
CompA - Complex Analyzer

Xiping Liu(xl2639), Jianshuo Qiu(jq2253), Tianwu Wang(tw2576),
Yingshuang Zheng(yz3083), Zhanpeng Su(zs2329)

Septembee 25, 2017

1 Introduction

The motivation for writing this language is that complex numbers are an in-
dispensable part of mathematics and they are widely used to solve many real
world engineering and physics problems. Moreover, it also possesses compu-
tational rules and properties that are consistent with real numbers. Hence,
computer’s great power in computing real numbers can also be used to solve
complex number related problems. In most cases, computations involving com-
plex numbers tend to require more time and techniques. Thus, a language that
can support complex computations will be handy. Furthermore, it also supports
matrix operations which can work with complex numbers to solve problems in
areas like quantum mechanics. Our language, CompA stands for Complex An-
alyzer and we plan to compile it to LLVM. The following proposal details some
of the specifics of our language.

2 Language Overview

Our language is designed to conveniently and concisely support complicated
scientific and engineering projects that are built upon functions and primitive
operations in Linear Algebra and Complex Analysis. The syntax of our language
resembles C language (without allowing pointers), except that the mathematical
representations are absorbed from MATLAB.

1

2.1 Datatypes in the Language

The 6 data types in the above table are all the built-in data types in our lan-
guage. Our language is statically-typed. Namely, you must declare the data
types of your variables before you use them.

According to the examples in the above table, declaring variables in our
language is fairly simple. Declaration of integer, float, boolean, and string
is similar to mainstream programming languages such as C and Java. The
specification of declaring complex number and matrix is shown as follows.

We use a 2-tuple surrounded by parentheses to declare complex number,
where the first tuple is real part, the second tuple is imaginary part. Both parts
can be either integer or float. For matrix, we include all entries in square brack-
ets. Inside the square brackets, rows are separated by semicolon, while entries
of the same row are separated by comma. Integers, float numbers, and complex
numbers can be put into the same matrix.

There are also some built-in constants in our language.

2

2.2 Operators

Assume all numbers written in the form z = a + ib which we call it regular
form. For all real numbers, b is simply 0.

Our language also supports matrix operations:

3

2.3 Control Flow

a. if statement
Handles conditional statements

i f (<cond i t ion >) {
<statements>
} e l s e i f (<cond i t ion >) {

<statements>
} e l s e {

<statements>
}

b. for loop
Handles loop operations

f o r (i n t i = 0 ; i < 20 ; i++) {
<statements>

}

c. while loop
Another way to handle loop operations

i n t i = 0 ;
whi l e (i < 10) {

<statements >;
i ++;

}

4

d. break
Terminate a loop(usually with a condition), and the program resumes at the
next statement following the loop

i n t i = 0 ;
whi l e (i < 10) {

<statements >;
i ++;

i f (i > 6) {
break ;
}

}

e. continue
When a continue statement is encountered inside a loop, control jumps to the
beginning of the loop for next iteration, skipping the execution of statements
inside the body of loop for the current iteration

f o r (i = 0 ; i < 10 ; i++) {
i f (i == 6) {
cont inue ; // when i = 6 , <statements> w i l l be skipped
and the c o n t r o l w i l l r e turn to the loop with i = 7
}
<statements >;

}
}

2.4 Built-in function

5

6

2.5 User Defined Function

Users can create their own functions by using primitive data types and built-in
functions. The syntax is C-like.

Example1

i n t g e t z e r o (){
re turn 0 ;

}

Example2

bool age compare (i n t age1 , i n t age2){
i f (age1 >= age2){
re turn true ;

} e l s e {
re turn f a l s e ;

}
}

Example3

mx add matrix (mx matrix1 , mx matrix2){
re turn matrix1 + matrix2 ;

}

Example4

void pr intTrace (mx m){
i n t t r a c e = t r (m) ;
p r i n t (t r a c e) ;

}

3 A Sample Program

Below is an example program in our language CompA, which solves a problem
in Quantum Mechanics. It uses a user defined function spinXExpectation(int t)
to calculate the expectation value of the spin angular momentum in x direction
of a wave function at time t. In the main() function, spinXExpectation(int t) is
calculated at t = 0 and 5 and the results are printed out to the console window
using the built-in function print().

/∗ s t a r t o f the program ∗/
/∗ g l o b a l v a r i a b l e s ∗/
s t a t i c f l o a t h bar = 1.05457 e−34;
s t a t i c f l o a t B 0 = 1e−5;
s t a t i c f l o a t alpha = PI /6 ;
s t a t i c f l o a t gamma = −1.6e−19/9.11e−31

7

/∗ main func to in ∗/
i n t main (mx arg) {

pr in t (” Spin angular momentum in x d i r e c t i o n at time t = 0 ”) ;
mx expectat ionValue = spinXExpectat ion (0) ;
p r i n t (expectat ionValue) ;

p r i n t (” Spin angular momentum in x d i r e c t i o n at time t = 5 ”) ;
expectat ionValue = spinXExpectat ion (5) ;
p r i n t (expectat ionValue) ;

r e turn 0 ;
}

/∗ user de f ined func t i on ∗/
mx spinXExpectat ion (f l o a t t) {

mx waveFunction = [cos (alpha /2) exp ((0 , 1)∗gamma∗B 0∗ t / 2) ;
s i n (alpha /2) exp (−(0 ,1)∗gamma∗B 0∗ t / 2)] ; /∗ complex
matrix d e c l a r a t i o n ∗/

mx S x = [0 , 1 ; 1 , 0] ;
r e turn tp (conj (waveFunction))∗ S x∗waveFunction ;/∗ complex
matrix m u l t i p l i c a t i o n ∗/

}

/∗ end o f the program ∗/

8

