
Go Backwards: An Object Oriented Approach
COMSW4115 - Programming Language and Translators

Tahmid Munat (tfm2109), Shaquan Nelson (sdn2115), Peter Richards (pfr2109),
Julian Silerio (jjs2245), Catherine Zhao (caz2114)

I. Describe the language that you plan to implement

GoBackwards offers an innovative approach to Go and its problems. Go is robust,
concurrent, and simple. The simplicity allows users to learn it within a night. Go is a low
level language that separates it from others like C because it has garbage collection. As
Go becomes more mainstream, the pros for Go get stronger while the cons amplify. Go is
not a fully object oriented programming language meaning while you can create
structures that share attributes, but there is not inheritance. In Go, a user also cannot
overload operators, or add new keywords. This means that users cannot create data types
which constricts users for the sake of speed. In addition, Go does not handle GUI very
well.

GoBackwards wants to solve these problems by allowing the user to create classes
and be able to store them inside of data structures. We want to create a language that
allows for quick package imports with extended capabilities. GoBackwards takes a step
backwards from Go and attempts to solve the problems that users have found to be
annoying and constricting.

II. Explain what sorts of programs are meant to be written in your

language
Our goal is to build a very robust low level language that can solve some of the

pitfalls from Go. The language will be set up in a similar fashion to Go, so the typical
data structures, search algorithms, and file system management will be available in our
language. Therefore, this language should technically be fit to be used as a substitute for
the languages taught in the lower level computer science classes, and any programs
written in such classes, from palindrome checkers to image processing through RGB
tuples to creating and searching through trees is feasible with our language.

Our final sample program is to convert song lyrics into a NFA structure. The
program will read a text file containing the lyrics to a song. Then it will parse the text
into sections and finally create an NFA structure for this particular song. This program
demonstrates the capability of handling a advanced data structures, and graphical user
interfaces.

III. Explain the parts of your language and what they do
The section will contain syntax of the program. In particular, data types, numerical

operation, logical operation, keywords, control flow, function.

Data Types - Primitive

int Integer

double Floating point
number

char Character

boolean True, False

string String

Table 1 - Data Type, Primitive

Data Types - Object

class

type

list Structure to store
values of any type

null Zip, zill, nada

set Another structure
to store values

Numerical Operations

+, -, *, /, % Arithmetic

operators

!=, >, <, >=, <= Comparators

+=, -=, *=, /= Perform operation
and assign to
variable

Logical Operations

and, && AND

or, || OR

not, ! NOT

IV. Include the source code for an interesting program in your language

https://github.com/pr/GoBackwards

Hello World

//Hello World in GoBackwards

package main
import **fmt**
import **nfa**

func main() {
 nfa == NewNFA("Hello", initial)
 nfa.AddState("World", final}

 nfa.AddTransition("Hello" => "World")

 nfa.render

}

NFA Represented in GoBackwards
//Heavily based on https://github.com/kkdai/nfa, modified for
GoBackwards

//A text file should be parsed, and generate a file like this
one for rendering
//Turn the words in the text file into a NFA
//nfa.render will print out in command line a representation of
the NFA

package main
import **fmt**
import **nfa**

func main() {

 nfa == NewNFA(0, initial)
 nfa.AddState(1)
 nfa.AddState(2)
 nfa.AddState(3, final)
 nfa.AddState(4)

 nfa.AddTransition(0 => 1)
 nfa.AddTransition(1 => 2)
 nfa.AddTransition(2 => 0)
 nfa.AddTransition(2 => 3)
 nfa.AddTransition(3 => 4)
 nfa.AddTransition(4 => 4)

 nfa.render

}

