
BURG(er) - Build Utterly Rewarding Games Easily and Radiantly
Jacqueline Kong (jek2179)

Jordan Lee (jal2283)
Ashley Nguyen (akn2121)
Adrian Traviezo (aft2115)

Language Description:
BURG(er) is a programming language that enables users to create text-based adventure games
in a streamlined way. BURG(er) is optimized for game writing with native data types to
represent game players, inventory, scenes, and so forth. BURG(er) is an object-oriented
language that has flexible subclass support to enable programmers to create custom game
objects.

BURG(er) is ideal for writing command line text-based games with multiple-choice scenes.
During each scene, the user might be presented with options that will decide which scene
they’ll be presented with next. BURG(er) also supports writing multiplayer turn-based games
with a custom, easy-to-use server connection API.

Parts of Language:
Primitive Data Types

Type Description

int integer

char a single character

boolean boolean value that can be assigned value of true or false

Supported Data Types

Type Description

String An ordered and non-iterable list of chars.

List Ordered, iterable

Scene An object containing these values:
text: (String)
options: (List)
next: (Scene)

Inventory An object containing these values:
items: (list of Items)
capacity: (int)
amount: (int)

display()

Item something that each Character can have in their Inventory; an
object containing these values:
name: (String)
quantity: (int)
use()

Player An object containing these values:
name: (String)
address: (String)// ip:port
inventory: (Inventory object)

Option An object containing these values:
selector: (String)
text: (String)
action()

Operators

Type Description

+ addition of integers; also serves to concatenate strings.

- Subtraction of integers

* Multiplication of integers

/ Division of integers

++, -- Unary operators with the same functionality as in Java

-=, +=, *=, /= Binary operators with the same functionality as in Java.

[] Access specific list indices

<< Less than operator

>> Greater than operator

<= Less than or equals to

>= Greater than or equals to

== Equals to

has Similar to .contains() in jQuery, which serves to check the player’s
inventory. Functionality example: if (player1 has
“weapon”){//fight}

—> Binary operator that takes an option as the left operand and a
scene as right operand, used for quick mapping of scenes to
options

Keywords

Type Description

if...else conditional statement

loop { … } repeatedly iterates through statements within the brackets until
told to exit based on a condition within the loop

// text Single-line comments

/* text */ Multi-line comments from the opening slash to the last class.

func Allows user to define a function. Can be used to declare an
unnamed function on the spot.

def x mods y Allows user to define a new object x, extending the y object

<[selector],

[text], [action]>
The angled brackets denote an option. [selector], [text], and
[action] are replaced with the option’s respective selector, text,
action function.

Functions

Type Description

print() prints to console

exit() Exits the program

input() Same as python input()

options() Takes in a comma-separated list of options and displays the
options for the player

Other features we’d like to include in our language:

● String formatting
● timer/clock API
● Sockets API-like library for server connections

Source code example:
Player Player1 = {
 address: local, // omit for default

 inventory: { // instantiate Item types and their quantities
 items: [Pepperoni Pizza slice(5), umbrella(), muscles(),
phone()],

 capacity: 10,
 shortcut: “inventory”
 }
};

/* within this text block is an example of using the -> operator to
quickly define game paths:
Scene Dominos, Rain, Enemy, Fight, EC, GameOver;
Dominos.text = "Pizza delivery! Bring this baby to EC!";
Rain.text = “It’s raining! What do you do?”;
GameOver.text = “You died, game over.”

Dominos(0, ”Get on bike!”)->Rain(0, ”Take out your
umbrella”)->GameOver();

*/

func START(){ // executes at runtime
 print("You're in dominos and you wanna deliver the pizza.
 it's raining, though. What do you do?");
 Player1.options(//instantiates
 <”umbrella”, "umbrella", GAME_OVER(){
 print("You died!");
 exit;
 }>,
 <”slow down”, "slow down", SEE_RIVAL()>,
 <”go faster”, “go faster", GAME_OVER()>
);
}

func SEE_RIVAL(){
 print("You have been attacked by a Papa Johns delivery biker! What
do you do?");
 Player1.options(
 <”run”, "run", EC(){
 print("You are now in EC. What do?");
 Player1.options(
 <”eat”, "eat pizza", START()>,
 <”call”, "call customer", FINISH(){
 print("good job! you win!");
 exit; >

 })
)
 }>
 <”fight”, "fight", FIGHT()>
);
}

func FIGHT(){
 int p1_health = 10; //player 1 "health" is just an int
 int rival_health = 5;

 print("rival just threw a pizza at you! what do?");
 loop {
 Player1.options(
 <"throw", “throw pizza”, PIZZA_ATTACK(){
 rival_health -= 2;
 inventory.pizza--;
 }>,
 <"punch", “throw punch”, MUSCLES_ATTACK(){
 rival_health--;
 }>,
 <"cower”, “cower”, COWER(){
 p1_health--;
 }>
);
 p1_health--;
 if (!p1_health){
 GAME_OVER();
 }
 else {
 EC();
 }
 }
}

