
Facelab: A Facial Image Editing Language

Xin Chen (xc2409)
Kejia Chen (kc3136)
Tongfei Guo(tg2616)

Weiman Sun (ws2517)

September 26, 2017

1 Introduction and Motivation
Facelab aims to perform face detection, face recognition, filter applying and photo sticker adding
among other features which enable the target users to manipulate their portrait photos with ease
and accuracy.

The basic syntax of this language largely resembles that of C++, excluding some of the irrele-
vant and hard-to-implement details such as inheretance, template, etc. With the inclusion of the
matrix data type that is common to many scientific programming languages, it not only facilitates
image processing related computation, but also grants users the ability to manipulate photo on a
pixel scale and allows users the freedom to define and tailor their own filter to individuals’ pref-
erence. Moreover, by having OpenCV linked at the compiling stage, it provides access to some
of the state-of-art face detection and face recognition algorithms without the hassle of having to
install the whole libraries of OpenCV, learning its and its companying auxiliary libraries’(such as
Eigen library) functionalities. A combination of these afore-mentioned features could consider-
ably simplify real-life tasks such as adjusting photo brightness and contrast, batch-editing photos,
auto-applying facial pixelization, and so on.

2 Syntax

Table 1: Data Structure
type name description

int 32-bit signed integer
double 64-bit float-point number
bool 8-bit boolean variable
string array of ASCII characters
matrix data structure storing bool/ints/doubles of arbitrary size
image a jpg image(data structure storing 3 matrices)

1

Table 2: Arithmetic Operator
Operator name functionality

+ addition(scalar), addition(matrix)
- subtraction(scalar), subtraction(matrix)
* multiplication(scalar), multiplication(matrix)
.* component-wise multiplication(matrix)
’ transpose(matrix)
/ division(scalar)
% yields the remainder from the division of the first expression by the second(scalar)
! not(scalar)
| or(scalar)
& and(scalar)
$ pre-defined filter identifier, followed by filter’s name.(e.g. image $sharpen)

Table 3: Relational Operator
Operator name functionality

< less than
> greater than
<= less than or equal to
>= greater than or equal to
== equal to
!= not equal to

Table 4: Flow Control
Operator name functionality Syntax
if/ else/ else if Conditional expression if (condition)
while/ for Iteration while(condition),for(count; condition; update)

continue/break Branching control break;continue;

Table 5: Built-in functions
Function name functionality Signiture

load load image load("filename.jpg")
save save image save("filename.jpg")

recognition recognize the face in the filename.jpg by recognition("folder name","filename.jpg")
training images from the given folder

detection detect whether filename.jpg includes faces detection("filename.jpg")
drawRect draw a rectangle of given size at given position drawRect(image, x, y, width, height)
drawText draw given string at given position drawText(image, string, x, y)
pixelize apply pixelization at given position pixelize(image, x, y, width, height)

Indentation indentation does not affect syntax.

Trailing semicolon semicolons at the end of each statement perform no operation but signal
the end of a statement.

Comment "// comments" for line comment, and "/* comments */" for block comments.

Function functions can return multiple values as shown below: func function_name(Parameter1,
Parameter2,...) { //function body here. return variable1, variable2, ... }

2

3 Sample Program

3.1 GCD Algorithm

func gcd (i n t m, i n t n) {
// c a l c u l a t e gcd o f two i n t e g e r number

whi l e (m>0)
{

i n t c = n % m;
n = m;
m = c ;

}
re turn n ;

}

3.2 Apply a Filter

image p ic1 = load (. . / " xxx . jpg ") ; // bu i l t in func t i on to load an image
matrix sharpen =
[0 , −1 ,0 ;
−1 ,5 ,−1;
0 , −1 ,0] ;
// d e f i n e a f i l t e r .
image p ic2 = pic1 $sharpen ; // apply f i l t e r to image .
save (" . . / yyy . jpg " , p i c2) ; // bu i l t in func to save an image to f i l e

3.3 Face Recognition

s t r i n g l a b e l ; // d e f i n e l a b e l o f the g iven person .
l abe l , x , y , w, h = r e c ogn i t i o n (" . . / f o l d e r " , " . . / xxx . jpg ") ;
// t r a i n images from a given f o l d e r , r e c ogn i z e images from ta rg e t path ,
// re turn the l a b e l o f the r ecogn i z ed person and a r e c t ang l e around the
// face , (x , y , w, h) stand f o r coord inate s , width and he ight o f the r e c t ang l e .
image p ic1 = load (" . . / xxx . jpg ") ;
p i c1 = drawRect (pic1 , x , y , w, h) ;
// draw a r e c t ang l e around the f a c e
p i c1 = drawText (pic1 , i d en t i t y , x + 10 , y + 10) ;
// draw the l a b e l around the f a c e
save (" . . / yyy . jpg " , p i c1) ; / / bu i l t in func to save an image to f i l e

References

3.4 References
Face Recognition with OpenCV
http://docs.opencv.org/2.4/modules/contrib/doc/facerec/facerec_tutorial.html
CAL: Concise Animation Language
http://www.cs.columbia.edu/ sedwards/classes/2013/w4115-fall/index.html

3

	Introduction and Motivation
	Syntax
	Sample Program
	GCD Algorithm
	Apply a Filter
	Face Recognition
	References

