BURG(er) - Build Utterly Rewarding Games Easily and Radiantly

Jacqueline Kong (jek2179)
Jordan Lee (jal2283)
Ashley Nguyen (akn2121)
Adrian Traviezo (aft2115)

Language Description:

BURG(er) is a programming language that enables users to create text-based adventure games
in a streamlined way. BURG(er) is optimized for game writing with native data types to
represent game players, inventory, scenes, and so forth. BURG(er) is an object-oriented
language that has flexible subclass support to enable programmers to create custom game
objects.

BURG(er) is ideal for writing command line text-based games with multiple-choice scenes.
During each scene, the user might be presented with options that will decide which scene
they’ll be presented with next. BURG(er) also supports writing multiplayer turn-based games
with a custom, easy-to-use server connection API.

Parts of Language:
Primitive Data Types

Type Description

int integer

char a single character

boolean boolean value that can be assigned value of true or false

Supported Data Tvpes

Type Description

String An ordered and non-iterable list of chars.

List Ordered, iterable

Scene An object containing these values:
text: (String)
options: (List)
next: (Scene)

Inventory An object containing these values:
items: (list of Items)
capacity: (int)
amount: (int)

display ()

Item something that each Character can have in their Inventory; an
object containing these values:

name: (String)

quantity: (int)

use ()

Player An object containing these values:
name: (String)
address: (String)// ip:port

inventory: (Inventory object)
Option An object containing these values:
selector: (String)
text: (String)
action ()
Operators
Type Description
+ addition of integers; also serves to concatenate strings.
- Subtraction of integers
* Multiplication of integers
/ Division of integers
++, -- Unary operators with the same functionality as in Java
-=, +=, *=, /= Binary operators with the same functionality as in Java.
[] Access specific list indices
<< Less than operator
>> Greater than operator
<= Less than or equals to
>= Greater than or equals to
—— Equals to
has Similar to .contains() in jQuery, which serves to check the player’s
inventory. Functionality example: if (player1 has
“weapon”){//fight}

—> Binary operator that takes an option as the left operand and a
scene as right operand, used for quick mapping of scenes to
options

Kevwords

Type Description

if...else conditional statement

loop { ..} repeatedly iterates through statements within the brackets until
told to exit based on a condition within the loop

// text Single-line comments

/* text */

Multi-line comments from the opening slash to the last class.

func

Allows user to define a function. Can be used to declare an
unnamed function on the spot.

def x mods vy

Allows user to define a new object x, extending the y object

<[selector],

The angled brackets denote an option. [selector], [text], and

[text], [action]> ||action]are replaced with the option’s respective selector, text,
action function.
Functions
Type Description
print () prints to console
exit () Exits the program
input () Same as python input()
options () Takes in a comma-separated list of options and displays the

options for the player

Other features we’d like to include in our language:

e String formatting
e timer/clock API

e Sockets API-like library for server connections

Source code example:
Player Playerl = {

address: local, // omit for default

inventory: { // instantiate Item types and their quantities
items: [Pepperoni Pizza slice(5), umbrella(), muscles(),
phone ()],
capacity: 10,
shortcut: “inventory”

}i
/* within this text block is an example of using the -> operator to

quickly define game paths:
Scene Dominos, Rain, Enemy, Fight, EC, GameOver;

Dominos.text = "Pizza delivery! Bring this baby to EC!";
Rain.text = “It’s raining! What do you do?”;
GameOver.text = “You died, game over.”

Dominos (0, ”“Get on bike!”)->Rain (0, ”Take out your
umbrella”) ->GameOver () ;

*/

func START(){ // executes at runtime
print ("You're in dominos and you wanna deliver the pizza.
it's raining, though. What do you do?");
Playerl.options(//instantiates
<”umbrella”, "umbrella", GAME OVER() {
print ("You died!");
exit;
1>,
<”slow down”, "slow down", SEE RIVAL()>,
<”go faster”, “go faster", GAME OVER()>
)

func SEE RIVAL() {
print ("You have been attacked by a Papa Johns delivery biker! What
do you do?");
Playerl.options (
<”run”, "run", EC() {
print ("You are now in EC. What do?");
Playerl.options (
<"eat”, "eat pizza", START()>,
<”call”, "call customer", FINISH() {
print ("good Jjob! you win!");
exit; >

})
)
}>
<”fight”, "fight", FIGHT()>
) 7

func FIGHT () {
int pl health = 10; //player 1 "health" is just an int
int rival health = 5;

print ("rival just threw a pizza at you! what do?");
loop {
Playerl.options (
<"throw", “throw pizza”, PIZZA ATTACK() {
rival health -= 2;
inventory.pizza--;
}>,
<"punch", “throw punch”, MUSCLES ATTACK() {
rival health--;
1>,
<"cower”, “cower”, COWER() {
pl health--;
P>
)
pl health--;
if (!pl health) {
GAME OVER () ;
}
else {
EC()

