giraph

Daniel Benett (deb2174)
Seth Benjamin (sjb2190)
Jennifer Bi (jb3495)
Forrest Hofmann (fhh2112)
Jessie Liu (jl12219)

Fall 2017

1 Language Overview

We propose giraph, a language that simplifies graph implementation and manipulation. The lan-
guage supports directed, undirected, and acyclic graphs. If time permits, we will extend support to
bipartite, complete, and other properties. Users may initialize graphs by properties (i.e., a directed
acyclic graph with 2 children per node — a binary tree) or manually, using intuitive node-edge syntax.
Operators for join, union, intersection will make implementation of graph algorithms more concise
and readable. The motivation for our language comes from previous experience with graph algo-
rithms such as shortest path (Dijkstra’s, Bellman-Ford, Floyd-Warshall), minimum spanning tree
(Prim’s/Kruskal’s), and maximum flow (Ford-Fulkerson / Edmonds-Karp). Broader applications
include network flow, vertex and edge coloring, and linguistic modeling.

.

Undirected Graphs ¢ Trees
Graphs

Directed Graphs ¢ Directed Acyclic Graphs

2 Data Types

Type Description

graph a set of nodes and a set of edges

digraph | a graph with directed edges

tree a graph that is undirected and acyclic
dag an acyclic digraph with a source and a sink
node a container for some built-in type
edge a 2-tuple containing two nodes or a 3-tuple containing two nodes and a direction boolean
set a finite unordered collection of unique built-in types
list a finite ordered collection of built-in types
map a collection of 2-tuples representing key-value pairs
int a 4-byte integer

float an 8-byte floating point value

string | a finite sequence of characters

character | a 1-byte value

boolean | a true or false value

3 Syntax

3.1 General Syntax
Syntax Literal ‘ Description

a block indicator

a block terminator

an expression indicator
an expression terminator

~ | |~

a value separator
; a statement terminator
// a single line comment indicator

o |

/* a multiple line comment indicator
*/ a multiple line comment terminator

3.2 Reserved Keywords

Keyword Description

if (exzpression) a control flow indicator that executes

the following block if expression is true

elif

(exzpression) a control flow indicator that executes
the following block if previous if and elif
expressions were not true and
expression is true

else a control flow indicator that executes
the following block if previous if and elif
expressions were not true

for (statement 1;

expression; statement 2) | a loop that performs statement 1,
executes while expression is true,
and performs statement 2

after every iteration

for (type iterating var; collection) a loop that executes once for every element

in collection, with the element currently
iterated on accessible with iterating_var

while (exzpresstion) a loop that executes while expression is true
function a function indicator
lambda an anonymous function indicator
void a void return type indicator
return a return indicator

3.3 Operators
Operator

Description

assignment operator

addition operator valid for int, float, string

subtraction operator valid for int, float, string

multiplication operator valid for int, float

division operator valid for int, float

remainder operator valid for int, float

intersection operator valid for graph, set

union operator valid for graph, set

conditional and operator valid for boolean

conditional or operator valid for boolean

logical complement operator valid for graph, boolean

relational equal to operator valid for all types

relational not equal to operator valid for all types

relational less than operator valid for int, float

relational less than or equal to operator valid for int, float

relational greater than operator valid for int, float

relational greater than or equal to operator valid for int, float

3.4 Graph Syntax
Syntax Literal ‘ Description

- an undirected edge
-> a singly-directed edge
<=> a doubly-directed edge
: a node initialization indicator
[a node access indicator
] a node access terminator

4 Standard Library

e Accessors/iterators:

Iterators/accessors for graphs: nodes(), edges(), find(data), connected _components ()

Iterators/accessors for trees: root (), leaves()

Accessors for DAGs: source(), sink()

Accessors for edges: .from, .to, .weight

Accessors for nodes: .name, .data

e Mutators: add node(), add_edge(), remove node(), remove edge(), Graph gl + Graph
g2, gl - g2

e Traversal: bfs(graph g, node r, lambda f),dfs(graph g, node r, lambda f), preorder(tree
t, lambda f), inorder(tree t, lambda f), postorder(tree t, lambda f)

e Visualization: render(graph, filename)

5 Typical Use Cases

1. Shortest paths (Dijkstra’s, Bellman-Ford, Floyd-Warshall)
2. Minimum spanning tree (Prim’s/Kruskal’s)
3. Maximum flow and minimum cut (Ford-Fulkerson/Edmonds-Karp)

4. Finding Eulerian tours and Hamiltonian cycles

6 Example Programs

1. Hello World

function void hello_world () {

dag hello_world = A: -> B: -> C:
-> D: -> E: -> F:
-> G: -> H: -> I:
-> J: -> K: 5

bfs(hello_world, A, lambda (node n) { print(mn.data); 1});

. Edmonds-Karp Algorithm

function dag augment(dag flow, dag path) {
// Get bottleneck capacity of path.
int min = path.edges () [0].weight;
for (edge e: path.edges()) {
if (min > e.weight) {
min = e.weight;

}

// Augment flow.
for(edge e : path.edges()) {
if (flow.has_edge(e.from, e.to)) {
int current_flow = flow.get_edge(e.from, e.to).weight;
// Add bottleneck capacity to current flow.
flow.add_edge(e.from, e.to, current_flow + min);

} else {
int current_flow = flow.get_edge(e.to, e.from).weight;
// Subtract bottleneck capacity from current flow.
flow.add_edge(e.to, e.from, current_flow - min);

}

}

return flow;

function digraph make_residual_graph(dag flow, dag network) {
digraph residual_graph;
for (edge e : flow.edges()) {

int backward = e.weight;
if (forward > 0) {
residual_graph.add_edge(e.from, e.to, forward);

X
if (backward > 0) {
residual_graph.add_edge(e.from, e.to, backward);

}
return residual_graph;
function dag edmonds_karp(dag network) {

// First, set up inttial flow of 0 on every edge.

dag flow;

int forward = network.get_edge(e.from, e.to).weight - e.weight;

// The argument "metwork" contains the capacities as weights on edges.
// Flow ts represented wtth a graph ezactly equivalent to network,
// with the flow on each edge as the weight instead of the capacity.

but

for (edge e : network.edges()) {
flow.add_edge(e.from, e.to, 0);
}
dag residual = make_residual_graph(flow, network);
while (true) A
map parents;
// Find shortest s-t path with BFS.
bfs(residual, network.source,
lambda(node n) {
for (node neighbor : residual.get_neighbors(n)) {
parents [neighbor] = n;
}
ION
// If we didn’t reach the sink, there is mo s-t path in residual
if (!parents.contains_key(i)) {

break;

}

dag path;

node i = network.sink;

while (i != network.source) {
path.add_edge (parents[i], i,

residual.get_edge(parents[i], i).weight);

i = parents[i];

}

flow = augment (flow, path);
}

return flow;

