'-'9']* '.' ['0'-'9']+) ('e' ['+' '-'] ['0'-'9']+)?)  
 
Example of a scalar literal: 12.37e-17 

(2.c.iii) Boolean 
shux's basic boolean type. shux reserves the keywords true  and false  to refer to boolean literals. 



(2.c.iv) Escape Sequences 
The following sequences within a string have their special semantics: 
 
\n new line 
\r carriage return 
\t tab 
\" double quotes 
\\ backslash 

(2.c.v) Strings 
String literals are any ASCII characters in double quotes. 

"I am a string literal"  
Strings can be defined by the following regular expression: 
 

\" (\\. | [^"])* \"  

(2.d) Data Types 
shux is strongly typed. Operators are only allowed in between same types unless specified 
otherwise. 
 
Implicit type casting is not available in our language syntax – instead, we will provide library 
functions that perform these conversions. 

(2.d.i) Mutable variables 
var precedes a type declaration that is mutable. 
 
Sample Usage:  
var scalar y = 5.0; 
y = 4.2; 

(2.d.ii) Primitives 

(2.d.ii.1) booleans 
Type: bool.  
Can be true or false 

(2.d.ii.2) integers 
Type: int 



32-bit signed integer literal. 

(2.d.ii.3) scalar 
Type: scalar 
64-bit signed floating point number.  

(2.d.ii.4) string 
Type: string 
Sequence of ASCII literals. Enclosed in double quotes for string literals. Escape character is 
backslash '\' 

 
\n for new line, \t for tab sequences. 

(2.d.iii) Collections 

(2.d.iii.1) Arrays 
A sequence of names in contiguous memory. The [] operator is used for array access and 
declaration. Arrays are immutable by default. 
 
Instantiation: type[] name 
Access: name[index] 
 
int[5] x = {0,1,2,3,4}; /* initialize 5 integers in an immutable array */ 
var int[5] y; /* declare mutable array*/  
x[3] = 4; /* set index 3 to 4 */  

(2.d.iii.2) Structs  
Structs are collections of primitive types in a C-like style. 
 
Definition: struct struct-name { type1 field1; type2 field2; … }  
Instantiation: struct struct-name name = {field1 = value1, field2 = value2, … }  
Access: name.field-name 
 
Example: 
struct particle { 

float x; 
float y; 

} 
 
struct particle p = {x=1.0, y=2.0}; 



(2.d.iii.3) Vectors 
Vectors are collections over which mathematical operations are built-in. Vectors can only 
contain scalar types and are designed for linear algebra and matrix calculations. 
 
Instantiation: var vector name = <lit1, lit2, lit3, … >  
Access: name[index] 
 
vector g = <0.0, -9.81>;  
float y_accel = g[1]; 

(2.e) Comments 
/* Luke was here*/ 
var particle[10] p_init = {0}; /* Andy is a potato */ 
 
/*  
 * test comment 
 * hi mom 
 * test line 3 
 */ 
var particle[10] p_init = {0}; 
 
C-style syntax for single-line comments is not supported in shux.  Subsequent lines of multi-line 
comments must begin with *. 

(2.f) Operations 

(2.f.i) Value Binding 
A single equals sign ‘=’ indicates assignment, wherein an expression on the right is bound to the 
identifier on the left. 

(2.f.ii) Operators  

Precedence Operator Description Associativity 

1 ()  
[] 
<> 

Function call 
Array subscripting 
Vector subscripting 

Left-to-right 

2 ..  Historical variable access 
Structure member access 



. 

3 ! Logical negation Right-to-left 

4 - (unary) Unary minus 

5  * / % Multiplication, division and remainder Left-to-right 

6 + - (comp) Addition and subtraction 

7 == <= >= > < Relational operators 

8 && ||  Logical AND and logical OR 

9 ::  Filtering operator Left-to-right 

10 @ Map  

11 =  
+= -= 
*= /= 

Simple assignment 
Assignment by sum and difference 
Assignment by product and quotient 

Right-to-left 

12 , Separator Left-to-right 

 
  



(3) Syntax 

(3.a) Program Structure and Global Namespace 
A shux program consists of, strictly in the following order, namespace declarations, global 
constant declarations, and function (kernels or generators) declarations. This is ordering is 
syntactically enforced for code clarity. 
 
program 

ns-decls let-decls fn-decls 
 
All shux programs must implement a program entry point as follows: 
 
/* reserved main id */ 
kn main() -> int { 

/* [...] program logic */ 
} 
 
main() must be a kernel (stateless) function that returns an integer, and has a lookback value of 
0. 

(3.a.i) Namespacing 
In order to organise globally-named function and constant declarations into cohesive units, shux 
uses namespaces which encapsulate programs within them. A program can begin with any 
number of namespaces, and though they may be nested, this is highly discouraged. 
 
ns-decls 

ns-decls ns-decl 
 
ns-decl 

ns ns-id  { program  } 

 
Declarations within namespaces may be later accessed with the dot operator. For example: 
 
Declaration: 
ns foo { 

let int bar = 4; 

} 

 
Access: 



foo.bar 

 
Note that after namespaces have been declared, the program continues to define constants and 
functions in the global namespace . This means that these name bindings do not need to be 
preceded by a namespace identifier and the dot operator. 
 
Including standard libraries using #include<...>  effectively adds a pre-defined global namespace 
to the program. The shux standard libraries are extensively discussed in detail in Section (4). 

(3.a.ii) Global Constant Declarations 
In the global namespace, any number of static values may be declared and bound to identifiers 
using the let keyword, followed by some type identifier, the = (assignment) operator, and the 
static value that it should be associated with. 
 
let-decls 

let-decls let-decl 
_ 

let-decl 
let type id = expr ; 

 
The static values bound to those identifiers will be evaluated at compile time and associated 
with that identifier for the entire following namespace, and so must be unique.  

(3.a.iii) Named Function Declarations 
The global namespace ends with any number of named function declarations and definitions, 
and may either be stateless kernels (indicated by the kn keyword) or locally stateful generators 
(indicated by the gn keyword). 
 
fn-decls 

fn-decls gn-decl 
fn-decls kn-decl 
_ 

gn-decl 
gn id  ( _formals  ) _ret-type  { local  } 

kn-decl 
kn id  ( _formals  ) _ret-type  { local  } 

formals 
formals , formal 
formal 

ret-type 
-> type 

 



Note that the optional return type follows the parameter list rather than preceding it, and is 
indicate by the -> token. If it is not present, the return type is assumed to be void. Returned 
collection types (such as arrays and structs) are returned by reference, but to immutable data 
structures. 
 

(3.a.iv) Lookback 
shux has a special lookback feature defined over variables. The ".." operator is used over 
variables with historical access to access their values in previous iterations. 
 
gn foo(int bar) -> int { 

int i = i..1 + 3 : bar; 
int j = i..2; //set j equal to the value of i two iterations earlier 

} 
 
shux implements the lookback feature through a circular buffer in memory representing the 
states of the variables at each past (and current) iteration. For memory efficiency, the size of the 
buffer is determined statically through the highest backwards access performed on the variable. 
 
While the lookback feature is defined on generator variables, it can also be used on pure 
functions (kernels). In this case, the backwards access limits of the variables passed into the 
kernel are limited by the backwards access limit defined by the generator that calls the kernels. 
This is determined in compile-time. 
 
If the lookback value is not available (for example, if historical access is attempted on the first 
iteration), the value of the variable on the current iteration will be returned. shux allows you to 
specify what value to return if lookback value isn't variable through the following syntax: 
 
int i = i..2 + 3 : 0; /* add 3 to the value of i 2 iterations ago and return 

      * or just return 0 if not available. */  

(3.b) Local namespace 
Inside named function blocks is the local namespace . This is composed of an optional series of 
statements, separated by semicolons. Further namespaces, global constants, and named 
functions may no longer be declared. 
 
local 

_block  ; _ret-expr 
block 

block  ; statement 
statement 



decl 
expr 

ret-expr 
expr 

 
Statements consist of either declarations or expressions. 
 
Each local namespace ends with an optional return expression that is not semicolon-terminated 
– this is the return value of function that local namespace defines. If it is absent, then the 
function returns a void. 

(3.b.i) Declarations 
By default, shux variables are declared as immutable. In order to make them mutable, one may 
specify the var keyword. 
 
decl 

_var formal = expr  
_var formal 

formal 
type id 

 
Variable declarations may be mixed with their assignment and thus instantiation, or that may be 
deferred until later. Subsequent expressions in the local namespace may then access declared 
variables. However, deferring the assignment for immutable variables may be useful for 
capturing historical values, for example: 
 
gn foo(int bar) -> int {  

int ret; 

... 

int baz = ret..1 : baz; /* access the value of ret in its 

previous iteration */ 

... /* else use default value of baz */ 

ret = baz * 2 /* save the return value to ret for 

future reference */ 

} 

 
Note that while anonymous functions may be declared, they cannot be bound to declared 
variables, in order to avoid complications with function types or functional type inference. 



(3.c) Expressions 
In shux, almost everything is an expression. By having representing algorithmic constructs such 
as loops and conditionals as expressions, control flow becomes more predictable, and while the 
syntax looks imperative, the expressed algorithms are in fact functional. 
 
expr 

asn-expr 

(3.c.i) Assignment 
The assignment expression follows the C style, and takes on the value of its right operand: 
asn-expr 

unary-expr asn-op asn-expr 
conditional-expr 

 
asn-op  one of 

= += -= *= /= %= <<= >>= &= ^= |= 

 
Doing so allows the chaining of assignments. For example (assuming all the variables have 
already been declared): 
x = y = z = 69; 

is parsed as 
x = (y = (z = 69)); 

and takes on the value of 69. 

(3.c.ii) Conditional Expressions 
Conditional expressions are to switch the value of an expression between sub-expressions 
depending on some predicate. 
 
conditional-expr 

fn-expr  : conditional-expr // for historical access 
bool-expr  ? fn-expr  : conditional-expr 
if bool-expr  then fn-expr else-expr 

else-expr 
elif bool-expr  then fn-expr else-expr 
fn-expr 

 
The first type of conditional expression, of the form a : b, is for lookback. This expression will 
take the value of a if is available, but if not, will default to the value of expression b. Note that b 
can be another such expression, allowing the chaining of conditional expressions. For example: 



 
x = x..1 : 0; 

 
In this, x is assigned its value in the previous iteration, but on the first iteration, where its history 
is unavailable, it will be assigned a default value of 0. 
 
The if..then..else construct is semantically equivalent to the ternary ? operator. Each 
conditional expresson may switch between an arbitrary number of conditions, e.g.: 
x = x..2 : x..1 : 0 

y = if cond1 then val1 elif cond2 then val2 else val3 

z = cond1 ? val1 : cond2 ? val2 : val3 

 
The expressions assigned to y and z are semantically identical. 

(3.c.iii) Functional Expressions 
The following class of expressions are used to denote operations that take place on list-yielding 
and functional data types. 

(3.c.iii.1) Maps and Filters 
Maps (@) and filters (::) may be used on list/array types in order to yield new lists from those 
lists. 
fn-expr 

fn-expr  @ kn-expr 
fn-expr  :: kn-expr 
iter-expr 

These operators are used to apply a following kernel function expression onto the left 
list-yielding operand. Examples for their usage will be shown in the next section, after the syntax 
for anonymous functions is introduced. 

(3.c.iii.2) Function Expressions 
Function expressions may take on one of two forms: a reference to a named kernel function 
previously defined in the global namespace, or an anonymous kernel function (lambda). 
kn-expr 

id  ( exprs  ) 
_formals  -> { block  } 

 
Anonymous functions, or lambdas can be declared in the local namespace. The syntax for 
defining lambdas is similar to that of declaring named functions, except without the identifier. In 
the following example, an incrementing map function is being applied to an array of integers in 
order to yield another array, and then filtered to only yield anything less than 5: 
 
int[] inc_less_than_5 = original @ i -> { i + 1 } :: i -> { i < 5 }; 



 
Semantically, lambdas are equivalent to kernels, except they also inherit the namespace of the 
function block they are declared within. 

(3.c.iv) Iterative Expressions 
Iterative expressions may be used on named generator functions in order to control the number 
of iterations those generators execute. 
iter-expr 

for unit-expr gn 
do unit-expr gn 
unit-expr 

gn 
id  ( exprs  ) 
() 

The for construct will produce an array containing all the values yielded by the generator 
called. The do construct will produce the value yielded by the generator after unit-expr  number 
of iterations, and toss away the intermediate values. 
 
This generator may either be a named generator function previously declared in the global 
namespace, or the unit generator, (), which does nothing – this is useful for constructing 
iterative loops. 

(3.c.v) Unit Expressions 
Unit expressions largely follow the same syntactical rules as C. The details are elaborated in the 
our grammar. The following operators and constructs differ from C: 

● shux uses the . and .. postfix operators followed by a numeric literal to indicate lookback 
● shux does not use the * and & operators for dereferencing and referencing – it does not 

support pointer arithmetic 

(4) Standard Library 

(4.a) Graphics 
Visual display of simulated phenomena, both by means of still images and real-time rendering, 
is an integral part of nearly all computational physics problems, especially in the case of 
particle-based dynamics. In order to reduce the time-to-live for producing visual feedback from 
code, shux includes <graphics>, a basic graphics library optimized for creating simple real-time 
displays of particle states, based upon well-specified parameters, such as position, size, and 
color. 
 



Basic graphics operations: 
<graphics> 
init_window 
set_vertex_array 
set_vertex_position 
set_point_size 
set_point_color 
set_background_color 
flush_screen 
display_loop 
 
Sample Usage: 
#include<graphics> 
 
fn main() { 

graphics.init_window(640, 480, “hello”); 
graphics.set_background_color(255,0,0); /* red */ 
 
/* display loop */ 

} 

(4.b) Streams 
Like C++ iostream standard library, shux uses stream libraries to handle file and standard 
streams operations.  

(4.b.1) Standard Streams  
<stdio> 
shux uses <stdio> library to provide stream operations on standard input, standard output and 
standard error. Functions provided in <stdio> can be invoked anywhere in the body part of a 
shux program. Nevertheless, the use of standard streams is strongly discouraged because it 
uses slow system calls that might block the execution of the program. In principle, <stdio> 
library should only be used for either runtime user input, or to debug the program at 
development stage. For a shux program to run efficiently, <stdio> functions should not be called 
inside any generator function or kernel function. 
 
Sample Usage: 
#include <stdio> 
int x = 99; 
stdio.print_error("%d bottles of beer.\n", x); 



(4.b.2) File Operations 
To provide local file read and write operations, shux provides a <fileio> library, which can be 
used inside the program's main() function, but not inside any kernel function or generator 
functions due to concurrency concerns. 
 
Sample Usage: 
#include <fileio> 
 
file = fileio.open("output.log"); 
string result = "{x: 1, y: 2, vx: 10, vy: 20}"; 
file.write(result); 

(4.c) Algorithms  
shux includes an algorithm library that provides useful algorithms for physics simulations. The 
algorithm library is implemented in shux language itself and is loadable in the header. Most of 
them  
 
Basic data structures and containers: 
<stack> 
<queue> 
<linked_list> 
<heap> 
<grids> 
 
Sample Usage (stack): 
#include<stack> 
 
stack my_stack = stack.create(); 
my_stack.push(3); 
my_stack.push(4); 
var result = my_stack.pop(); /* gives 4 */ 
result = my_stack.pop(); /* gives 3 */ 
 
Basic algorithms: 
<qsort> 
<binary_search> 
<reverse> 
<grid_helper> 
 
Sample Usage: Grid 



#include<grid> 
 
struct particle p1 = { … }; /* a particle struct */  
struct particle p2 = { … }; 
var grid main_grid = grid.create(grid_width, grid_height, cell_size); 
grid.insert(0, 5, p1); /* a struct and its position is inserted */ 
grid.insert(5, 5, p2); 
 
hmm this syntax is not compatible with grids unless we sugar coat them. 
let's sugar coat them hahaha 
 
/* grids are collections of cells, which contain x y coordinates in grid 
 * and a reference to the struct that is inserted in the grid. 
main_grid = main_grid @ cell -> { 

particle = cell.particle; 
cell <- {  

.particle = /* perform operation on particle return new particle */  
} 

} 
 
Sample Usage Algorithms: 
#include<algorithms> 
 
int[5] arr = {2, 5, 7, 1, 0}; 
result = algorithms.qsort(arr);  
/* arr == {2,5,7,1,0}; result = {0, 1, 2, 5, 7}; */ 
 
var int[5] arr2 = {2, 5, 7, 1, 0}; 
algorithms.qsort(arr2);  
/* arr2 == {0, 1, 2, 5, 7} */ 

(4.d) Linear Algebra 
 

Matrix, Vector 
Operations 

Addition, subtraction 
Scalar multiplication and division 
Transposition and conjugation 
Matrix-matrix and matrix-vector multiplication 
Dot product and cross product 

Block operations Initializations 
Block extraction and manipulations 
Column, row operations 



Cornor-related operations 

Reductions Normalization 
Linear solving and Reduced echelon form 

Decompositions Inverse 
Determinant 
Least squares 
Rank revealing 
Eigenvalue (power and jacobi) 

Numerical Method 
Algorithms 

<newtons> 
<runge_kutta> 
<relaxation>  
<euler> 
<verlet> 
<leapfrog> 

(4.d) Pervasives 
Since shux is a strongly typed language without the support of implicit type casting, all type 
casting operations have to be done explicitly. Similarly to how it's done in Ocaml, shux provides 
<pervasives> in its standard library that allows programmers to convert between compatible 
types. 
 
Following type casting operations are supported by <pervasives>: 
 
scalar_of_int 
int_of_scalar 
string_of_scalar 
scalar_of_string 
string_of_scalar 
string_of_format 
 
Sample Usage: 
#include<pervasives> 
scalar e = 2.718281828 
int e_int = pervasives.int_of_scalar(e) /* e_int == 2 */ 
string explanation = pervasives.string_of_format("%.8f is rounded down to %d\n", e, e_int); 
 
  



(5) Appendix 

(5.a) Toolchain 
Our compiler will be named shucc, producing an executable from exactly  one shux source file. It 
will accept the following arguments 
-c           file to compile 
-o <file> output filename 
-s <file> output intermediate LLVM 
-v           print debugging information 

(5.b) References 
Prof. Edwards' slides 
Dennis M. Ritchie's "C Reference Manual" https://www.bell-labs.com/usr/dmr/www/cman.pdf 
http://www1.cs.columbia.edu/~sedwards/classes/2015/4115-fall/lrms/note-hashtag.pdf 
http://www1.cs.columbia.edu/~sedwards/classes/2012/w4115-fall/lrms/Funk.pdf 
 

 
  

https://www.bell-labs.com/usr/dmr/www/cman.pdf
http://www1.cs.columbia.edu/~sedwards/classes/2015/4115-fall/lrms/note-hashtag.pdf
http://www1.cs.columbia.edu/~sedwards/classes/2012/w4115-fall/lrms/Funk.pdf


(6) Grammar (AST) 
NB:  _ before a symbol indicates that it is optional 

_ on its own means null string 
 
program 

ns-decls let-decls fn-decls 
ns-decls 

ns-decls ns-decl 
_ 

let-decls 
let-decls let-decl 
_ 

fn-decls 
fn-decls gn-decl 
fn-decls kn-decl 
_ 

ns-decl 
ns id = { program } 

let-decl 
let type id = rvalue ; 
let struct id = { struct-def } 

gn-decl 
gn id ( _formals ) _ret-type { block _ret-expr } 

kn-decl 
kn id ( _formals ) _ret-type { block _ret-expr } 

struct-def 
struct-def; formal 
formal 

block 
block ; statement 
statement 
conditional-statement 
iteration-statement 

conditional-statement 
if ( expr ) then { block } else { block } 
if ( expr ) then { block } 

 
iteration-statement 

for ( _expr ; _expr ; _expr ) { block } 
 



statement 
decl 
expr 

 
ret-expr 

expr 
expr 

asn-expr 
 
asn-expr 

unary-expr asn-op asn-expr 
unary-expr asn-op conditional-expr 

 
conditional-expr 

conditional-expr : fn-expr 
bool-expr ? fn-expr : conditional-expr 
if bool-expr then fn-expr else conditional-expr 
fn-expr 

 
fn-expr 

fn-expr @ kn 
fn-expr :: kn 
iter-expr 

kn 
id ( exprs)  

_formals -> { block }  
iter-expr 

for unit-expr gn 
do unit-expr gn 
unit-expr 

gn 
id ( exprs ) 
()  

 
unit-expr 

bool-expr 
bool-expr 

bool-or-expr 
bool-or-expr 

bool-or-expr || bool-and-expr 
bool-and-expr 

bool-and-expr 
bool-and-expr && bit-expr 



bit-expr 
 
bit-expr 

bit-or-expr 
bit-or-expr 

bit-or-expr | bit-xor-expr 
bit-xor-expr 

bit-xor-expr 
bit-xor-expr ^ bit-and-expr 
bit-and-expr 

bit-and-expr 
bit-and-expr & cmp-expr 
cmp-expr 

 
cmp-expr 

eq-expr 
eq-expr 

eq-expr == relat-expr 
eq-expr != relat-expr 
relat-expr 

relat-expr 
relat-expr < shift-expr 
relat-expr > shift-expr 
relat-expr <= bit-shift-expr 
relat-expr >= bit-shift-expr 

 
bit-shift-expr 

bit-shift-expr << arithmetic-expr 
bit-shift-expr >> arithmetic-expr 
arithmetic-expr 
 

arithmetic-expr 
add-expr 

add-expr 
add-expr + mult-expr 
add-expr - mult-expr 
mult-expr 

mult-expr 
mult-expr * unary-expr 
mult-expr / unary-expr 
unary-expr 

 
unary-expr 



_unary-op postfix-expr 
unary-op 

+ 
- 
~ 
! 

 
postfix-expr 

postfix-expr [ expr ] 
postfix-expr ( exprs ) 
postfix-expr . id 
postfix-expr . num 
postfix-expr .. num 
postfix-expr < exprs > 
primary-expr 

 
exprs 

exprs expr 
expr 

primary-expr 
id 
lit 
( rvalue ) 

decl 
var formal // mutable 
formal // immutable 

 
formals 

formals , formal 
formal 

type id 
 
ret-type 

-> type 
type 

primitive-t _array-t 
id _array-t // for structs; our scanner + parser won't really know this 

 
primitive-t 

int 
float 
string 
bool 



vector-t 
vector-t 

vec< num > 
array-t 

[] array-t 
 
lit 

struct-lit 
array-lit 
vector-lit 
string-lit 
num 
id 

struct-lit 
{ struct-fields } 

struct-lit-fields 
struct-fields , struct-field 

struct-lit-field 
.id = expr 

 
array-lit 

[ array-elements ] 
array-elements 

array-elements , expr 
 
vector-lit 

< vector-elements > 
vector-elements 

vector-elements , expr 


