
M 2 Language Proposal

Tengyu Zhou - tz2338
Jeffrey Monahan - jm4155
Chrisitne Pape - cmp2223

Shelley Zhong - sz2699

September 26, 2017

1 Motivation

Matrices are an integral part of many mathematical operations and have uses ranging anywhere
from graphics to cryptography. Some of the operations, however, that can be performed on them
can get messy and complicated very quickly when done by hand. By creating this language, we
hope to optimize how people work with matrices, saving time both on initial computation and
going back to fix potential errors.

2 Language Description

The primary goal of our language is to provide a platform to both easily define and manip-
ulate matrices. To this end, we aim to implement the basic building blocks of all complex
matrix functions (e.g. cross product, inverse, transpose, etc.) as well as implement an intuitive
method to define and manipulate vectors of various sizes. Furthermore, we will implement the
fundamental operators needed to perform most mathematical operations. We feel that it is
important the program has the ability to interact with the user through I/O, so we keep the
idea of strings, printing, and scanning user input. We also keep basic fundamentals, such as
conditional statements and loops. Our syntactical style while remain similar to the widely used
languages (i.e. We will be keeping our language easy enough to learn by someone who already
knows modern programming languages while adding enough Matrix-specific features so that it
is specialized.

Ultimately, our programming language is designed to be used as a tool for manipulating
matrices, so the types of programs meant to be written in this language reflect that. Besides
performing basic operations, programmers should be able to build programs that can solve
systems of equations, encrypt/decrypt messages, or even create graphs and images.

3 Syntax

3.1 Reserved Words

if else and or return while for break continue to

1

3.2 Primitive Data Types

int Standard representation of signed or unsigned integers.
Example declaration: int X = 1;

float Standard representation of signed or unsigned single-
precision floating point numbers.
Example declaration: float X = 1.0;

double Double-precision floating point number.
Example declaration: double X = 1.0;

char 16 bit datatype representation.
Example declaration: char C = ’a’;

boolean Standard representation (holds values 1 or true, for true,
and 0 or false, for false.
Example declaration: bool X = false;

3.3 Support Data Types

matrix Simple definition: similar to the definition of an array in
Java (e.g. a 2× 3 matrix is defined by the user as Matrix M
= new Matrix[2, 3])
Storage type: stored as an array of the elements, where the
top left is the 0th element and the bottom right is the last.

string Strings are char arrays.
Example declaration: string A = new string(”hello world”)

array Instantiated as in Java
Example declaration: int[] A = new int[10];

graph Stored as screen vertex data. Each vertex is either filled or
not and is filled based upon

function For ease of input when doing mathematical operations.
Example declaration: function Y = 3x + 5y

3.4 Basic Operators

+,−, ∗,×, /,% Arithmetic operators

==, ! =, >,<,>=, <= Relational operators

!,&&, || Logical operators

= Assignment operator

3.5 Matrix Operators

. Dot product A.B

× Cross product A × B

[x : y : z] Matrix construction operator

det(A) Compute the determinant of a matrix

transpose(A) Compute the transpose of a matrix

makeMatrix(list,x,y) Return a matrix from an array with spec-
ified dimensions

.length Returns number of columns

.width Returns number of rows

2

3.6 Graphs functions

Graph A = new Graph[function]; Fills in screen vertex data so that
the function may be displayed on
screen. The filled vertices can be
manipulated using matrices

writeGraph(A); Writes Graph A to the screen and
displays the result in a window.

Graph A; Matrix B;
Graph C = A * B;

Reorders filled status of vertices in
Graph A, according to Matrix B,
in order to produce the new Graph
C. This is, essentially, matrix-vector
multiplication done iteratively.

3.7 General Syntax

(x), function(x) Parentheses to order calculation process as well
as enact functions (i.e. det(A), transpose(A),
etc.)

; Denotes end of line (white space is ignored)

{statements} Curly braces are used to group statements

VARIABLE NAME Identifier variables will be all uppercase with
words separated by underscores

functionvariables Variables used in functions will be all lowercase

//comments For comments

\”, \ ’, \t, \n, \\ Special characters: ”, ’, tab, newline, \

3.8 Other Built-in Functions

readInput() Get user input from the keyboard

print() Print content in the parenthesis

import() Import libraries

exit() Exit the program

4 Sample Code

[1]

1 // takes a message and a key from the user
2 // encrypts the message and p r i n t s encrypt ion
3 // decrypts the message and p r i n t s the message
4

5 char [] LETTER DEFINITION = { ’ ’ , ’ a ’ , ’ b ’ , ’ c ’ , ’ d ’ , ’ e ’ , ’ f ’ , ’ g ’ , ’ h ’ , ’ i ’ , ’ j ’ , ’ k ’ , ’ l ’ , ’m
’ , ’ n ’ , ’ o ’ , ’ p ’ , ’ q ’ , ’ r ’ , ’ s ’ , ’ t ’ , ’ u ’ , ’ v ’ , ’w’ , ’ x ’ , ’ y ’ , ’ z ’ } ;

6

7 St r ing MESSAGE = readInput () ;
8 i n t [] INT MESSAGE = new in t [MESSAGE. l ength]
9

10 f o r (i n t I = 0 ; I<MESSAGE. l ength ; I++){
11 bool CHANGED = f a l s e ;
12 f o r (i n t J = 0 ; J<LETTER DEFINITION. l ength ; J++){
13 i f (MESSAGE[I] ==LETTER DEFINITION[J]) {
14 INT MESSAGE[I] = J ;
15 CHANGED = true ;
16 }
17 }

3

18 i f (!CHANGED) {
19 pr in t (”Your message conta in s an i n v a l i d charac t e r . P lease use only l e t t e r s

and spaces . ”) ;
20 e x i t (1) ;
21 }
22 }
23

24 i n t KEY LENGTH = readInput () ;
25 i n t [] KEY = new in t [KEY LENGTH] ;
26

27 f o r (i n t I = 0 ; I < KEYLENGTH; I++){
28 KEY[I] = readInput () ;
29 }
30

31 matrix KEYMATRIX = makeMatrix (KEY, 3 , 3) ;
32 matrix MESSAGEMATRIX = makeMatrix (INT MESSAGE, l en (INT MESSAGE) /3 , 3) ;
33

34 matrix CIPHER TEST MATRIX = KEYMATRIX ∗ MESSAGEMATRIX;
35

36 f o r (i n t I = 0 ; I<CIPHER TEST MATRIX. l ength ; I++){
37 f o r (i n t J = 0 ; J<CIPHER TEST MATRIX. width ; J++){
38 // p r in t coded message
39 pr in t (CIPHER TEST MATRIX[I] [J] + ””) ;
40 }
41 }
42 pr in t (\ n) ;
43

44 // s t a r t decrypt
45 Matrix D KEY = KEYˆ−1;
46

47 Matrix D MESSAGE = D KEY ∗ CIPHER TEST MATRIX;
48

49 f o r (i n t I = 0 ; I<DMESSAGE. l ength ; I++){
50 f o r (i n t J = 0 ; J<DMESSAGE. width ; J++){
51 // p r in t decoded message
52 i n t INDEX = DMESSAGE[I] [J] ;
53 pr in t (LETTER DEFINITION[INDEX]) ;
54 }
55 }

References

[1] Application to cryptography, http://aix1.uottawa.ca/ jkhoury/cryptography.htm.

4

	Motivation
	Language Description
	Syntax
	Reserved Words
	Primitive Data Types
	Support Data Types
	Basic Operators
	Matrix Operators
	Graphs functions
	General Syntax
	Other Built-in Functions

	Sample Code

