Go Backwards: An Object Oriented Approach
COMSW4115 - Programming Language and Translators

Tahmid Munat (tfm2109), Shaquan Nelson (sdn2115), Peter Richards (pfr2109),

II.

Julian Silerio (jjs2245), Catherine Zhao (caz2114)

Describe the language that you plan to implement

GoBackwards offers an innovative approach to Go and its problems. Go is robust,
concurrent, and simple. The simplicity allows users to learn it within a night. Go is a low
level language that separates it from others like C because it has garbage collection. As
Go becomes more mainstream, the pros for Go get stronger while the cons amplify. Go is
not a fully object oriented programming language meaning while you can create
structures that share attributes, but there is not inheritance. In Go, a user also cannot
overload operators, or add new keywords. This means that users cannot create data types
which constricts users for the sake of speed. In addition, Go does not handle GUI very
well.

GoBackwards wants to solve these problems by allowing the user to create classes
and be able to store them inside of data structures. We want to create a language that
allows for quick package imports with extended capabilities. GoBackwards takes a step
backwards from Go and attempts to solve the problems that users have found to be
annoying and constricting.

Explain what sorts of programs are meant to be written in your
language

Our goal is to build a very robust low level language that can solve some of the
pitfalls from Go. The language will be set up in a similar fashion to Go, so the typical
data structures, search algorithms, and file system management will be available in our
language. Therefore, this language should technically be fit to be used as a substitute for
the languages taught in the lower level computer science classes, and any programs
written in such classes, from palindrome checkers to image processing through RGB
tuples to creating and searching through trees is feasible with our language.

Our final sample program is to convert song lyrics into a NFA structure. The
program will read a text file containing the lyrics to a song. Then it will parse the text
into sections and finally create an NFA structure for this particular song. This program
demonstrates the capability of handling a advanced data structures, and graphical user
interfaces.

I11.

REY JUDE - ELVIS PRESLEY

(Words and susic by Joha Lessos - ﬁJMﬂ

l:x Jude, don't make it Daa
Take a sad song and sake it Detter
The minute you let hear iate your heart

Then you cas start to sake it better

Boy Jude, don't let =e down

Take a sad song asd sake it better
The minute you let her iato your heart
Then you cas start to sake it Detter

Lot it out and let in

Bey Jude begin

To making the world a little Detter
Don't you Rkaow that it's & fool
Mho plays it coeol

In making the world a littlie bDetter

Bey Jude, don't let me down

Take a sad and make it better
The minute you Lot hear Late your heart
Then you cas start to make it Detter

Let it out and let ia

Roy Jude begin

TO making the world a little Detter
Pon't you kaow that it's & Toold

Mho plays it coeol

To taking the world wpon your shoulder

Bey Jude, don't let se dowsn

le. & sad song and make it Detter
The ninute you let Ber iate your heart
Then you cas start to sake it Detter

Ma na na na na

{ hevuce]
e
o Te—
-

Explain the parts of your language and what they do

The section will contain syntax of the program. In particular, data types, numerical

operation, logical operation, keywords, control flow, function.

Data Types - Primitive
int Integer
double Floating point
number
char Character
boolean True, False
string String
Table 1 - Data Type, Primitive
Data Types - Object
class
type
list Structure to store
values of any type
null Zip, zill, nada

set Another structure
to store values

Numerical Operations

+, =, %/, 0% Arithmetic
operators

I=, >, <, >=, <= Comparators

+=, -=, *=, /= Perform operation
and assign to
variable

Logical Operations

and, && AND
or, || OR
not, ! NOT

IV. Include the source code for an interesting program in your language

https://github.com/pr/GoBackwards

Hello World

//Hello World in GoBackwards

package main

import **fmt**

import **nfa**

func main () {
nfa == NewNFA ("Hello", initial)
nfa.AddState ("World", final}

nfa.AddTransition ("Hello" => "World")

nfa.render

NFA Represented in GoBackwards
//Heavily based on https://github.com/kkdai/nfa, modified for

GoBackwards

//A text file should be parsed, and generate a file like this
one for rendering

//Turn the words in the text file into a NFA

//nfa.render will print out in command line a representation of
the NFA

package main
import **fmt**

import **nfa**
func main () {

nfa == NewNF

A(0, initial)
nfa.AddState (

(

(

(

0
)
nfa.AddState (2)
nfa.AddState

(
1
2
3, final)
nfa.AddState (4)

nfa.AddTransition (0 1
nfa.AddTransition (1 2
nfa.AddTransition (2 0
nfa.AddTransition (2 => 3
nfa.AddTransition (3 4
nfa.AddTransition (4 4

nfa.render

