
better call SOL

SHAPE ORIENTED LANGUAGE
REFERENCE MANUAL

Aditya Naraynamoorthy
an2753

Erik Dyer
ead2174

Gergana Alteva
gla2112

Kunal Baweja
kb2896

October 15, 2017

Contents

1 Introduction 3

2 Conventions 3

3 Lexical Conventions 4
3.1 Comments . 4
3.2 Identifiers . 4
3.3 Keywords . 4
3.4 Integer Constants . 5
3.5 Float Constants . 5
3.6 Character Constants . 5
3.7 Escape Sequences . 5
3.8 String constants . 6
3.9 Operators . 6

3.9.1 Assignment Operator 6
3.9.2 Arithmetic Operators 6

1

3.9.3 Comparison Operators 7
3.9.4 Logical Operators . 7

3.10 Punctuators . 7

4 Identifier Scope 8
4.1 Block Scope . 8
4.2 File Scope . 8

5 Expressions and Operators 8
5.1 Typecasting . 8
5.2 Precedence and Associativity 8
5.3 Dot Accessor . 9

6 Declarations 9
6.1 Type Specifiers . 9
6.2 Array Declarators . 9
6.3 Function Declarators and Definition 9
6.4 Constructor Declarators . 10
6.5 Definitions . 10

7 Statements 11
7.1 Expression Statement . 11
7.2 If Statement . 11
7.3 While Statement . 11
7.4 Return statement . 12

8 Internal Functions 12
8.1 main . 12
8.2 length . 12
8.3 setFramerate . 12
8.4 consolePrint . 13

9 Drawing Functions 13
9.1 drawPoint . 13
9.2 drawCurve . 13
9.3 print . 13

2

10 Animation Functions 13
10.1 translate . 13
10.2 rotate . 14
10.3 render . 14
10.4 wait . 14

11 Classes 14
11.1 shape . 14
11.2 Inheritance . 16

11.2.1 parent (keyword) . 17

1 Introduction

SOL is a simple language that allows programmers to create 2D animations
with ease. Programmers will have the ability to define and create objects,
known as shapes, and dictate where they appear, and how they move. As
a lightweight object-oriented language, SOL allows for unlimited design op-
portunities and eases the burden of animation. In addition, SOLs simplicity
saves programmers the trouble of learning complicated third-party animation
tools, without sacrificing control over behavior of objects.

2 Conventions

The following conventions are followed throughout this SOL Reference Man-
ual.

1. literal - Fixed space font for literals such as commands, functions,
keywords, and programming language structures.

2. variable - The variables for SOL progamming language and words or
concept being defined are denoted in italics.

The following are conventions used while drawing and animating objects,
used in internal functions (see Section 8):

1. The origin of the drawing canvas is on the top left of the screen.

2. The positive X-axis goes from left to right.

3

3. The positive Y-axis goes from top to bottom.

4. Positive angles specify rotation in a clockwise direction.

5. Coordinates are specified as integer arrays of size 2, consisting of an
X-coordinate followed by a Y-coordinate.

6. Colors are specified as integer arrays of size 3, consisting of Red, Green
and Blue values in the range 0 - 255, where [0, 0, 0] is black and
[255, 255, 255] is white.

3 Lexical Conventions

This section describes the complete lexical conventions followed for a syntac-
tically correct SOL program, forming various parts of the language.

3.1 Comments

Comments in SOL start with character sequence /* and end at character
sequence */. They may extend over multiple lines and all characters following
/* are ignored until an ending */ is encountered.

3.2 Identifiers

In SOL, an identifier is a sequence of characters from the set of english
alphabets, arabic numerals and underscore (). The first character cannot
be a digit. Identifiers are case sensitive. Identifiers cannot be any of the
reserved keywords mentioned in section 3.3.

3.3 Keywords

Keywords in SOL include data types, built-in functions, and control state-
ments, and may not be used as identifiers as they are reserved.

4

int if main shape
float while setFramerate parent
char func translate extends
string construct rotate

return render
wait

drawPoint
drawCurve

print
length

consolePrint

3.4 Integer Constants

A sequence of one or more digits representing a number in base-10.
Eg: 1234

3.5 Float Constants

Similar to an integer, a float has an integer, a decimal point (.), and a
fractional part. Both the integer and fractional part are a sequence of one or
more digits.
Eg: 0.55 10.2

3.6 Character Constants

An ASCII character within single quotation marks.
Eg: ’x’ ’a’

3.7 Escape Sequences

The following are special characters represented by escape sequences.

5

Name Escape
newline \n
tab \t

backslash \\
single quote \’
double quote \”

ASCII NUL character \0

3.8 String constants

A SOL string is a series of characters within double quotation marks. Its
type is an array (defined in Section 6.2) of characters. The compiler places
a null byte (\0) at the end of a string literal to mark its end.
Eg: cat

3.9 Operators

SOL has mainly four categories of operators defined below:

3.9.1 Assignment Operator

An assignment operator is denoted by the = symbol having a variable iden-
tifier to its left and a valid expression on its right. The assignment operator
assigns the evaluated value of the expression on the right to the variable on
the left.

3.9.2 Arithmetic Operators

SOL has the following binary arithmetic operators. A binary arithmetic op-
erator operates on two arithmetic expressions specified before and after the
operator respectively. The said expressions must be of type int or float.

Operator Definition
+ Addition
- Subtraction
∗ Multiplication
/ Division
% Modulo

6

3.9.3 Comparison Operators

The comparison operators are binary operators for comparing values of operands
defined as expressions.

Operator Definition
== Equality
!= Not Equals
< Less than
> Greater than
<= Less than or equals
>= Greater than or equals

3.9.4 Logical Operators

The logical operators evaluate boolean expressions and return an integer as
the result - with 0 as False and 1 as True. The AND (&&) and OR (||)
operators are binary, while the NOT (!) operator is unary.

Operator Definition
&& AND
|| OR
! NOT

3.10 Punctuators

The following symbols are used for semantic organization in SOL:

Punctuator Usage
{} Used to denote a block of code. Must be present as a pair.
() Specifies conditions for statements before the subsequent

code, or denotes the arguments of a function. Must be
present as a pair.

[] Indicates an array. Must be present as a pair.
; Signals the end of a line of code.
, Used to separate arguments for a function, or elements in

an array definition.

7

4 Identifier Scope

4.1 Block Scope

Identifier scope is a specific area of code wherein an identifier exists. A scope
of an identifier is from its declaration until the end of the code block within
which it is declared.

4.2 File Scope

Any identifier (such as a variable or a function) that is defined outside a code
block has file scope i.e. it exists throughout the file.

If an identifier with file scope has the same name as an identifier with
block scope, the block-scope identifier gets precedence.

5 Expressions and Operators

5.1 Typecasting

A typecast is the conversion a variable from one type to another. SOL
supports explicit casting of ints to floats and floats to ints. To cast a variable
to a different type, place the desired type in parentheses in front of the
variable.
Eg: (int) myFloat /* Returns the integer value of myFloat */

5.2 Precedence and Associativity

SOL expressions are evaluated with the following rules:

• Expressions are evaluated from left to right

• Multiplication, division and modulo operations take precedence over
addition and subtraction

• Parentheses override all precedence rules

• Logical NOT has precedence over logical AND, which has precedence
over logical OR

8

5.3 Dot Accessor

To access members of a declared shape (further described in section 7), use
the dot accessor ‘.’.
Eg: shape object.point1 /* This accesses the variable point1 within

the object shape object */

6 Declarations

Declarations determine how an identifier should be interpreted by the com-
piler. A declaration should include the identifier type and the given name

6.1 Type Specifiers

SOL provides four type specifiers for data types:

• int - integer number

• float - floating point number

• char - a single character

• string - string (ordered sequence of characters)

6.2 Array Declarators

An array may be formed from any of the primitive types and shapes, but
each array may only contain one type of primitive or shape. At declaration,
the type specifier and the size of the array must be indicated (the array size
need not be specified for strings, which are character arrays). In a function
signature, the size of the array should not be specified. Arrays are most
commonly used in SOL to specify coordinates with two integers.
Eg: int[2] coor; /* Array of two integers */

6.3 Function Declarators and Definition

Functions are declared with the keyword: func. This is followed by the
return type of the function. If no return type is specified, then the func-
tion automatically returns nothing. Functions are given a name (which is
a valid identifier) followed by function arguments. These arguments are a

9

comma-separated list of variable declarations within parentheses. Primitives
are passed into functions by value, and objects and arrays are passed by ref-
erence. This function declaration is then followed by the function definition,
within curly braces; functions must always be defined immediately after they
are declared.
Eg: func example (i n t a , i n t b){

/∗ a func t i on named example that takes two
arguments that are both o f type i n t ∗/

}

6.4 Constructor Declarators

Constructors are declared with the keyword: construct. Constructor defi-
nitions are similar to a function definition with three additional constraints:

1. Constructors are defined inside the class definition

2. Constructors are given the same name as the class and followed by
arguments, within parenthesis as a comma-separated list of variable
declarations, similar to function definitions

3. Constructors do not have a return type specified

Eg: cons t ruc t Tr iang l e (i n t [] a i n i t , i n t [] b i n i t ,
i n t [] c i n i t) {
a = a i n i t ;
b = b i n i t ;
c = c i n i t ;

}

6.5 Definitions

A definition of an object or type includes a value, assigned by the assignment
operator ‘=’.
Eg: i n t x = a ; /∗ de c l a r a t i on & d e f i n i t i o n ∗/

char y ; /∗ de c l a r a t i on ∗/
y = ’b ’ ; /∗ d e f i n i t i o n ∗/
f l o a t z = 3 . 4 ;
i n t [3] w = [5 , 2 , 0] ;
s t r i n g f = ” ca t s ” ;

10

7 Statements

A statement in SOL refers to a complete instruction for a SOL program. All
statements are executed in order of sequence. The four types of statements
are described in detail below:

7.1 Expression Statement

Expression statements are those statements that get evaluated and produce
a result. This can be as simple as an assignment or a function call.
Eg: int x = 5; /* assign 5 to variable x */

7.2 If Statement

An if statement is a conditional statement. Given a condition for the if
statement, if it evaluates to non-zero value then it is considered valid and
the code block associated with the if statement is executed.
Eg: i n t x = 1 ;

i f (x == 1) {
/∗ This code ge t s executed ∗/

}

7.3 While Statement

A while statement specifies the looping construct in SOL. It starts with the
while keyword, followed by an expression specified within a pair of parenthe-
sis; this is followed by a block of code within curly braces which is executed
repeatedly as long as the condition in parentheses is valid. This condition is
re-evaluated before each iteration.
Eg: i n t x = 5 ;

whi l e (x > 0) {
/∗ This code ge t s executed 5 t imes ∗/
x = x − 1 ;

}

11

7.4 Return statement

Stops execution of a function and returns to where the function was called
originally in the code. Potentially returns a value; this value must conform
with the return type specified in the function declaration. If no return type
was specified, a return statement without any value specified is syntactically
valid (but not compulsory).
Eg: func i n t sum(i n t x , i n t y) {

/∗ re turn sum of two i n t e g e r s ∗/
re turn x + y ;

}

8 Internal Functions

SOL specifies a set of required/internal functions that must be defined for
specific tasks such as drawing, rendering or as an entry point to the program,
described below.

8.1 main

Every SOL program must contain a main function as this is the entrypoint
of the program. The main function may call other functions written in the
program. The main function does not take inputs as SOL programs do not
depend on user input. The main function does not allow for member variables
of shape objects to be changed.
Arguments: None

8.2 length

Returns the number of elements in an array.
Arguments: Array of elements

8.3 setFramerate

Defined once at the start of the program, to specify the frames rendered per
second. May only be defined once.
Arguments: rate (float)

12

8.4 consolePrint

Prints a string to the console. Commonly used to print error messages.
Arguments: text (string)

9 Drawing Functions

The following set of functions are also a category of internal/required func-
tions, which describe the drawing aspects for shape objects defined in a SOL
program.

9.1 drawPoint

Draws a point at a specified coordinate in the specified color.
Arguments: pt (int[2]), color (int[3])

9.2 drawCurve

Draws a Bézier curve in the specified color defined by three coordinates,
which are the three control points of the curve in order.
Arguments: pt1 (int[2]), pt2 (int[2]), pt3 (int[2]), color (int[3])

9.3 print

Displays text onto the render screen at the coordinates specified by the user,
in the specified color.
Arguments: pt (int[2]), text (string), color (int[3])

10 Animation Functions

The following functions are used to animate the objects drawn in a SOL
program.

10.1 translate

Displaces a shape by specifying a two-element array of integers, where the
first element is the number of pixels along the horizontal axis and the second

13

element along the vertical axis, over a specified time period in seconds.
Arguments: displace (int[2]) /* horizontal, vertical */

10.2 rotate

Rotate a shape around an axis point by a specified number of degrees over
a time period in seconds.
Arguments: axis (int[2]), angle (float), time (float)

10.3 render

Specify the set of motions to be animated. This code-block can be defined
for shapes that need to move or can be left undefined for non-moving shapes.
Within this function, various rotate and translate calls can be made to
move the shape. This should be specified in the main function.
Arguments: None

10.4 wait

Pauses animation for a specified amount of time (in seconds). To be called
in the render function.
Arguments: time (float)

11 Classes

SOL follows an object-oriented paradigm for defining objects (drawn shapes)
which can be further animated using the animation functions described in
Section 10.

11.1 shape

Similar to a class in C++; a shape defines a particular 2-D shape as part
of the drawing on screen. Every shape has a user-defined draw function
that specifies how shapes are statically rendered, using multiple drawPoint,
drawCurve and print commands. The class may contain multiple member
variables that could be used to draw the shape. These member variables
are defined in a constructor, specified by the keyword construct. It is also

14

possible to declare member functions for a shape. When member variables are
accessed within a member function, it is implied that the member variables
belong to the current object that calls the function.
Once a shape object has been instantiated, these member variables cannot
be changed, but may still be accessed later, using the dot accessor, ’.’.
Eg: shape Tr iang l e {

i n t [2] a ;
i n t [2] b ;
i n t [2] c ;
c ons t ruc t Tr iang l e (i n t [] a i n i t , i n t []

b i n i t , i n t [] c i n i t) {
a = a i n i t ;
b = b i n i t ;
c = c i n i t ;

}

func i n t [] f indCentre (i n t [] x , i n t [] y) {
i f (l ength (a) != length (b)) {

con so l ePr in t (” Arrays s i z e mismatch .
Abort ”) ;

r e turn i n t [0] ;
}

i n t i = 0 ;
i n t c [l ength (a)] ;
whi l e (i < l ength (x)) {

c [i] = a [i] + b [i] / 2 ;
i = i + 1 ;

}
re turn c ;

}

func draw () {
/∗ Draw l i n e s between the three

v e r t i c e s o f the t r i a n g l e ∗/
drawcurve (a , f indCentre (a , b) , b , [255 ,

0 , 0]) ;

15

drawcurve (b , f indCentre (b , c) , c , [0 ,
255 , 0]) ;

drawcurve (c , f indCentre (c , a) , a , [0 ,
0 , 2 55]) ;

}
}

11.2 Inheritance

SOL allows single class inheritance for shapes i.e given a shape, such as Line,
one may create a sub-shape of Line, called LineBottom, and inherit all of
its fields from the parent shape, Line, using the keyword extends.

Eg: shape Line {
i n t [2] a ;
i n t [2] b ;

cons t ruc t Line (i n t [] a i n i t , i n t [] b i n i t)
{
a = a i n i t ;
b = b i n i t ;

}

func i n t [] f indCentre (i n t [] x , i n t [] y) {
i f (l ength (a) != length (b)) {

con so l ePr in t (” Arrays s i z e mismatch !
Abort ! ”) ;

r e turn i n t [0] ;
}

i n t i = 0 ;
i n t c [l ength (a)] ;
whi l e (i < l ength (x)) {

c [i] = a [i] + b [i] / 2 ;
i = i + 1 ;

}
re turn c ;

16

}

func draw () {
drawcurve (a , f indCentre (a , b) , b , [0 ,

0 , 0]) ;
}

}

/∗ Subc las s o f Line ∗/
shape LineBottom extends Line {

i n t [2] c ;
i n t [2] d ;

cons t ruc t LineBottom (i n t [] a i n i t , i n t []
b i n i t , i n t [] c i n i t) {
parent (a i n i t , b i n i t) ;
c = c i n i t ;
d = b ;

}

func draw () {
parent () ;
drawcurve (c , f indCentre (c , d) , d , [0 ,

0 , 0]) ;
}

}

11.2.1 parent (keyword)

The parent shape’s functions can be accessed by the function call parent().
This invokes the implementation of the current member function defined in
the parent shape. In constructors, the parent() calls the constructor for
the parent shape.

17

