C?

Andrew Aday, Amol Kapoor, Jonathan Zhang
(aza2112, ajk2227, jz2814)Q@columbia.edu
https://github.com/AndrewAday/CQM

December 2017

Contents
1 Abstract

2 Introduction

2.1 OVerview e e e
2.2 Syntax
2.3 Features e
2.4 C7 o e e
C? Language Tutorial: Welcome to C?!
3.1 Hello World and Compiler Usage
3.2 Arithmetic, Algebra, and If/Else
321 BasicMath,
3.22 Variables Lo oo
3.23 Booleans s
3.2.4 Conditionals e
3.3 Collections of Data and Loops
3.3.1 While, For.
332 Arrays
3.4 Functions e
3.5 Advanced Topics
3.5.1 Structs e e
3.0.2 Matrices Lo o
3.5.3 Memory Management
3.5.4 Function Pointers. oL,
3.5, LinkstoC.
3.6 Conclusion e e e

4 C? Language Reference Manual 21

4.1 Introduction e 21
4.2 Data Representation, 21
421 Types . . . o e e e 21
4.2.2 Literals e 21

4.3 Lexical Conventions, 23
4.3.1 Spacing e 23
432 Comments. v v vt i e e e e 23
4.3.3 Identifiers e 23
434 Keywords 23

4.4 Program Structure oo e 23
441 ScopingRules. 23
4.4.2 Declarations. e 25
443 Control Flow, 27

4.5 EXpPressionso o e e e e e e 30
4.5.1 Primary Expressions 30
4.5.2 Assignment 31
453 Arrays ..o .. e 32
4.5.4 Structs e e e e 32
4.5.5 Matrices Lo e 35
4.5.6 Function Pointers. 36
4.5.7 Operators e e e e e 36
4.5.8 Operator Precedence 37

4.6 Built-in Functions 37
4.7 LAbraries o e e e e e e e e e e e e e e 38
4.7.1 Interaction with Compiler 39
472 TO .. 39
473 Math 39
474 Eigen e e 40
475 DEEP 40

5 Project Plan 46
5.1 Processes e e e e 46
5.1.1 Planning o 46
5.1.2 Specification Lo o oo 46
5.1.3 Development 46

5.1.4 Testing oo e 47

5.2 StyleGuide e 47
5.3 Timeline e e e e 47
5.3.1 Planned Timeline. 47
5.3.2 Project Log 47

5.4 Roles and Responsibilities 48
5.5 Software Development Environment 48

6 Architectural Design 49

6.1 The Compiler 49
6.1.1 Scanner 49

6.1.2 Parser 49

6.1.3 Semantics e e e e e 50

6.1.4 Code Generator. i 50

6.2 Libraries e e e e e 50
6.3 A Note on Labor Division 50

7 Test Plan 51
7.1 Testing Suites« o o e 51
7.2 Automation 51
7.3 Divisionof Labor o 51
7.4 Example Input-Output Lo, 51

8 Lessons Learned 69
81 Andrew Aday 69
8.2 Amol Kapoor 69
8.3 Jonathan Zhang o .. 69

9 Appendix 70
9.1 Shell scripts o o e e e 70
9.2 Compilerfiles 76
9.3 Demofiles 119
9.4 Library files 120
95 Testfiles. e 145

1 Abstract

In this document we propose C?7, a multi-paradigm imperative general purpose
language. C? is designed to provide a foundation for domain specific applications
through the development of powerful yet simple libraries. Input to the C?
compiler mimics the familiar C coding syntax. The compiler outputs an C?
executable, using LLVM as an intermediate state. We demonstrate the flexibility
of C? by providing and explaining a simple Deep Learning library, C? DEEP.
This module contains the essential components that allow users to quickly and
flexibly develop neural networks models in C?.

2 Introduction

2.1 Overview

High level programming languages like Python enjoy widespread use because of
powerful community-built libraries that make domain specific applications eas-
ier. For example, the Numpy and Pandas libraries have made Python essential
for most data science applications. Similarly, the Tensorflow and Theano li-
braries have made Python the de-facto language of Machine Learning. Rails
almost single-handedly made Ruby relevant again. And of course, though
Javascript is a mess, it continues to be a popular language with dozens of useful
libraries. Prolog, on the other hand, sees very little use outside of niche cases
- the difficulty of library development in Prolog results in fewer libraries and
dwindling interests in the language. From these and other historical examples,
it is clear that the development of a good' language depends less on its up-front
domain application and more on the ability to quickly abstract the language for
other uses. Library generation in turn depends on the ease of use of the syntax
and the features available in the base language.

2.2 Syntax

Many popular programming languages, such as Python and Javascript, are syn-
tactically fluid. Generally, such languages share the following syntactic features:
types are clear and accessible or they do not matter, syntax is human readable,
and the language is forgiving. Python, for example, is often described as a lan-
guage that ’just works’. While these are admirable traits for scripting, library
development is made significantly harder by a forgiving language. In order to
sustain a large number of use cases, libraries need to be bug free and extremely
tolerant to poorly written user code. Fluid syntax means that a) there are more
avenues for a user to misuse a library (and therefore more edge cases a library
developer needs to check); and b) without a strict syntax and compiler, it is
harder to write fault-tolerant due to the universality of human error. While the

LOr at least, widely used.

trade off of between easy writing and easy debugging has no obvious right an-
swer in the world of language design, we feel strongly that library development
is specifically well suited to a strongly typed language.

2.3 Features

Based on previous research?, we concluded that the following features are vital
in modern programming contexts to quickly develop powerful domain specific
libraries.

e Structs/User Defined Types. Many libraries exist to provide frame-
works that allow users to manipulate domain-specific data types. Includ-
ing structs allow library developers to extend the type system of a language
to include user-defined constructs. For example, our deep learning library”
provides a fc,,odelstruct forde finingthelayersthatcomposeadeeplearningmodel. Byprovidingalayerofa
forwardneuralnetworkapplications.

e Function Pointers. Libraries often rely on the ability to pass around
functions as types in order to implement features like callback options for
asynchronous behavior or primitive polymorphism when combined with
structs. Function pointers allow functions to be referenced without di-
rectly calling them, allowing a user defined function to be passed in at run
time by the user or library developer. Importantly, function pointers also
allow library developers to leave placeholders where a user is expected to
pass their custom functions. Taking our neural networks example from
above, users may want to apply different types of cost functions to their
network, which necessitates the user of function pointers to these custom
procedures.

e External Linking/Matrices. A programming language is expected to
be efficient. Due to the difficulty in beating the speed of C, many modern
languages are either directly implemented on top of C or provide easy
ways to run external source code. For example, much of Python is written
in Cython, a lightweight wrapper over the underlying C code that allows
for the speed and usability of Python. Our language will make extensive
use of linking with an underlying C++ library to provide matrix function-
ality and fast math operations. Including this feature inherently into the
language opens library developers to a vast array of different data science
and mathematical possibilities.

e Collections of data. In a data oriented world, more and more end
applications of programming rely on crunching numbers. Native arrays,
matrices, and fast operation support are therefore a vitally important
feature to include in any modern language.

2We sat and thought about this for a while.
3see section 4.7.5

24 C?

The central design goal of C? is to build a flexible language that can be used for
many different paradigms and many different domain applications. With this in
mind, C? implements the syntax and features described above. C? syntax is C-
like syntax that piggybacks on the widespread familiarity of C while maintaining
C typing rules. We believe that this is a compromise between scripting and
strong typing that will allow a large set of developers already familiar with
C to be able to code in C? with minimal study. It will also enforce stricter
code generation, saving time for users on debugging. C? implements native
structs, function pointers, arrays, and matrices. C? also allows users to link
directly to any C functions. We use all of these features in the development and
implementation of the C? DEEP deep learning library, which serves as a proof
of concept for the general power of C? as a language.

3 C? Language Tutorial: Welcome to C?!

Thank you for downloading C?! The following tutorial is meant for newcomers
to the C? language. The tutorial provides basic instructions for getting started
with C?, as well as an introduction to more advanced C? constructs.

3.1 Hello World and Compiler Usage

Once you have downloaded the C? zip file, unzip the folder and enter the C?
directory. Type make to create the C? compiler, which will take C? code and
convert it to a machine readable executable. Once the C? compiler has been
made, programs can be compiled by running the compile.sh shell script.

The following sample code is a simple implementation of Hello World in C?.

int main() {
print_string("Hello World!");
return O;

Enter the above code into a file named hello.cqm. To compile and run this
code, type:

> ./compile.sh hello.C?
> ./hello.exe
Hello World!

Lets walk through the code line by line.

e (7 files need to have a int main() function. This is where program exe-
cution begins. Functions in C? have return types, meaning the entire block
of code will spit out a piece of data of the given type. By default, main
returns an int type, so we define the function as int main(). Because all
of the code that follows happens inside main, we add an open curly brace
to tell the program how the following code relates to the previous code.
See more on Functions below.

e print_string is a built in function, meaning that it can be called in any
C? file without having to define it separately. As one can imagine, this
function prints out strings of characters. There are other print_<type>
functions for various other types, e.g. print_float, print_mat. Printing
integers is a simple print. We pass in a string ”Hello World”. The string
type is indicated by the quotation marks. Note that this line ends with
a semi-colon. All statements in C? must end in a semicolon or in a curly
brace. Semi-colons are used to tell the compiler when a line ends.

1

e We indicated at the top that main returns a type int, i.e. an integer.
Since we do not actually care about the type, we simply return 0;.

e Finally, we close out with a closing curly brace to tell the program that
main has ended.

Now lets examine how we ran the code.

e Once we have our hello.C? file, we need to convert it to something the
computer can read. We use compile.sh to take our C? code and turn it
into a machine executable.

e Now that we have a machine executable, we can run it like any other
executable with the ./ syntax.

And that’s it! Congrats on writing your first piece of C? code! Read on for
more features.

3.2 Arithmetic, Algebra, and If/Else
3.2.1 Basic Math

Like any programming language, C? supports basic algebraic operations through
variable declaration and assignment. This section will serve as an introduction
to variables and operation usage in C?. Though we limit our discussion to
integers and booleans here, note that many principles can be extended to other
types (including more advanced types like structs and function pointers).
Basic math is fairly straight forward:

int main() {

print(1 + 1); /* 2 */
print(24); /* 8 */
print((3 + 3)*2/3); /* 4 */
return O;

Note that above we make use of comments. These are described further in the
Style section of the tutorial. For now, just know that comments are ignored by
C? code.

3.2.2 Variables

Variables can be declared and used as follows:

int main() {
int x;

int y;

© X N o u e

10

11

S I S B N N

T = B N U N

Note that all variables must be declared at the top of the function that is using
them.

3.2.3 Booleans

Boolean algebra can also be implemented in C?. For example:

Above we make use of the && and || operators, which correspond to AND and
OR respectively. C7 also allows various comparisons that can return boolean
types. For example:

Above we make use of the ==, !=and < operators, which correspond to EQUALS,
NOT EQUALS, and LESS THAN respectively. To see the full list of available

boolean operators, consult the Language Reference Manual. Combining various

boolean terms allows for complex conditional statements. For example:

@ |

© ® N e o e W N e

=R e
N = O

=
w

© ® N e o e W N e

e e e
o v oA W N = O

-
-

3.2.4 Conditionals

C? can utilize the powerful boolean expressions above to create branching state-
ments in code that are dependent on certain values during execution. For ex-
ample:

The above code utilizes a programming construct known as an if/else block.
As the name implies, the program will run the code in the if block if the
corresponding boolean statement is true. Otherwise, it runs the code in the else
block. These switches can be strung together. For example:

If/else blocks provide the first introduction to control flow, i.e. the tools avail-
able to indicate how control should flow through various components of the
code.

© X N T oA W N =

e e =
w N o= O

—
IS

[N

3.3 Collections of Data and Loops
3.3.1 While, For

Many programs require repetitive actions that can be simplified with a looping
syntax. In C?, there are two kinds of loops: while loops, and for loops. Both are
equivalent, but are optimized for slightly different use cases. They are presented
below:

A while loop is the most basic kind of loop. It will continue to run the code
in between the curly braces while some value in the parenthesis is true. In the
example above, the loop continues while the variable value of i is less than 10.
A for loop is a slightly more complex while loop. Unlike a while loop, which only
checks a single boolean condition, a for loop has three components separated by
semi-colons. The first component runs before the for loop - above, we use it to
set the variable i to 0. The second component is the condition, and functions
the same way as the boolean in the while loop. The third component runs on
each step of the for loop - we use it here to increment the value of i. Like if/else
blocks, loops are an important tool in the control flow toolbox.

3.3.2 Arrays

It can often be useful to have data stored consecutively. C?7 allows for typed
arrays that can contain sequences of the same type of object. For example:

© ® N e o e W N e

e
[

-
N

© ® N e o s W N =

In the above code, we create a float array. Arrays require a special make function
to create the space where the data will be stored. We can also append new values
to the array, and then index the array to print out individual values. Other array
specific functions can be found in the Language Reference Manual. Arrays can
be manipulated with for loops, providing a powerful tool for data manipulation.
For example, basic array iteration can be accomplished as follows:

Note that C? does not allow arrays of arrays (see the Matrix type for nested
array functionality). Further, note that arrays are heap objects (see the Memory
Management section below) and are pass by reference.

3.4 Functions

C? allows users to split off blocks of code into reusable functions. Each function
requires a type, a unique function name, and zero or more arguments to be used
inside the function. Functions can then be ’called’ by providing the name of
the function and the appropriate type-matching variables between parenthesis.
Function values can be stored in assignment of variables. For example, a simple
add function:

10

11

12

13

14

15

16

© ® N e o e W N e

T S e S~ S S S e
S © ® N o «u k& W N = O

N
s

Note that the types of variables a and b must match with the function type of
add. In this case, they are all integers.

3.5 Advanced Topics

The subjects covered below form a core part of what makes C? special as a
language. If you are interested in how to do more powerful data manipulations
in C?7, we encourage you to read the following tutorial chapters!

3.5.1 Structs

Structs - short for structures - provide a means for users to create their own
types out of clusters of primitive types. Structs require a struct definition that
explains what is in the struct and how it is named. A struct can be created
the same way as an array. Each parameter of a struct can then be assigned to
unique values. For example:

22
23
24
25
26

27

© ® N o o e W N e

T T e L I
N = SO © W N O o ok W N R O

V)
@

Above, we create a new type foo and then instantiate two implementations of
that type, foo, foo2. We also create an array of type foo, showing that it is
possible to create arrays of structs (i.e. a struct type is treated like any other
type). Because structs are simply user defined types, it is possible to assign one
struct to another of the same struct type. Finally, struct access is accomplished
using the x.y syntax, where x is the struct variable and y is the struct field we
want to access.

Structs allow for the development of powerful libraries that rely on specific struct
objects. Below, we show how structs can be used to create a simple point type
for 2d distance calculations.

The point struct definition acts as a predefined object. This can then be com-
bined with functions that can manipulate that object and its properties.

© X N U oA W N e

W oW W oW W W oW N NN NN N NN NN R e s s s e e s e
o G A ® N =B O © ® N O U & W N B O © ® N O O bk W N = O

w
3

C? is also capable of assigning functions to structs, resulting in an inheritance-
less form of object oriented programming. Struct functions, or methods, require
a struct definition in brackets to use as the attached struct. Unlike a tradtional
function definition, a method then requires the name of the function, followed
by the return type and arguments. The bound struct can then be used as if it
were a passed in parameter.

Below, we present the same 2d distance calculation code with methods. We also
show how to call methods.

15

38

39

40

41

42

© ® N e u s W N =

Boe e
N = O

-
w

[T

Note that users can define the same function name to different structs. For
example, there can be a manhattan distance method for type point and a
different manhattan_distance method for, e.g., type vector.

Note that although it is possible to nest structs, it is not possible to call access
structs N layers deep. Instead, one needs to create a variable reference to the
inner struct, like so:

Like arrays, structs are heap objects. See the Memory Management section
below for more.

3.5.2 Matrices

Although C? does not support nested arrays, users can still create matrix types
in order to do complex data analysis. C? links directly to the C Eigen library
and makes available a significant subset of Eigen matrix operations. Because
FEigen is a low level C library, matrix operations in C? are fairly fast. Below is
a simple example of initializing float matrices and using matrix operations:

10

11

12

13

14

15

16

17

18

19

20

© ® N e w oA W N =

B R R ke
A W N = O

-
o

The corresponding output of this C? code is:

Note that matrix operations are by default element-wise. For example, (fm1 +
1.0) increments every element in fm1. To see the full list of Matrix operations
available, please review the Language Reference Manual.

Like arrays, Matrices are heap objects. See the Memory Management section
below for more.

3.5.3 Memory Management

Structs, Arrays, and Matrices are all heap objects - they are stored on the heap,
the run time manipulates pointers to these objects, and as a result they are
pass by reference. Because these objects are all stored on the heap, references
to them will eventually need to be freed. For short programs and scripts, we

17

S - AN SR VR

© ® N e ;oA W N =

=R e
vo= O

-
w

recommend ignoring memory management concerns. For larger scripts, espe-
cially those using many matrix operations, we recommend manually freeing the
memory.

This can be done with the free command for matrices and structs, and the
free_arr command for arrays. Both take a reference to an object and frees the
associated memory. An example (from the DEEP library) can be seen below:

Note that every matrix operation allocates new memory, as all matrix operations
clone the initial matrix instead of doing operations in place. Thus, any time
matrix variables go out of scope, they should be manually freed.

3.5.4 Function Pointers

In many cases, it can be useful to abstract how a function is called away from
what the function does. C? supports using function pointers as a way to provide
this abstraction. Function pointers allow references to functions to be passed as
arguments, much like any other value. This in turn provides a means for users
to create highly generalized yet powerful libraries with plug-and-play modular
components that can be user specified.

A function pointer type is defined by the types of the arguments the function
takes and the return type. An example is provided below:

14

15

16

17

18

19

20

[I B N S

© ® N e o e W N e

e
w N = O

-
'S

Note that function pointers can also be combined with structs to create abstract
interfaces that can be easily extended by end users for a variety of domain
specific applications.

3.5.5 Links to C

Although C? is a powerful language, there are many libraries and features avail-
able in C that are not available in C? (e.g. pointer manipulation, direct memory
management, etc). In order to make C? as flexible as possible for a wide variety
of use cases, C? supports direct linking with C. In effect, users can write func-
tions in C and use them directly in C?. This is done with the extern keyword,
as shown below:

printbig is a ¢ function defined as below. Note that parts of the printbig
code are left out.

In order to have the compiler ’see’ externed C code, the appropriate .c file
needs to be placed in /1ib/src/.

3.6 Conclusion

We hope you enjoyed this short tutorial on how to use the C? language! While
we described many powerful features of C?, we only scratched the surface of how
these features can be combined and applied. Take a look at the full Language
Reference Manual for a formal review of all C? features. Happy coding!

20

4 C? Language Reference Manual

4.1 Introduction

This Language Reference Manual describes C?, a multi-paradigm imperative
general purpose language, as well as C? DEEP, a deep learning library built on
top of the C? language. Following the theory that powerful domain application
comes from a strong general foundation, C? is to be flexible and easily extended.
Features defining the language include strong typing, built in matrix operation
support, no-inheritance object oriented structs, and function pointers. The
following sections delineate in detail the types, conventions, syntax, program
structure, operations, and libraries included in the C? language.

4.2 Data Representation

Types define the various formats of data. Primitive types represent fundamental
building blocks that have absolute values associated with them; nonprimitive
types represent types that are compositions of primitive types or references
to primitive types. Variables and functions must have a type associated with
them for semantic correctness. All relevant operations must be type-checked for
semantic correctness. Types may have an associated literal value that can be
represented in C?.

4.2.1 Types
Primitive Types

Type Description Example
int Integer int i;
float Float float f;
bool Boolean bool b;
string String string s;
void Empty Type void foo() {}
fmatrix | nxm Float Matrix | fmatrix fm;

Nonprimitive Types

Type Description Example
struct ID { type ID; ...} Struct struct s {int i; int f;}
typl] Array of typ float[] f_arr;
fp (typ, typ...return typ) | Function Pointer | fp (int, int, void) p;

4.2.2 Literals

Examples of each literal type are presented below:

21

Types and Corresponding Literal Examples

Type Literal
int 42
float 42.0
bool true

string "Hello World!"

fmatrix | [[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]]
array (int[1) {1, 2, 3, 4}

fp int foo(int a, int b) { return 1; }

The regexes used for each literal are below:

Types and Corresponding Literal Regexes

Type Regex
int [:0;_:97]+

float | ([20°-79°]+>.7[°0°=29°]* | [’0°-"9°]1%’.°[20°-79°]+)
bool truel|false

string | "([> =10 20— 21— o])x"

Array literals, matrix literals, and function literals rely on parsing semantics.
An array literal is defined as follows:

(typell) {expr, expr, expr...}

where an expr is a series of expressions defined in the Expressions section below,
and type is one of the types defined in the Type section above.

Matrix literals follow intuitive nested array definitions. A matrix literal is de-
fined as:

[ARRAY, ARRAY...]
where each ARRAY is a float or int array of the same length and type, defined

as comma separated ints or floats between square brackets.

Function literals are simply function definitions. Function definitions are ex-
plained in depth below. They are defined as:

type ID(type ID, type ID...) { var_decls stmt_list }
where var_decls is a series of variable declarations, stmt_list is a list of state-

ments that resolve to control flow and expressions, and type is one of the types
defined in the Type section above.

22

4.3 Lexical Conventions
4.3.1 Spacing

The following characters will be treated as whitespace: space, tab, line return.
These will be ignored, but they will separate adjacent identifiers, literals, and
keywords that might otherwise be used as a single identifier, literal, or keyword.

4.3.2 Comments

Comments are used to explain C? code and will be ignored by the C? compiler.
Comments can be delineated as follows: /* this is a comment */.
Comments can span multiple lines using the same syntax.

4.3.3 Identifiers

An identifier in C7 is a programmer defined object. The identifier starts with a
character, and is composed of alphanumeric characters and underscore. Specif-
ically, an identifier matches the regex:

[)a)_7z) 7A)_)Z)][)a)_)z) YAY=2Z0 202 =29Q?)77]*

4.3.4 Keywords

C? has a set of keywords that carry special meaning and cannot be used as
identifiers. In addition to the table below, any of the types described in the
Type section above are also keywords and cannot be used as an identifier.

Keywords and Purpose

Keyword(s) Purpose

if, else Control flow for if/else branching

while, for | Control flow for looping

return Control flow for leaving a function

extern Indicates a function definition that is defined in C

There are numerous built-in functions described in the Built-In Functions sec-
tion below. Though these functions are not keywords, users cannot define other
functions with the same name. For example, the print function is built into C?;
users can define variables named print, but cannot create a new global function
named print. Users can however define functions with the same name as built in
functions provided they are attached to a struct (see the Structs section below).

4.4 Program Structure
4.4.1 Scoping Rules

C? uses static scoping. The scope of an object is limited to the block in which
it is declared, and overrides the scope of an object with the same identifier

23

© 0 N e o oA W N =

W oW W W W N NN N NN N NN N E R R s e s s e e e
A ® K = O ©® ® N 6 A ® N =B O © ® N O o A W N H O

w
o

declared in a surrounding block. In other words, an identifier will map to the
closest definition. Scopes are created by enclosed curly braces. Thus, if/else
blocks, for/while loops, and struct/function definitions all create new scopes.

Note that all local variable declarations in C?7 must occur at the start of a
function definition (see the Declarations section below). Thus, although if/else
and for/while blocks create new scopes, new variables cannot be defined in
those scopes. Further, C? does not allow nested function definitions. Scoping
rules for identifier availability apply primarily when dealing with globally scoped
identifiers such as variables or function names, or when dealing with nested
structs. An example of various scoping rules is below:

24

36

37

38

}

Note in the above example that each definition of the integer !texttt{i} refers

— to a different value.

4.4.2 Declarations

Declarations tell the program which local identifiers to track for a given scope.
Regardless of the type of the identifier, the declaration for the identifier must be
at the top of the scope it is in. For all declarations besides function declarations,
value assignment is separated.

Struct Type and Struct Declarations A struct type declaration requires
the following pattern:

struct NAME { type ID1; type ID2; ...}
where NAME is the identifier of the struct type and each ID is the identifier of

a different struct member of type type. For example, a point type could look
like:

struct point {
int x;
int y;

string name;

Note that struct types can include nested struct members as well as arrays and
function pointers. Further, note that struct type declarations must occur in
global scope before the type is used in any function definition.

To declare a struct variable of a struct type, the following pattern is used:

struct NAME ID;

where NAME is the identifier of the struct type and ID is the identifier of the
variable. Because structs are nonprimitives, a reference must be created to the
struct memory location before the struct can be used. This is done with the
make keyword, with the following pattern:

ID = make(struct NAME);
where ID is the identifier for the struct variable and NAME is the identifier for

the struct type. An example point variable declaration and initialization could
look like:

25

struct point p;

p = make(struct point);

Function Declarations A function declaration requires the following pat-
tern:

type NAME (type ID, type ID, ...) { STMTS }

where NAME is the identifier of the function, ID is the identifier for an argument
of the function with type type, and STMTS are a series of zero or more program
statements, including declarations, control flow operations, and expressions.

Functions must be declared in global scope. Unlike other declarations, the
definition of a function is provided during declaration. Further, functions cannot
be overloaded or replaced once named. An example function declaration may
look like:

int add(int a, int b) {
return a + b;

3

The int main() {} function declaration is a unique function that must be
included in every runnable C? file, as it defines the execution entry point.

Functions written in C can be used in a C?7 program through the use of the
extern keyword. An externed function definition follows the same rules as a
normal function definition, but there are no STMTS and the extern keyword is in-

cluded at the front of the definition. External functions use the following syntax:

extern type NAME (type ID, type ID, ...);

Variable Declarations A primitive variable declaration requires the follow-
ing pattern:

type ID;

where ID is an identifier for a variable of type type. An example variable
declaration may look like:

int x;
float y;

26

Array declarations require the following pattern:

typell ID;

where ID is an identifier for a variable of type type and [] indicates the variable
is an array, i.e. a collection of individual components of type type. Array types
can include structs, function pointers, and primitives. An example may be:

Function pointer declarations require the following pattern:
fp (type, type, ... r_type) ID

where type refers to a type of a function argument, r_type refers to the return
type of a function, and ID is the identifier for the function pointer variable. An
example may be:

Multiple variables of the same type can be declared simultaneously, using the
following pattern:

type: ID, ID, ID...;
where ID is an identifier for a variable of type type.

4.4.3 Control Flow

Control flow in C? defines where the current execution point is and how it
transfers between different blocks of code. The default control flow is top-to-
bottom sequential - lines of code will execute sequentially from top to bottom
unless one of the following constructs is used. Control flow will always start at
the top of the int main function block, and will end once the int main function
block finishes.

IS

© w N o o

If, Else. If/Else control allows a user to specify which of two branches of code
to follow given the value of a boolean condition. If the condition resolves to a
true value, control will pass to code in the If block. If the condition resolves
to a false value, control will pass to code in the Else block. Code execution in
If/Else constructs are mutually exclusive; if the If block is being run, execution
will skip over the Else block and vice versa. Within either the If or the Else
block, code executes as per default: top-to-bottom sequential.

An If/Else construct follows the following patterns:

if (EXPR) { STMTS } else { STMIS }
if (EXPR) { STMTS }

where EXPR is a boolean expression that resolves to true or false and STMTS is
a list of zero or more commands that can include assignment and other control
flow. Note that it is therefore possible to nest If/Else constructs. Note too that
the Else block is not strictly required.

An example If/Else construct may look like:

int x;
x = 5;
if (x < 10) {
print_string("x is less than 10");
print_string("leaving if block");
} else {
print_string("x is greater than or equal to 10");
}

print_string("outside of if/else");

In the above example, the boolean condition will resolve to true as the variable
x is less than 10. Thus, control will pass to the If block. Execution will then
proceed sequentially, first printing x is less than 10 followed by leaving
if block. Control will then skip over the else block entirely, continuing in
sequential order again from the last print statement. It will finally print outside
of if/else before completing.

While, For. While loops and for loops allow a user to specify repetitions of
a certain block of code given the value of a boolean condition. As long as the
boolean condition resolves to true, the code inside the while/for loops will exe-
cute in top-to-bottom sequential order. After reaching the end of a loop block,
the boolean condition is checked again. If the condition remains true, control
jumps to the top of the loop block and repeats. If the condition is false, control
leaves the loop block and continues in top-to-bottom sequential order.

28

IS

© w N o o

10

11

A while loop follows the following pattern:

while (EXPR) { STMTS }
A for loop follows the following pattern:

for (OPTEXPR ; EXPR ; OPTEXPR) { STMTS }

In both cases, EXPR is a boolean expression that resolves to true or false, and
STMTS is a list of zero or more commands that can include assignment and other
control flow. Note that it is therefore possible to nest loops. In the for loop
case, OPTEXPR is an optional expression that can include assignment or other
operations. The first OPTEXPR is resolved before the loop starts; the second
is resolved at each loop state.

Examples of both loops are shown below:

int i;

i=0;

while (i < 10) {
i=1i+1;
print(i);

for (i = 0; 1 < 10; 1 =i + 1) {
print (i);
i

Control starts at the top of the program by initializing integer i to 0. Once
control reaches the while block, the boolean condition i < 10 is checked. Since
0 is less than 10, control enters the while block and proceeds in top-to-bottom
sequential order. First the integer i is incremented by 1; then i is printed out.
At the end of the while block, control returns to the top of the block and checks
the boolean condition again. Since 1 = 1 < 10, the loop continues again. This
repeats 10 times.

Once i >= 10, control leaves the while block and continues sequentially to the
for block. Control executes the first OPTEXPR, which resets integer i to 0.
Control then checks the boolean expression i < 10, which resolves to true. Since
the boolean expression resolves to true, control passes to the inside of the for
block and proceeds sequentially - in this case, printing out the value of i. Once
control reaches the end of the for block, it executes the second OPTEXPR and
increments i by 1. It then checks the boolean expression again to determine if
the control should exit the for block or loop again. Since i = 1 < 10, the loop
continues again. This repeats 10 times.

29

Note that the two loops above are equivalent. Further, note that all for loops
can be rewritten as while loops and vice versa.

Call, Return. Function calls allow control to jump to a previously defined
function declaration; return allows control to jump back to where the function
call was made.

Function calls follow the following pattern:

NAME (EXPR, EXPR...);

where NAME is the identifier for a previously defined function and EXPR is an ex-
pression that evaluates to a value of the type required by the function definition
of function NAME.

Return follows the following pattern:

return OPTEXPR;

where OPTEXPR is an optional expression that evaluates to a value with the same
type as the return type of the encapsulating function. The value that is returned
takes the place of the location of the function call. Because of returning values,
a function call is also a type of expression, described in the Expressions section
below.

For example:

int add(int x, int y) {
return x + y;

}

int main() {
print(add(5, 10)); /* 15 */

return O;

4.5 Expressions

Expressions represent the lowest possible level of commands that the C? lan-
guage is based on. Expressions either resolve to a value of a given type or act
as assignment. Note that a function call is also an expression in that it resolves
to a value.

4.5.1 Primary Expressions

The following expressions are primary expressions (building blocks for more
complex components):

30

© o N e o oA W N =

=
= o

[
S

© ® N o v oA W N =

—
o

e All literals listed in the Literals section above.
e All identifiers described in the Identifier section above.

e Parenthetical expressions, i.e. (expression).

4.5.2 Assignment

Assignment in C? takes two forms: equals (=) assignment, and pipe (=;) as-
signment.

The former is done as a single command, where a single variable identifier is to
the left of an ’equals’ (=) operator with an expression of some sort on the right.
The expression must resolve to a value of the same type as the variable on the
left hand side. In other words, the equals operation is a left operand assignment
where the identifier on the left of the operator is set to the expression on the
right. For example:

Pipe assignment is a unique component of C? that makes chaining commands
easier and syntactically cleaner. Pipe assignment is a right operand assignment
where the value/variable on the left is ’piped’ into a function call as the first
argument in the function. Pipes can be combined for multiple levels of function
calls. An example is shown below:

Note that the pipe operator can also be used to end lines, resulting in stylistically
cleaner code. For example:

x =5 =>
add(5) =>
add(10) ;

4.5.3 Arrays

Arrays are collections of data of a single type, stored in sequential memory.
Arrays are heap objects that are pointers to a block of memory, and therefore
are pass-by-reference. Formatting for declaration of variables and literals can
be found in the Types and Literals sections above respectively.

In order to use an array, memory must be allocated for it on the heap using the
make command as follows:

maketype, len

where type is the array type (see the Types section above) and len is the initial
size of the array. Note that though the array is allocated, there are no values
stored in place. Array memory can be freed using the free_arr function.

Arrays can be indexed and individually assigned with the following syntax:
arr [INDEX] = EXPR;

where arr is an identifier for an array variable, INDEX is an integer value less
than the length of the array, and EXPR is an expression that resolves to a value
of the type of the arr variable. Indexed array values can be used as part of C?
expressions.

There are numerous built-in functions that work with arrays, such as len,
concat and append. For more on how to use these functions, please see the
Built-In Functions section below.

4.5.4 Structs

Structs allow users to create custom types out of clusters of primitive types.
Structs are heap objects that are pointers to a block of memory, and are there-
fore pass-by-reference. Formatting for declaration of variables and literals can
be found in the Types and Literals sections above respectively.

32

© X N U A W N e

=oe e
N B O

[
w

In order to use a struct, memory must be allocated for it on the heap using the
make command as follows:

makestruct type
where type is the name of a struct type. Note that though the struct is allo-
cated, there are no values stored in place. Struct memory can be freed using

the free function.

Struct members can be accessed and individually assigned with the following
syntax:

foo.member = EXPR;

where foo is a struct identifier, member is a struct member name for the struct
type of identifier foo, and EXPR is an expression that resolves to a value of
the type of member member. Struct member values can be used as part of C?
expressions. Note that struct members may be other structs. However, it is
not possible to nest struct access calls; instead, a new struct variable must be
assigned and accessed. For example:

C? handles method dispatch for structs, allowing methods to be assigned to a
struct namespace. Struct functions, or methods, can be defined with the fol-
lowing pattern:

[struct s_type VAR] F_ID(type ID, ...) r_type { STMTS }
where s_type is the name of the struct type, VAR is the name of the attached
struct in the method, F_ID is the name of the method in the struct namespace,

type is an argument type, ID is an identifier for a passed in argument, r_type
is the return type of the method, and STMTS are C? statements that include

33

N o v W N

=3

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

control flow. Methods can be called with the following syntax:

foo.method(ID, ID...)

where foo is a struct variable, method is an attached method name, and ID is
a name of an argument passed into the method. An example of defining and
calling a method is shown below:

34

40

41

42

/* This code therefore prints 10 */

return 0;

Note that users can define the same function name in different structs. For
example, there can be a manhattan distance method for type point and a
different manhattan _distance method for, e.g., type vector.

4.5.5 Matrices

C? supports matrices as well as a wide array of built-in matrix operations. Ma-
trices are heap objects that are pointers to a block of memory, and therefore
are pass-by-reference. Formatting for declaration of variables and literals can
be found in the Types and Literals sections above respectively.

In order to use a matrix, memory must be allocated for it on the heap using
one of the following commands:

init_fmat_const(float VAL, int ROW, int COL)
init_fmat_zero(int ROW, int COL)
init_fmat_identity(int ROW, int COL)

where VAL is an initial value (set to 0 for init_fmat_zero), ROW is an integer
number of rows in the matrix, and COL is an integer number of columns in the
matrix. Matrices can also be initialized directly with a matrix literal:

[(f1.0, 2.0, 3.01, 1.1, 1.2, 1.3] 1

Once created, the matrix will have initial values stored. Matrix memory can be
freed using the free function. To see other methods related to matrices, please
see the Built-In Functions section below.

Matrices can be indexed and assigned as follows:
fmat[R, C] = EXPR;

where fmat is the identifier of a matrix, R and C are integers denoting the row
and column of the value being indexed, and EXPR is an expression that resolves
to a value of the same type as the matrix. Indexed matrix values can be included
in C? expressions.

Like arrays, matrices have many built in functions that can be found in the
Built-In Functions section below. Matrices also have specific matrix operators
that can be found in the Operators section below. Note that each matrix oper-
ation creates a new matrix clone with its own allocated memory that needs to

35

eventually be freed. Indexing, assigning, and passing matrices does not create a
new matrix, but will modify the old matrix in place (due to pass-by-reference).
The copy () method can be used to duplicate an existing matrix.

4.5.6 Function Pointers

Function pointers in C? allow references to functions to be passed as arguments
and called. Formatting for declaration of variables and literals can be found
in the Types and Literals sections above respectively. Function pointers are
(obviously) pass-by-reference with regards to the target function.

4.5.7 Operators

Below are the tables describing the various built in operators in the C? lan-
guage. If a table specifies certain types, all operations in that table are assumed
function in the way specified for only those types.

Unary

Operator Explanation

(-expr) | Defined for int/float expressions. Numeric negation.

(lexpr) | Defined for boolean expressions. Logical negation.

Arithmetic (int, float)

Operator Explanation
(exprl + expr2) | Numeric sum.
(exprl - expr2) | Numeric subtraction.
(exprl * expr2) | Numeric multiplication.
(exprl / expr2) | Numeric division.
Matrices (fmatrix)
Operator Explanation
(exprl + expr2) Element-wise matrix sum.
(exprl - expr2) Element-wise matrix subtraction.
(exprl * expr2) Element-wise matrix multiplication.
(exprl / expr2) Element-wise matrix division.
(exprl .. expr2) | Matrix multiplication.
(exprl) Matrix Transpose.
Note: If one and only one of either exprl or expr2 are scalars instead of
matrices for the first four binary operators (+, -, *, /, we return an

element-wise operation with that scalar.

36

Assignment
Operator Explanation
(expr % expr) Equals assignment. See Assignment for more.
(expr => expr) | Pipe assignment. See Assignment for more.

Relational
Operator Explanation
(exprl < expr2) Less than comparison.
(exprl > expr2) Greater than comparison.

(exprl <= expr2) | Less than or equal to.
(exprl >= expr2) | Greater than or equal to.

Equality
Operator Explanation
(exprl == expr2) | Equality comparison.
(exprl != expr2) | Inequality comparison.
Logical
Operator Explanation

(exprl && expr2) | Logical AND.
(exprl || expr2) | Logical OR.

4.5.8 Operator Precedence

Operators are ordered with the following precedence rules from top to bottom,
highest to lowest precedence.

Precedence

Operator Name
(expr) Parenthetical statements.
(expr) Matrix transpose.
({- '} expr) Negation operations.
(expr {* / ..} expr) (Matrix) Multiplication, Division operations.
(expr {+ -} expr) Addition, Subtraction operations.
(expr {>, <, >=, <=} expr) | Comparison operations.
(expr {== !=} expr) Equality operations.
(expr && expr) Logical AND.
(expr || expr) Logical OR.
(expr => expr) Pipe assignment.
(expr = expr) Equal assignment.

4.6 Built-in Functions

The following functions are general functions are built into the C? language.

e void printf(str, type, type type...); An external call to the C

37

printf function. Takes a format string and a variable number of argu-
ments based on the format string.

e int time(); Returns the current second time.
The following functions are type conversion functions built into the C? language.

e float float_of_int(int i); Type conversion from int to float.

e int int_of _float(float f); Type conversion from float to int.

The following functions are memory management functions built into the C?
language.

e struct foo make(struct foo); Allocates memory for a struct of type
foo.

e type[] make(typell, int i); Allocates memory for a struct of type
type of size i.

e void free(fmatrix fm); Frees allocated memory for a matrix.
e void free(struct foo); Frees allocated memory for a struct.

e void free arr(typel] arr); Frees allocated memory for an array.
The following functions are array functions built into the C? language.

e int len(typel[] arr); Length of passed in array.

e type[] append(typel] arr, type id); Appends id to array arr.

e typel[] concat(typel] arrl, typel] arr2); Concatenates arr2to the
end of arrl.

The following functions are matrix functions built into the C? language.
e int cols(fmatrix fm); Returns the number of columns in a matrix.

e int rows(fmatrix fm); Returns the number of rows in a matrix.

4.7 Libraries

Below we list the packaged libraries that come with the C? language. For
each library, we highlight a few important functions and structs, but we do not
necessarily cover every function or struct that is available in the library in this
document. For further detail on the available functions in a given library, please
examine the library source available in the Appendix.

38

4.7.1 Interaction with Compiler

Libraries are implemented by appending the contents of a given library to the
top of a compiled C? program during compilation. In order to allow the compiler
to see a written library, the library source must be located in the /1ib/ folder.

4.7.2 IO
The following functions are included in the standard 10 library.
e void flush(); Flushes standard out.

e void print(int i); A helper function that specifies printf to ints only.
Will take in and print an integer type.

e void printb(bool b); A helper function that specifies printf to booleans
only. Will take in and print a boolean type.

e void print_float(float f); A helper function that specifies printf to
floats only. Will take in and print a float type.

e void print_string(string s); A helper function that specifies printf
to strings only. Will take in and print a string type.

e void print_line(); A helper function that prints a new line.
e void print_fmat_arr(fmatrix[] f_arr); Prints an array of matrices.

e void print_fmat_arr dims(fmatrix[] f_arr); Prints the dimensions
of each matrix in a matrix array.

4.7.3 Math

The following functions are included in the standard Math library.
e float sin(float x); Calculates the sin value of the input.
e float cos(float x); Calculates the cos value of the input.
e float log(float x); Calculates the log value of the input.

e float pow(float x, float y); Calculates the value of x raised to the
power y.

e int modulo(int x, int y); Calculates the value of x mod y.
e int rand(); Returns a random number from 0 to INTMAX.

e float rand norm(float mu, float sigma); Returnsarandom float ac-
cording to the normal distribution defined by mu and sigma.

39

© X N T oA W N =

e - e =
o v oA W N = O

o
3

4.7.4 Eigen

The Eigen library is designed to augment the matrix operations available in C?.
The following functions are included in the Eigen library.

void print mat(fmatrix fm); Prints a matrix.

fmatrix init_fmat_zero(int r, int c¢); Creates a new matrix of di-
mensions (r, c) and fills it with zeros.

fmatrix init_fmat_const(float s, int r, int c); Creates a new ma-
trix of dimensions (r, c) and fills it with const s.

init_fmat_identity(int r, int c¢); Creates a new matrix of dimen-
sions (r, c) and makes it an identity matrix.

fmatrix map(fmatrix fm, fp (float, float) ptr); Creates anew ma-
trix where function ptr is applied to each element in matrix fm.

4.7.5 DEEP

The DEEP library is a deep learning library designed to make implementing
deep learning models easier in C?. Currently, the library automates loading
of the MNIST handwritten-digits binary, and supports making fully-connected
feedforward architectures with arbitrary numbers of neurons and layers. Due to
the complexity of this library, individual components are discussed in slightly
more detail, especially with regard to common usage.

40

18

19

© 0 N e o oA W N =

e e T e e
o v A W N = O

-
3

load _mnist_data

MNIST is a classic machine learning problem that involves learning to recognize
a set of handwritten digits. The MNIST training corpus consists of 60,000 pieces
of labeled training data, and 10,000 of pieces labeled test data. All images are
28x28 grayscale images, with each pixel value encoded a]s an integer within the
range [0, 255].

The load mnist_data library function automatically loads the MNIST binary
from http://yann.lecun.com/exdb/mnist/ into the fmatrix arrays which are
provided as arguments. For ease of use, it reformats the 28x28 images into
784x1 fmatrices, and it uses one-hot-encoding to convert the number label (an
integer from {0,1,...,9}) into a sparse 10x1 matrix, where all values are 0 except
for the corresponding label index, which is 1. For example, 1 would be encoded
as [0, 1,0,0,0, ..].

This library function allows users to quickly plug into a well-known dataset so
they may test the other features of our learning library on actual real-world
data.

struct fc_model
The fc_model struct is the primary component of deep.mc. Here we define
an API which allows users to easily implement a fully-connected feed-forward

http://yann.lecun.com/exdb/mnist/

model. All they need to do is populate the fc_model struct fields, which are
defined as follows:

train_x: an array of fmatrices which represent the training corpus
train_y: an array of fmatrices that are the labels corresponding to train_x
test_x: an array of fmatrices which represent the test corpus

test_y: an array of fmatrices that are the labels corresponding to test_x

biases and weights: an array of fmatrices representing the bias and weight
parameters of the network. The user does not need to ever touch these;
the deep library has its own logic for initializing and optimizing these
parameters.

layer_sizes: and integer array describing the network architecture. The
length of the array represents the number of layers in the model, and the
value at index i denotes the number of neurons in layer i. Note: this
array must be of length ;= 2, because every neural needs at least an input
and output layer. Additionally, the user will need to size the input layer
correctly to match the dimensions of their training data.

epochs: How many epochs to train for

mini_batch_size: The mini_batch_size. Must be j= the size of the train-
ing corpus.

learning rate: the alpha coefficient used during backprop to update
weight and bias values.

weight_init: a function pointer used to initialize the bias and weight
parameters.

activate: a function pointer determining the activation function to be
used at each neuron.

activate_prime: a function pointer to the derivative of the activation
function.

cost: a function pointer to the cost function

cost_prime: a function pointer to the derivative of the cost function

To quickly try out the fc_model struct on real-world data, the user need only
load the mnist binaries using our load mnist_data helper function, populate
the struct fc model, and call train().

42

cost and activation functions deep.cqm comes with the following cost func-
tions:

e float quadratic_cost(fmatrix x, fmatrix y);
e fmatrix quadratic_cost_prime(fmatrix z, fmatrix x, fmatrix y)
e float cross_entropy_cost(fmatrix x, fmatrix y)

e fmatrix cross_entropy_cost_prime(fmatrix z, fmatrix x, fmatrix
y)

and the following activation functions:
e float sigmoid(float z)
e float sigmoid_prime(float z)
e float tanh(float z)
e float tanh prime(float z)
e float relu(float z)

e float relu prime(float z)

train This is a function bound to the fc_model struct. After setting all the
fields, the user may call fc.train() to train the model using vanilla back prop-
agation for an arbitrary number of epochs.

backprop This function is the core of our fc_model interface; it defines the
procedure for how we compute error terms throughout the network and update
parameter values. The user should never need to call this themselves. Currently
we only support the most basic backpropagation and gradient descent. Future
work includes implementing more advanced trainers, such as adagrad or adam,
which the user can then choose from. Additionally, we would have liked to open
a function pointer interface from which the user could have supplied their own,
custom trainer.

predict fc.predict(X) runs the current network on a single piece of data,
and returns the output fmatrix.

evaluate fc.evaluate() runs the network on all of the test data supplied in
fc.test_x and fc.test_y. It prints the overall performance and cumulative
cost.

demo

fc.demo(int n) shows n examples of correct predictions and n examples of
incorrect ones. The first incorrect prediction it shows is the one with lowest
cost, i.e. the incorrect prediction the model was most confident about being
correct.

43

© ® N e w oA W N =

Wow N NN N NN N NN N E E R e e e e e
= S ©® ® N 6 G KA W K B O © ® N O G A W N = O

misc In addition to the above, the following functions are included in the
DEEP library.

e int argmax(fmatrix fm); Returns index of largest value in a 1 dimen-
sional matrix, or row with the largest head in a 2 dimensional matrix.

e float 12 norm(fmatrix fm); Calculates the 12_norm of the passed in
matrix.

e float mat_sum(fm) return the sum of all the elements within a column
matrix

e void print mnist_image(fmatrix fm) pretty-prints a 784x1 fmatrix rep-
resenting an mnist image

Summary Putting it all together, using the fc_model struct looks like this:

44

32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

58

45

5 Project Plan

5.1 Processes
5.1.1 Planning

Planning for C7 took place in two major settings: weekly meetings with T.A.
Kai-Zhan Lee, and bimonthly team meetings.

During weekly meetings the team set out goals for the upcoming week based
on feedback from Kai-Zhan (both in terms of feasibility and implementation)
and presented our progress on the prior week to the team and to the T.A. In
this way we were able to constantly set progressing goals while simultaneously
confirming our prior work.

Bimonthly team meetings were used as a way to realign the team on the final
vision. These longer meetings included discussions about the inner workings of
our language and the important features that needed to be developed for our
final vision, as well as who would be in charge of developing a given feature.
Bimonthly team meetings were also used as a way to catch other team mem-
bers up to speed with the latest changes to the repository for any given feature,
including how to use the feature and how to merge the feature into the main
branch of the repository.

General day-to-day communication (mostly scheduling and short updates) oc-
curred over Instant Messaging.

5.1.2 Specification

During early planning stages we developed a language specification that laid out
the features and syntax of C7. Our original goal was to develop a language that
could be used to demo the MNIST Hand Writing Identification deep learning
task. To that end, we planned for C? to include structs, function pointers,
and matrices. As C? evolved into a more general language, specification was
updated to include external functions and arrays. Formal syntactic and lexical
specification was laid out in the LRM. Feature specification was developed in
tandem with the language tutorial.

5.1.3 Development

Development of C? was feature-centered. Features were assigned to a specific
team member, and that team member was responsible for front-to-back devel-
opment of the feature. This included scanning, semantic checking, and testing.
Once features were completed, team members worked together to merge changes
and create integration tests. Different features required different levels of work,
and as such were assigned on a complete-as-you-go basis.

46

5.1.4 Testing

Before any feature was merged back into the main branch of the repository, it
was tested with both positive and negative test cases. Further, the feature was
integration tested with other features that were already stable in the language.
All tests were then added to a global testing suite that could be automatically
backtested at any time with a single command.

5.2 Style Guide
We generally followed the following guidelines while developing our compiler:
e All local variables are snake case, all AST types are camel case.

e Two spaces per indent.

Generally stick to 80 char lines.
Try to keep variable declarations at the top of the file.

Misc functions for semantic checking and code generation stored in util.ml.

Large code blocks were proceeded with multiline Ocaml comments ex-
plaining the following code.

5.3 Timeline
5.3.1 Planned Timeline

Below is the projected milestone timeline for our project, roughly laid out at the
beginning of development. Because development was primarily feature oriented
instead of component oriented, milestones represent features that were expected
to have been completed by the given date.

Timeline
Date Milestone
Sept. 26 | Project Proposal
Oct. 16 Language Reference Manual
Nov. 8 Hello World (print, floats, strings)

Nov. 31 Structs, Function Pointers, Matrices
Dec 8 DEEP library abstraction, MNIST

Dec 18 Testing, Debugging complete

Dec 20 Final report complete

5.3.2 Project Log

Below is the actual timeline for our project. Again, because development was
primarily feature oriented, milestones represent features that were completed by
the given date. Further, because more features were added to the initial speci-
fication, the project log contains additional milestones that were not present in
the planned timeline.

47

Timeline

Date Milestone
Sep. 26 | Project Proposal
Oct. 16 | Language Reference Manual
Nov. 1 Project scrapped, restarted from scratch
Nov. 8 Hello World (print, floats, strings, C externals)
Nov. 25 | Structs completed
Dec. 4 Matrices completed
Dec. 7 Arrays completed
Dec. 13 | Function pointers completed
Dec. 14 | Pipes and struct method distpatch, Math library completed
Dec. 15 | MNIST completed
Dec. 18 | DEEP library, testing and debugging complete
Dec. 20 | Final report complete

5.4 Roles and Responsibilities

As previously mentioned, team responsibilities were assigned by feature. Each
team member was responsible for front to back development of each feature.
Thus, each team member touched all parts of the compiler and testing suites.

Team Responsibilities

Member Responsibilities
Andrew Aday Structs, Arrays, MNIST
Amol Kapoor Extern, Function Pointers, Final Report
Jonathan Zhang | Eigen Matrix Linking, Native Matrix Features

5.5 Software Development Environment

We used the following programming and development environment:

e Libraries and Languages: Ocaml version 4.05, including Ocamlyacc ver-
sion 4.05 and Ocammllex version 4.05 extensions. LLVM Ocaml version
5.0. gece version varies: version 9.0 and version 7.3 were both used.

e Software: Development was done on varying coding environments, includ-
ing Atom, SublimeText, and Vim.

e OS: Development was done on OSX 10.13 and on Ubuntu 16.04.

48

6 Architectural Design

6.1 The Compiler

The architecture of the C? compiler consists of the following major compo-
nents: CQM Libraries, Lexer, Parser, Semantic Checker, Code Generator, and
C libraries. The architecture is shown as a system block diagram below.

CQM Lib
tokens syntax AST tree

% Lexer Parser AST Semantics

hello.cqm
Type checked
AST tree
Y
LLVM
Binary gcc Code Gen
C Lib

The high level C? to LLVM compiler program cqm.ml calls each of the above
components sequentially. Our C? compiler compile.sh calls the compiler made
by cqm.ml and runs the entire compiler pipeline. First, input C? code is com-
bined with any libraries (.cqm) files stored in the /1ib/ folder. This combined
file is passed to the lexer and parser, generating an AST structure. The AST
tree is passed to the semantic checker, which checks types and ensures semantic
meaning. If the AST tree contains no type errors, the tree is passed to the
code generation module, which converts the input into LLVM. The LLVM code
is passed to gcc, which links to the necessary C libraries. gcc outputs an exe-
cutable file.

6.1.1 Scanner

The scanner simply takes an input C? program and generates tokens to identify
keywords, operators, and the various other language conventions described in
the LRM.

6.1.2 Parser

The parser evaluates the tokens generated by the lexer and creates an Abstract
Syntax Tree (AST) by specifying precedence and matching our recognized tokens
with AST nodes.

49

6.1.3 Semantics

The semantics checker runs through the AST and mainly checks for proper
typing. This process is especially important in collection based types such as
arrays and matrices and user-defined types such as structs and function pointers.
Our semantic checker does not return a SAST since it never directly modifies
the base AST; rather it will throw an error if it encounters an illegal usage.

6.1.4 Code Generator

The code generator, takes a semantically checked AST and builds the LLVM
equivalent of the language. The program simply walks through a post-order

traversal and generates the appropriate LLVM call for each specific node in the
AST.

6.2 Libraries

The main library used by our language is the popular Eigen® Linear Algebra
library that provides common matrix, vector and other operations in C++.
Owing to the large size of Eigen, we only take a small subset of the library
and wrap the underlying matrix types and operations with a C library. The
resulting compiled object file is then linked with gcc during the linking step.
We also extended several useful functions from the standard math library in
C++ using a similar method.

6.3 A Note on Labor Division

All components were built with input from all team members; each team mem-
ber was responsible for specific features end-to-end, from syntax to testing.

4http:/ /eigen.tuxfamily.org/

50

7 Test Plan

Features were developed independently in separate branches. For each feature,
white box tests were developed that tested expected working and failing inputs.
After the feature passed individual unit tests, multiple integration tests were
built to test how the feature played with other parts of the language. The
MNIST demo doubles as a system test. In total there are 123 different tests.

7.1 Testing Suites

All tests are stored in the /test/ folder. Tests are split into a fail suite and a
test suite based on name.

Any fail test follows the naming pattern fail-*.cqm. These tests have an ex-
pected output stored in <FILENAME>.err, where FILENAME is the same file as
the original fail test.

Any normal test follows the naming pattern test-*.cqm. These tests have an
expected output stored in <FILENAME>. out, where FILENAME is the same file as
the original normal test.

7.2 Automation

Testing automation is based on the Micro-C testing suite. The testall.sh
script compiles and runs all *.cqm files in the /test/ folder and compares the
output of the file to the corresponding *.err or *.out file of the same name. Any
compilation errors or differences in output are passed to stdout.

7.3 Division of Labor

All team members contributed to testing development. Individual team mem-
bers were responsible for unit testing the features that were assigned to them,
and for coordinating with other teammates to build out the appropriate inte-
gration tests.

7.4 Example Input-Output
Original CQM file for Struct Array Matrix test.

struct foo {
fmatrix[] fms;
int[] a;

}

int main()

{

o1

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

© ® N

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

Output LLVM for Struct Array Matrix test.

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71

72

53

73
74
75
76
T

78

79
80

81

82
83
84

85

86
87
88

89
90
91
92
93
94

95
96

97
98
929
100

101
102

103

104

106
107
108

109

54

110

111

113

114

115

116

117

118

119

121

122

124

125

126

127

129

130

131

132

133

134

136

137

138

139

140

141

143

144

145

147

148

149

150

55

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

192

193

194

195

56

196
197
198
199
200
201
202
203
204
205
206
207
208
209

210

212
213
214

215

217

218

219
220
221
222
223
224
225
226

227

229
230
231
232
233
234

235

237
238

239

57

241

242

244
245

246

248
249
250

251

253
254
255
256
257
258
259

260

262
263
264
265
266
267
268
269
270
271
272
273
274
275

276

277
278
279
280

281

283
284
285

286

58

287
288

289

290
291
292
293
294
295
296
297
298
299
300
301
302
303
304

305

307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326

327

329

330

59

331
332
333

334

335

336

337

338
339
340
341
342
343
344
345
346

347

349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369

371

372

60

373
374
375
376
377
378
379
380
381
382
383

384

385
386
387
388
389
390
391

393

394
395
396
397
398
399
400
401

402

403
404
405
406
407
408
409
410

411

412
413

414

61

416

417

419

420

422
423
424
425

426

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

30

Original CQM file for Sieve of Eranthoses.

—
2}

32

33

34

Output LLVM for Sieve of Eranthoses.

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

63

38
39
40
41

42

43

44

45
46
47
48

49

50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
T4
75

76

T
78
79
80

64

81

82

83

84

85

86

87

88

89

920

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

113

114

115

116

117

118

119

121

122

123

65

125
126
127
128

129

130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146

147

149
150
151
152
153
154
155
156

157

158

159
160
161
162
163
164
165
166
167

168

66

169
170
171
172
173
174
175
176
177
178
179
180

181

182
183
184
185
186
187
188

189

191
192
193
194
195
196
197
198

199

200
201
202
203
204
205
206
207

208

209

210

67

211

212

213

214

215

216

217

218

219

220

221

68

8 Lessons Learned

8.1 Andrew Aday

PLT gave me the chance to learn a lot about Machine Learning, a field that I
had no prior experience in. My team members were both pretty experienced
in ML, and we ended up deciding to focus on an ML-based language. In order
to understand both the direction of our language and our final implementation,
I had to quickly get at least a basic knowledge of the core principles in ML. I
ended up learning not just OCaml (and compiler design) but also the principles
of deep learning. I suggest that students be creative with their languages and,
if they have the support to do so, consider taking risks with learning something
new.

8.2 Amol Kapoor

Sometimes it is easier and faster to start from scratch. The first iteration of C?
was as Inception, a layers-based machine-learning-only library. After struggling
with LLVM and OCaml for close to a month, we realized that our plan of action
was wrong - instead of building a native machine learning language, we should
have built a powerful general language that could support a machine learning
library. Restarting the project proved to be far more fruitful than sticking with
what ultimately would have been a long uphill slog. My advice: be comfortable
with changing plans, even if the new plan is radically different.

8.3 Jonathan Zhang

It was a really bad idea to take so many hard classes in the same semester. PLT
was the cherry on top of ML, Algos, Modern Algebra, and CC - not exactly a
light workload by any means. Besides losing a lot of sleep, I felt that I missed
out on a lot of the fun of building your own language. Instead of flexing any
creativity, I had to do the bare minimum and spend time on other classes. I
would advise students to be smart about what classes they are taking along
with PLT. PLT is a lot of fun, but only if you have the time to do it.

69

12

13

14

15

16

17

18

19

20

21

22

23

24

© ® =

10

11

12

9 Appendix

9.1 Shell scripts

compile.sh

testall.sh

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

59

71

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

7

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

101

102

103

104

72

105
106
107
108
109

110

112
113
114
115
116
117
118

119

121
122
123

124

126
127

128

130

131

132
133
134
135
136
137
138
139

140

142
143
144

145

147
148
149

150

73

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

193

194

195

196

74

197

198

199

200

201

202

203

204

205

206

N o w s W M

®

10

11

12

13

14

15

16

17

18

19

20

21

22

23

compile (mnist)

prelude (mnist)

10

N o o«

®

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

9.2 Compiler files

cgm.ml

33

34

35

36

37

38

39

40

41

42

43

44

45

46

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

scanner.mll

29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

67

68
69
70
71
72

73

78

74
75
76
T
78

79

Bw N

N o o«

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

parser.mly

37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

67
68
69
70
71
72
73
74
75
76
T
78
79
80
81

82

80

83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101

102

104
105
106
107
108
109

110

111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126

127

81

129
130
131
132
133
134
135
136
137
138

139

141
142

143

145
146
147

148

150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174

175

82

176
177
178
179
180
181
182
183
184
185

186

188
189
190
191
192
193
194

195

197
198
199
200
201
202
203

204

205

206

207

208

209

210

211

213

83

215

217

218

219

220

221

222

223

225

226

227

229

230

231

232

234

235

236

237

238

239

240

Bow N

N o o«

10

11

12

13

ast.ml

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

60

85

61

62

63

64

65

66

67

68

69

70

71

T2

73

74

75

76

T

78

79

80

81

82

83

=Y

© ® N

11

12

13

14

15

16

17

18

19

semant .ml

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

87

63
64
65
66
67
68
69
70
71
72
73
74

75

76
7
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
929
100
101
102
103
104
105
106
107

108

88

109

110

112

113

114

115

116

117

118

119

121

122

123

125

126

127

128

130

131

132

133

134

135

136

137

138

139

140

141

143

144

145

147

148

149

151

152

153

154

89

155
156
157
158
159
160
161

162

163
164
165
166
167

168

169
170

171

173

174
175

176

177
178
179
180
181
182
183
184
185
186
187
188
189

190

192
193

194

90

195

196

197
198
199
200

201

202
203
204
205
206
207
208

209

210

211

213
214
215
216
217

218

219
220

221

223

224

225
226
227

228

230
231

232

91

233
234
235

236

237
238
239
240
241

242

244
245

246

248
249
250

251

253

254

255
256
257
258
259
260
261
262
263
264
265
266
267
268

269

270
271
272

273

92

274

275
276
277
278
279

280

281
282
283
284

285

286
287
288
289

290

291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307

308

309

310

312

313

314

93

315
316
317
318
319
320
321
322
323

324

325
326
327
328
329
330
331

332

334
335
336

337

338
339
340
341
342
343
344
345
346
347
348
349
350
351

352

354
355
356

357

94

358

359

360

361

362

363

364

365

366

367

368

369

370

371

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

codegen.ml

29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

58
59
60

61
62
63
64
65
66
67
68
69

70

71

72

96

73
74
75
76
T

78

79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98

99

100
101
102
103
104
105
106
107
108
109
110
111

112

114
115
116

117

97

118

119

121

122

123

125

126

127

128

130

131

132

133

134

135

136

137

139

140

141

142

143

144

145

146

147

148

150

151

152

153

154

155

156

157

158

159

160

98

161
162
163

164

165

166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184

185

186
187
188

189

190
191
192
193
194
195
196
197

198

200

201

202

99

203
204

205

206
207
208
209
210
211
212
213
214
215
216
217
218
219
220

221

223
224

225

227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246

247

100

249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267

268

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289

290

292
293
294

295

101

296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314

315

317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337

339
340

341

102

342

343

344
345
346
347

348

349
350
351
352
353
354

355

356

358

359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376

378
379
380

381

103

382
383
384
385
386

387

388

389

390
391

392

393
394
395
396

397

399
400
401
402
403
404
405
406
407
408
409
410
411
412

413

415
416
417
418
419
420
421

422

104

424

425

427

429

430
431
432
433
434
435
436

437

438

439
440
441
442

444
445
446
447
448
449
450
451

452

453
454
455
456
457
458
459
460
461
462
463

464

105

465

466

467

468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501

502
503
504
505
506

507

106

508
509
510
511
512
513
514
515
516
517

518

519
520
521
522
523
524
525

526

528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543

544

545

546

548
549
550

551

107

552
553

554

555

556

557
558
559
560
561

562

563

564
565
566
567

569
570

571

572
573
574
575
576
577
578

579

580
581

582

583
584

585

587
588
589

590

108

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

610

611

612

613

614

615

616

617

618

619

620

621

622

624

625

626

109

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

669

670

671

672

110

673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691

692

694
695
696
697
698
699

700
701

702
703

704

705
706
707
708
709
710
711
712

713

714

111

715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732

733

734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759

760

112

761
762
763
764
765
766
767
768

769

770
771
772
773
774

775

N o v W M

o

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

util.ml

113

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

114

72

73

T4

75
76
7

78
79

80

81
82
83
84
85

86

87
88
89
90

91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106

107

109
110

111

115

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

129

130

131

132

134

135

136

137

138

139

140

141

142

143

144

145

147

148

149

150

151

152

154

155

156

157

116

158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198

199

201
202
203

204

117

205
206

207

208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224

225

226

228
229
230
231
232
233
234
235
236
237
238

239

241
242
243

244

246
247

248

118

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

© ® N

10

11

12

13

14

15

16

17

18

19

20

21

22

9.3 Demo files

test-eigen-mnist.cqm

119

23

24

25

26

27

10

11

12

13

N o v s W M

o

10

11

12

13

14

15

16

Makefile (mnist)

9.4 Library files
deep.cqm

120

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

121

64
65
66
67
68
69
70
71
72
73
74
75
76
7
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104

105

107
108

109

122

111
112
113
114
115
116
117
118
119
120

121

123
124

125

127
128
129

130

132
133
134
135
136
137
138
139
140
141
142

143

145
146

147

149
150
151

152

154
155
156

157

123

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

199

200

201

202

124

203
204

205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220

221

223
224

225

227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246

247

125

249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267

268

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289

290

292

293

294

126

295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313

314

316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336

338
339
340

341

127

342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361

363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387

388

128

389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424

425

427
428
429
430
431
432
433
434

435

129

436
437
438
439
440

441

443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479

480

130

N o w W M

®

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

eigen.cqm

131

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

=Y

© ® N

11

12

13

14

15

16

17

18

19

eigenmnist.c

132

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

133

67
68
69
70
71
72
73
74
75
76
T
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107

108

110
111

112

134

114
115
116
117
118

119

121
122
123

124

126
127

128

130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154

155

157
158
159

160

135

161

162

163

164

165

166

167

N o w

®

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

eigen _test.c

eigen_test.h

136

=%

© ®

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

47

137

48
49
50
51
52
53
54

55

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

33

eigen_test_1lib.cpp

138

34
35
36
37
38
39
40
41
42

43

44
45
46
47
48
49
50
51
52
53
54
55

56

57

58

59
60
61
62
63
64
65
66
67
68
69

70

71

72

139

73
74
75
76
T
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96

97

98

99

100
101
102
103
104
105

106

107
108
109
110

111

113

114

140

115

116

117

118

119

120

121

122

123

124

125

126

127

129

130

131

133

134

135

136

137

138

139

140

141

142

143

145

147

148

149

150

151

141

152

153

154

156

157

158
159
160

161

162

163

164
165
166
167
168
169
170
171
172
173
174

175

io.cqm

142

w

'S

© ® N o wu

11

12

13

14

15

16

17

18

19

20

21

=%

© ® N

11

12

13

14

15

16

17

18

19

20

21

22

math.cqm

143

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

40

41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67

68

144

ton-in-c/

69
70
71
72
73
74
75
76

10

11

9.5 Test files

tests/fail-array-append.cqm

tests/fail-array-concat.cqm

tests/fail-assignl.cqm

145

=%

© ®

10

11

[N N

10

11

tests/fail-assign2.cqm

tests/fail-assign3.cqm

tests/fail-deadl.cqm

146

[N BN U N

tests/fail-dead2.cqm

tests/fail-def-free.cqm

tests/fail-def-len.cqm

tests/fail-def-size.cqnm

147

N o v s W M

o

10

11

12

13

14

15

16

17

18

=Y

© ® =

10

11

12

tests/fail-exprl.cqm

tests/fail-expr2.cqm

148

13

14

Bw N

N o o«

tests/fail-float-illegal-asn.cqm

tests/fail-forl.cqm

tests/fail-for2.cqm

tests/fail-for3.cqm

149

=%

o

Bow N

N o o«

Bw N

N o o«

10

tests/fail-for4.cqm

tests/fail-for5.cqm

tests/fail-fptr.cqm

150

10

11

12

13

14

10

11

12

tests/fail-free.cqnm

tests/fail-free arr.cqm

tests/fail-funcl.cqnm

151

Bow N

N o w

Bow N

N o o«

N o v oW N

23

10

11

12

13

14

tests/fail-func2.cqm

tests/fail-func3.cqm

tests/fail-funch.cqm

tests/fail-func6.cqm

152

=%

© ®

N o v - W N

23

10

11

12

13

tests/fail-func7.cqm

tests/fail-func8.cqm

tests/fail-func9.cqm

153

© ®

N o v - W N

23

tests/fail-globall.cqm

tests/fail-global2.cqm

tests/fail-ifl.cqm

154

Bw N

N o o«

tests/fail-if2.cqm

tests/fail-if3.cqm

tests/fail-make-array.cqm

tests/fail-matrix-assign.cqnm

155

N o

23

10

11

Bw N

N o o«

10

11

tests/fail-matrix-index.cqm

tests/fail-matrix-literal.cqm

tests/fail-pipe.cqm

156

11

12

13

14

Bw N

N o o«

10

tests/fail-returnl.cqm

tests/fail-return2.cqm

tests/fail-struct-assign.cqnm

tests/fail-struct-empty.cqm

157

N o v s W M

o

10

11

12

13

14

15

16

17

18

19

20

21

22

tests/fail-struct-method-dispatch.cqnm

tests/fail-whilel.cqm

158

10

11

12

13

w

'S

© ® N o o«

10

11

12

13

tests/fail-while2.cqm

tests/test-addl.cqm

tests/test-arithl.cqm

159

10

11

12

13

=Y

© ® =

10

11

12

13

14

tests/test-arith2.cqm

tests/test-arith3.cqm

tests/test-arr-to-mat.cqm

160

15
16

17

N o v W N

23

10

11

12

13

14

15

16

17

18

19

20

21

22

23

10

11

tests/test-array-append-struct.cqm

tests/test-array-append.cqm

161

12

13

14

15

16

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

tests/test-array-assign-index.cqm

tests/test-array-assign-struct.cqm

162

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

10

11

12

13

14

15

16

17

18

19

20

21

tests/test-array-concat.cqm

163

22

'S

© ® N o o«

10

10

11

12

13

14

15

16

tests/test-array-len.cqnm

tests/test-array-lit.cqm

tests/test-array-matrix.cqm

164

N o

23

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

N o v W N

23

10

11

12

13

14

15

16

17

tests/test-array-struct.cqm

165

18

19

20

21

22

N o w s W M

®

10

11

12

13

14

15

16

tests/test-array-zero-len.cqm

tests/test-fib.cqm

tests/test-float-comp.cqm

166

® N o u

10

11

=%

o

tests/test-forl.cqm

tests/test-for2.cqnm

tests/test-free.cqnm

167

10

11

12

N o w s W M

®

10

11

12

13

14

Bw N

o

tests/test-free_arr.cqnm

tests/test-func-pntr.cqnm

tests/test-func-pntr2.cqm

168

10

11

12

13

14

15

10

11

12

10

11

12

13

14

15

16

17

tests/test-funcl.cqm

tests/test-func2.cqm

169

10

11

12

13

N o o«

®

10

11

12

13

14

tests/test-func3.cqm

tests/test-funcd.cqm

tests/test-funch.cqm

170

N o v W N

23

N o w s W M

®

10

11

12

13

tests/test-func6.cqm

tests/test-func7.cqnm

tests/test-func8.cqm

171

10

N o v W N

23

10

11

12

13

14

15

N o v s W M

o

10

11

12

13

14

tests/test-gecd.cqm

tests/test-gcd2.cqm

tests/test-globall.cqm

172

=%

© ®

10

11

12

13

14

15

16

17

18

19

20

21

22

23

'S

© ® N o wu

10

tests/test-global2.cqm

tests/test-global3.cqm

173

© ® N o o«

10

11

Bw N

o

tests/test-hello.cqm

tests/test-ifl.cqm

tests/test-if2.cqm

tests/test-if3.cqm

174

10

11

12

13

14

15

16

tests/test-if4.cqm

tests/test-if5.cqm

tests/test-inline-comment.cqm

175

10

11

12

13

Bow N

o

=Y

© ® N

10

11

tests/test-int-float-cast.cqnm

tests/test-link-print.cqm

tests/test-locall.cqm

176

12

13

N o w - W »N

23

10

11

12

13

14

N o v s W M

o

10

11

12

13

14

15

16

17

18

tests/test-local2.cqm

tests/test-matdel.cqm

tests/test-mathlib.cqm

177

=%

© ®

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

[N T N U N

tests/test-matrix-assign.cqnm

178

10

11

12

13

14

15

16

17

18

19

20

21

22

10

11

12

N o v - W N

23

10

tests/test-matrix-index.cqm

tests/test-matrix-map.cqm

179

11

12

13

14

15

16

Bw N

N o o«

10

11

12

13

tests/test-matrix-row-col.cqm

tests/test-matrixl.cqm

tests/test-matrix2.cqm

180

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

N o v W N

23

10

11

tests/test-matrix3.cqm

181

12

13

10

11

12

13

N o v oW M

®

10

11

12

13

14

15

16

17

18

19

20

21

22

tests/test-multi-decl.cqm

tests/test-opsl.cqnm

182

23

24

25

26

27

28

Bw N

N o o«

10

11

12

13

14

15

16

17

10

11

12

13

14

tests/test-ops2.cqm

tests/test-pipe.cqm

183

15
16
17
18
19
20
21
22
23
24
25
26
27
28

29

=%

© ® N

10

11

tests/test-print-float.cqm

tests/test-print-string.cqm

tests/test-printbig.cqnm

184

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

27

N o v W M

o

10

11

N o v - W N

23

10

tests/test-recl.cqnm

tests/test-sieve.cqm

185

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

10

11

12

13

14

15

16

17

18

tests/test-struct-array-access.cqm

186

19

20

21

22

23

24

Bw N

N o o«

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

[N N

tests/test-struct-assign.cqnm

tests/test-struct-decl.cqnm

187

10

11

12

13

14

15

16

17

18

19

10

11

12

13

14

15

16

17

18

19

20

21

22

tests/test-struct-func.cqm

tests/test-struct-matrix.cqm

188

10

11

12

13

14

10

11

12

13

14

15

16

17

18

19

[N N

tests/test-struct-method-dispatch.cqm

tests/test-struct-nested.cqnm

189

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

10

11

12

13

14

15

16

tests/test-struct-of-array.cqm

190

[N N

10

11

12

13

w

'S

© ® N o o«

10

11

tests/test-varl.cqnm

tests/test-var2.cqm

tests/test-whilel.cqm

tests/test-while2.cqm

191

©

~ 0 o

10

11

12

13

14

15

16

192

	Abstract
	Introduction
	Overview
	Syntax
	Features
	C?

	C? Language Tutorial: Welcome to C?!
	Hello World and Compiler Usage
	Arithmetic, Algebra, and If/Else
	Basic Math
	Variables
	Booleans
	Conditionals

	Collections of Data and Loops
	While, For
	Arrays

	Functions
	Advanced Topics
	Structs
	Matrices
	Memory Management
	Function Pointers
	Links to C

	Conclusion

	C? Language Reference Manual
	Introduction
	Data Representation
	Types
	Literals

	Lexical Conventions
	Spacing
	Comments
	Identifiers
	Keywords

	Program Structure
	Scoping Rules
	Declarations
	Control Flow

	Expressions
	Primary Expressions
	Assignment
	Arrays
	Structs
	Matrices
	Function Pointers
	Operators
	Operator Precedence

	Built-in Functions
	Libraries
	Interaction with Compiler
	IO
	Math
	Eigen
	DEEP

	Project Plan
	Processes
	Planning
	Specification
	Development
	Testing

	Style Guide
	Timeline
	Planned Timeline
	Project Log

	Roles and Responsibilities
	Software Development Environment

	Architectural Design
	The Compiler
	Scanner
	Parser
	Semantics
	Code Generator

	Libraries
	A Note on Labor Division

	Test Plan
	Testing Suites
	Automation
	Division of Labor
	Example Input-Output

	Lessons Learned
	Andrew Aday
	Amol Kapoor
	Jonathan Zhang

	Appendix
	Shell scripts
	Compiler files
	Demo files
	Library files
	Test files

