
The Lambda Calculus

Stephen A. Edwards

Columbia University

Spring 2017

Lambda Expressions
Function application written in prefix form. “Add four and
five” is

(+ 4 5)

Evaluation: select a redex and evaluate it:

(+ (∗ 5 6) (∗ 8 3)) → (+ 30 (∗ 8 3))
→ (+ 30 24)
→ 54

Often more than one way to proceed:

(+ (∗ 5 6) (∗ 8 3)) → (+ (∗ 5 6) 24)
→ (+ 30 24)
→ 54

Simon Peyton Jones, The Implementation of Functional Programming
Languages, Prentice-Hall, 1987.

Function Application and Currying

Function application is written as juxtaposition:

f x

Every function has exactly one argument.
Multiple-argument functions, e.g., +, are represented by
currying, named after Haskell Brooks Curry (1900–1982). So,

(+ x)

is the function that adds x to its argument.

Function application associates left-to-right:

(+ 3 4) = ((+ 3) 4)
→ 7

Lambda Abstraction

The only other thing in the lambda calculus is lambda
abstraction: a notation for defining unnamed functions.

(λx . + x 1)

(λ x . + x 1)
↑ ↑ ↑ ↑ ↑ ↑

That function of x that adds x to 1

The Syntax of the Lambda Calculus

expr ::= expr expr
| λ variable . expr
| constant
| variable
| (expr)

Constants are numbers and built-in functions;
variables are identifiers.

Function application binds more tightly than λ:

λx. f g x = (
λx.(f g)x

)

Beta-Reduction

Evaluation of a lambda abstraction—beta-reduction—is just
substitution:

(λx . + x 1) 4 → (+ 4 1)
→ 5

The argument may appear more than once

(λx . + x x) 4 → (+ 4 4)
→ 8

or not at all

(λx . 3) 5 → 3

Beta-Reduction

Fussy, but mechanical. Extra parentheses may help.

(λx . λy . + x y) 3 4 =
((
λx .

(
λy .

(
(+ x) y

)))
3

)
4

→
(

λy .
(
(+ 3) y

))
4

→ (
(+ 3) 4

)
→ 7

Functions may be arguments

(λ f . f 3) (λx . + x 1) → (λx . + x 1) 3
→ (+ 3 1)
→ 4

Free and Bound Variables

(λx . + x y) 4

Here, x is like a function argument but y is like a global
variable.

Technically, x occurs bound and y occurs free in

(λx . + x y)

However, both x and y occur free in

(+ x y)

Beta-Reduction More Formally

(λx . E) F →β E ′

where E ′ is obtained from E by replacing every instance of x
that appears free in E with F .

The definition of free and bound mean variables have
scopes. Only the rightmost x appears free in

(λx . + (− x 1)) x 3

so

(λx . (λx . + (− x 1)) x 3) 9 → (λ x . + (− x 1)) 9 3
→ + (− 9 1) 3
→ + 8 3
→ 11

Another Example

(
λx . λy . + x

(
(λx . − x 3) y

))
5 6 →

(
λy . + 5

(
(λx . − x 3) y

))
6

→ + 5
(
(λx . − x 3) 6

)
→ + 5 (− 6 3)
→ + 5 3
→ 8

Alpha-Conversion

One way to confuse yourself less is to do α-conversion:
renaming a λ argument and its bound variables.

Formal parameters are only names: they are correct if they
are consistent.

(λx . (λx . + (− x 1)) x 3) 9 ↔ (λx . (λy . + (− y 1)) x 3) 9
→ ((λy . + (− y 1)) 9 3)
→ (+ (− 9 1) 3)
→ (+ 8 3)
→ 11

You’ve probably done this before in C or Java:

int add(int x, int y)
{
return x + y;

}
↔

int add(int a, int b)
{
return a + b;

}

Beta-Abstraction and Eta-Conversion
Running β-reduction in reverse, leaving the “meaning” of a
lambda expression unchanged, is called beta abstraction:

+ 4 1 ← (λx . + x 1) 4

Eta-conversion is another type of conversion that leaves
“meaning” unchanged:

(λx . + 1 x) ↔η (+ 1)

Formally, if F is a function in which x does not occur free,

(λx . F x) ↔η F

int f(int y) { ... }
int g(int x) { return f(x); }

g(w); ← can be replaced with f(w)

Reduction Order

The order in which you reduce things can matter.

(λx . λy . y)
(
(λz . z z) (λz . z z)

)
Two things can be reduced:

(λz . z z) (λz . z z)

(λx . λy . y) (· · ·)

However,

(λz . z z) (λz . z z) → (λz . z z) (λz . z z)

(λx . λy . y) (· · ·) → (λy . y)

Normal Form

A lambda expression that cannot be β-reduced is in normal
form. Thus,

λy . y

is the normal form of

(λx . λy . y)
(
(λz . z z) (λz . z z)

)
Not everything has a normal form. E.g.,

(λz . z z) (λz . z z)

can only be reduced to itself, so it never produces an
non-reducible expression.

Normal Form

Can a lambda expression have more than one normal form?

Church-Rosser Theorem I: If E1 ↔ E2, then there ex-
ists an expression E such that E1 → E and E2 → E .

Corollary. No expression may have two distinct normal forms.

Proof. Assume E1 and E2 are distinct normal forms for E :
E ↔ E1 and E ↔ E2. So E1 ↔ E2 and by the Church-Rosser
Theorem I, there must exist an F such that E1 → F and
E2 → F . However, since E1 and E2 are in normal form,
E1 = F = E2, a contradiction.

Normal-Order Reduction

Not all expressions have normal forms, but is there a
reliable way to find the normal form if it exists?

Church-Rosser Theorem II: If E1 → E2 and E2 is in normal form,
then there exists a normal order reduction sequence from E1

to E2.

Normal order reduction: reduce the leftmost outermost
redex.

Normal-Order Reduction

((
λx .

(
(λw . λz . + w z) 1

)) (
(λx . x x) (λx . x x)

)) (
(λy . + y 1) (+ 2 3)

)

leftmost outermost

leftmost innermost
λx

λw

λz

+ w
z

1

λx

x x

λx

x x

λy

+ y

1 + 2

3

Boolean Logic in the Lambda Calculus
“Church Booleans”

true = λx . λy . x
false = λx . λy . y

Each is a function of two arguments: true is “select first;”
false is “select second.” If-then-else uses its predicate to
select then or else:

ifelse = λp . λa . λb . p a b

E.g.,

ifelse true 42 58 = true 42 58
→ (λx . λy . x) 42 58
→ (λy . 42) 58
→ 42

Boolean Logic in the Lambda Calculus
Logic operators can be expressed with if-then-else:

and = λp . λq . p q p
or = λp . λq . p p q

not = λp . λa . λb . p b a

and true false = (λp . λq . p q p) true false
→ true false true
→ (λx . λy . x) false true
→ false

not true = (λp . λa . λb . p b a) true
→β λa . λb . true b a
→β λa . λb . b
→α λx . λy . y
= false

Arithmetic: The Church Numerals

0 = λ f . λx . x
1 = λ f . λx . f x
2 = λ f . λx . f (f x)
3 = λ f . λx . f

(
f (f x)

)
I.e., for n = 0,1,2, . . ., n f x = f (n)(x). The successor function:

succ = λn . λ f . λx . f (n f x)

succ 2 = (
λn . λ f . λx . f (n f x)

)
2

→ λ f . λx . f (2 f x)

= λ f . λx . f
((
λ f . λx . f (f x)

)
f x

)
→ λ f . λx . f

(
f (f x)

)
= 3

Adding Church Numerals

Finally, we can add:

plus = λm.λn.λ f .λx. m f (n f x)

plus 3 2 = (
λm.λn.λ f .λx. m f (n f x)

)
3 2

→ λ f .λx. 3 f (2 f x)
→ λ f .λx. f (f (f (2 f x)))
→ λ f .λx. f (f (f (f (f x))))
= 5

Not surprising since f (m) ◦ f (n) = f (m+n)

Multiplying Church Numerals

mult = λm.λn.λ f .m (n f)

mult 2 3 = (
λm.λn.λ f .m (n f)

)
2 3

→ λ f .2 (3 f)
= λ f . 2 (λx. f (f (f x)))
↔α λ f . 2 (λy. f (f (f y)))
→ λ f . λx. (λy. f (f (f y))) ((λy. f (f (f y))) x)
→ λ f . λx. (λy. f (f (f y))) (f (f (f x)))
→ λ f . λx. f (f (f (f (f (f x)))))
= 6

The predecessor function is trickier since there aren’t
negative numbers.

Recursion

Where is recursion in the lambda calculus?

fac =
(
λn . if (= n 0) 1

(
∗ n

(
fac (− n 1)

)))

This does not work: functions are unnamed in the lambda
calculus. But it is possible to express recursion as a function.

fac = (λn fac . . .)
←β (λ f . (λn f . . .)) fac
= H fac

That is, the factorial function, fac, is a fixed point of the
(non-recursive) function H :

H = λ f . λn . if (= n 0) 1 (∗ n (f (− n 1)))

Recursion
Let’s invent a Y that computes fac from H , i.e., fac= Y H :

fac = H fac
Y H = H (Y H)

fac 1 = Y H 1
= H (Y H) 1
= (λ f . λn . if (= n 0) 1 (∗ n (f (− n 1)))) (Y H) 1
→ (λn . if (= n 0) 1 (∗ n ((Y H) (− n 1)))) 1
→ if (= 1 0) 1 (∗ 1 ((Y H) (− 1 1)))
→ ∗ 1 (Y H 0)
= ∗ 1 (H (Y H) 0)
= ∗ 1 ((λ f . λn . if (= n 0) 1 (∗ n (f (− n 1)))) (Y H) 0)
→ ∗ 1 ((λn . if (= n 0) 1 (∗ n (Y H (− n 1)))) 0)
→ ∗ 1 (if (= 0 0) 1 (∗ 0 (Y H (− 0 1))))
→ ∗ 1 1
→ 1

The Y Combinator
Here’s the eye-popping part: Y can be a simple lambda
expression.

Y =

= λ f .
(
λx . f (x x)

) (
λx . f (x x)

)
Y H =

(
λ f .

(
λx . f (x x)

) (
λx . f (x x)

))
H

→ (
λx . H (x x)

) (
λx . H (x x)

)
→ H

((
λx . H (x x)

) (
λx . H (x x)

))
↔ H

((
λ f .

(
λx . f (x x)

) (
λx . f (x x)

))
H

)
= H (Y H)

“Y: The function that takes a function f and returns
f (f (f (f (· · ·))))”

Alonzo Church

1903–1995
Professor at Princeton (1929–1967)
and UCLA (1967–1990)
Invented the Lambda Calculus

Had a few successful graduate students, including

Ï Stephen Kleene (Regular expressions)
Ï Michael O. Rabin† (Nondeterministic automata)
Ï Dana Scott† (Formal programming language semantics)
Ï Alan Turing (Turing machines)

† Turing award winners

Turing Machines vs. Lambda Calculus

In 1936,
Ï Alan Turing invented the

Turing machine
Ï Alonzo Church invented the

lambda calculus
In 1937, Turing proved that the two models were
equivalent, i.e., that they define the same class of
computable functions.

Modern processors are just overblown Turing machines.

Functional languages are just the lambda calculus with a
more palatable syntax.

