PixMix
Language Reference Manual

Table of Contents

Lexical Elements
Identifiers
Keywords
Constants
Integer Constants
Characters and Character Arrays
String Constants
Floating Point Constants
Separators
White Space

Data Types
Primitive Data Types
Integer Types
Real Number Types
Objects
Arrays
Declaring Arrays
Initializing Arrays
Accessing Array Elements
Multidimensional Arrays

Expressions and Operators
Expressions
Assignment Operators
Incrementing and Decrementing
Arithmetic Operators
Comparison Operators
Logical Operators
Bit Shifting

O Vv 00 00O 00 00 0 N N N N N (o)W V. N U, B U, B U, B 0, I U 5 B SN SN Y

_ A A
- = O O O LV

Bitwise Logical Operators

Type Casts

Member Access Expressions

Conditional Expressions
Operator Precedence

Statements

Labels

Expression Statements
The if Statement

The elif Statement

The switch Statement
The while Statement
The for Statement

The break Statement
The continue Statement
Comments

Functions

Function Definitions
Calling Functions
Function Parameters
Recursive Functions

Standard Libraries

Image
Pixel

Color
String

Program Structure and Scope

Program Structure
Scope
Control Flow

Sample Programs

Hello World

Blacken any pixels that are “too” red, blur the image, then save as a new file

Fibonacci

11
12
12
12
13

14
14
14
14
14
15
15
15
15
16
16

17
17
18
18
18

19
19
19
20
20

22
22
22
22

23
23
23
23

Compositing Images

Grammar

Appendix

Syntax Reference
General
Functions
Conditionals
Comments
Array
Object

PixMix Team

24

26

31
31
31
31
31
31
31
31
32

Lexical Elements

Identifiers

An identifier is a case-sensitive sequence of alphanumeric characters. The First
character must be alphabetic or an underscore.

Keywords

The fFollowing words are reserved and may not be used as variable names.

String char if
Image int elif
Pixel float else
Color return switch
Console array case
for Object and
while bool or
break true not

continue false fun

Constants

Constants are global variable declarations that may not be assigned new values.

Integer Constants

An integer constant is a sequence of digits that is globally available within a
program.

INT_MAX
FLOAT_MAX

Characters and Character Arrays
PixMix uses the ASCII character set for its implementation of characters.

A literal of type character consists of a single character or escape sequence inside
two single quotes:

€ s

c’ or ‘\n’
String Constants

In PixMix, Strings are a standard library that include many string manipulation
functions.

Floating Point Constants

A floating point constant consists of an integer part, a decimal point, a fraction
part, an e, and an optionally signed integer exponent. The integer and fraction
parts both consist of a sequence of digits. Either the integer part or the fraction
part (not both) may be missing; either the decimal point or the e and the exponent
(not both) may be missing.

Separators

A separator separates tokens. White space (see next section) is a separator, but it
is not a token. The other separators are all single-character tokens themselves:

(YLI{Y, . 5

White Space

White space is the collective term used for several characters: the space character,
the tab character, the newline character, and the carriage-return character. White
space is ignored (outside of string and character constants), and is therefore
optional, except when it is used to separate tokens.

Data Types

Each primitive type, integer, float, string, boolean, character, byte, is indicated by a
name that PixMix uses for declarations.

int A 32-bit, signed, 2's complement series of digits with a
maximum range of 2147483647.

float Follows IEEE 754-2008's definition of a floating-point
number. That is: 1 bit for the sign, 8 bits for the exponent,
and 24 bits for the mantissa.

bool A 1 byte value that can store either 1 or 0, or true or false.

char A character is 8-bit (1 byte) data type, capable of holding one
character in the local character set.

Primitive Data Types

Integer Types
unsigned char
int

Real Number Types
float

Objects

To define an object, use the Object keyword followed by the name of the object.
An object may be initialized during instantiation by specifying a list of its member
variables and functions within curly brackets.

Object rectangle = {
int width, height
fun area() {
return width * height

http://ieeexplore.ieee.org/document/4610935

Arrays

Array elements are indexed beginning at position zero.

Declaring Arrays

You declare an array by specifying the data type as Array, followed by its name.
The array can store multiple data types. An example declaration:

Array myArray;

Initializing Arrays

You can initialize the elements in an array when you declare it by listing the
initialized values, separated by commas, in a set of brackets. Here is an example
initialization:

{3

Array myArray = [0, “one”, 2, “three”]

Accessing Array Elements

You can access an element in an array by specifying the array name followed by
the element index, enclosed in brackets.

myArray[1] = 1
This will assign the value 1 to the second element in the array, at position one.

Multidimensional Arrays
Arrays can contain another array as an element, creating a multidimensional array.

Array a = [[1,2,3], [2,3,4]]

Elements will then be accessed by specifying first the index of the nested array,
and second the index of the element within the nested array.

a[1][2]

Would return 4.

Expressions and Operators

Expressions

Assignment Operators

® +=

o Adds the two operands together, and then assign the result of the

addition to the left operand.

Subtract the right operand from the left operand, and then assign the
result of the subtraction to the left operand.

Multiply the two operands together, and then assign the result of the
multiplication to the left operand.

Divide the left operand by the right operand, and assign the result of the
division to the left operand.

Perform modular division on the two operands, and assign the result of
the division to the left operand.

Perform a left shift operation on the left operand, shifting by the
number of bits specified by the right operand, and assign the result of
the shift to the left operand.

Perform a right shift operation on the left operand, shifting by the
number of bits specified by the right operand, and assign the result of
the shift to the left operand.

Perform a bitwise conjunction operation on the two operands, and
assign the result of the operation to the left operand.

Performs a bitwise exclusive disjunction operation on the two operands,
and assign the result of the operation to the left operand.

Performs a bitwise inclusive disjunction operation on the two operands,
and assign the result of the operation to the left operand.

Incrementing and Decrementing

The increment operator ++ adds 1 to its operand. The operand must be either an
int, float, Image or Pixel. If the ++ is before the operand asin ++1 * 5, ++i s
incremented before the other operation. If the increment operator is after such as
in

i++ * 5, then the increment happens after.

Arithmetic Operators

The following arithmetic operators are utilized in PixMix

+ addition

- subtraction

* multiplication

/ division

% modulo

++ prefix and postfix incrementation

-- prefix and postfix decrementation
O control arithmetic preference

Comparison Operators

For comparing equivalent values, the keyword is is used.
Conversely, to determine if two values are not equal, the keyword not is used.
Greater than, less than, and their variants use standard symbols (<, >, <=, >=).

int x = 1;
int y = 3;
if x isy

Console.log(“X is the same as Y”’);
if x not vy

Console.log(“X and Y are not the same”);
'i.fX<=y

Console.log(“X is less than Y”);

Logical Operators

The conjunction operator in PixMix is the keyword and while the disjunction
operator is the keyword or. To negate a logical expression, use the keyword not.
Logic can be nested using parentheses.

if xis 5andy >3
Console.log(“X is 5 and Y is greater than 3”);
if xis 50ory is 3
Console.log(“X is 5 or Y is 3”);
if x is 5 and (y is 3 or z is 5)
Console.log(“X is 5 and either Y is 3 or Z is 57);

Bit Shifting

The left-shift operator << is used to shift its operand'’s bits to the left, while the
right-shift operator >> shifts to the right. The second operand denotes the number
of bit places to shift by. Bit shifted off the left or right sides are discarded.

int x = 47; // x is 00101111 in binary
X << 1; // x i1s 01011110 in binary, or 94 in decimal
X >> 1; // x is 00101111, or 47, again

Bitwise Logical Operators

& Conjunction -- When both bits are 1, the result is 1, otherwise it's 0.
10110 & 10101 = 10100

| Inclusive Disjunction -- When both bits are 0, the result is 0, otherwise it's 1.
10110 | 16101 = 10111

~ Exclusive Disjunction -- When bits are different, the result is 1, otherwise it's 0.
10110 & 10101 = 00011

~ Negation -- Reverses each bit, 1s become 0s, 0s become 1s.
~001011 = 110100

Type Casts

You can use a type cast to explicitly cause an expression to be of a specified data
type. A type cast consists of a type specifier enclosed in parentheses, followed by
an expression. To ensure proper casting, you should also enclose the expression
that Follows the type specifier in parentheses.

float x;
inty =7;
int z = 3;

x = (float) (y / z);

Member Access Expressions

You can use the member access operator . to access the members of a structure or
union variable. You put the name of the structure variable on the left side of the
operator, and the name of the member on the right side.

struct point

{

int x, y;

}

struct point first_point;

first_point.x
first_point.y

0;
5;

Conditional Expressions

Pixmix uses a Java-like ternary operator. The following code:
int x;

if(conditionIsTrue) {
X += 5;

} else {
X = 0;

can be written using the conditional operator as:
int x = (conditionIsTrue) ? x + 5 : 0;

Operator Precedence

When an expression contains multiple operators. The operators are grouped based
on rules of precedence. The order of precedence in PixMix follows the order of
operations in C. Notably, PixMix evaluates from right to left when multiple
assignment statements appear as subexpressions in a single larger expression.

The fFollowing is a list of types of expressions, presented in order of highest
precedence first. Sometimes two or more operators have equal precedence; all
those operators are applied from left to right unless stated otherwise.

1. Function calls, array subscripting, and membership access operator
expressions.

2. Unary operators, including logical negation, bitwise complement, increment,

decrement, unary positive, unary negative and type casting. When several

unary operators are consecutive, the later ones are nested within the earlier

ones: !-x means !(-x).

Multiplication, division, and modular division expressions.

Addition and subtraction expressions.

Bitwise shifting expressions.

Greater-than, less-than, greater-than-or-equal-to, and less-than-or-equal-to

expressions.

Equal-to and not-equal-to expressions.

Bitwise AND expressions.

10 Bitwise exclusive OR expressions.

11.Bitwise inclusive OR expressions.

12.Logical AND expressions.

13.Logical OR expressions.

14.Conditional expressions (using ?:). When used as subexpressions, these are
evaluated right to left.

15. All assignment expressions, including compound assignment. When multiple
assignment statements appear as subexpressions in a single larger expression,
they are evaluated right to left.

WO NOUL AW

Statements
Labels

Expression Statements

Most expression statements are variable assignment or functions assignments of
the form:

expression;

The if Statement

You can use the if statement to conditionally execute part of your program in
PixMix, based on the truth value of a given expression. Here is the generalized
form of an if statement:

if expression
statement;

else
statement;

If test evaluates to true, then then-statement is executed and else-statement is
not. If test evaluates to false, then else-statement is executed and then-statement
is not.

The elif Statement

The elif statement works the same as “else if” in C. In the case where the user
wants to specify a series of boolean checks and actions they can use elif as Follows:

if expression
statement;
elif expression

statement;
else
statement;

The switch Statement

You can use the switch statement in PixMix to compare one expression with
others, and then execute a series of sub-statements based on the result of the
comparisons.

The while Statement

Within PixMix, the while statement is a loop statement with an exit test at the
beginning of the loop. If the test evaluates true then the statement is executed.
The statement continues to be executed as long as the test evaluates to true.

The fFor Statement

PixMix supports for loop statement for repeated code execution as well. A for
loop is used to iterate over the values of an Array, object, or struct that has
iterable values. The loop will continue until every element in the given object has
been used or the loop encounters a break or continue.

for value in object

Where value is a temporary variable that is assigned the first value that exists in
object. When the loop repeats, value will hold the second value in object, and so
on.

The break Statement

You can use the break statement to terminate a while, for, or switch statement. If
you put a break statement inside of a loop or switch statement which itself is
inside of a loop or switch statement, the break only terminates the innermost loop
or switch statement.

The continue Statement

You can use the continue statement in loops to terminate an iteration of the loop
and begin the next iteration. If you put a continue statement inside a loop which
itself is inside a loop, then it affects only the innermost loop.

Comments

Single-line comments in PixMix start with // and end at the end of the line. Pixel
also supports multi-line comments which start with /* and end with the following

*/

Functions

Function Definitions

A Function is defined via the keyword fun. The optional parameters to be passed
into the Function are defined along with their types in parenthesis. A function’s
body must be enclosed with curly brackets, no matter its length.

fun myFunc(int a, int b) {
// Function
// Body

Values are returned using the return statement.

Calling Functions

A call to any function which returns a value is evaluated as an expression.

fun function(void) {
return 3

}
int a = 10 + function() // a is 13

Function Parameters

Function parameters can be any expression—a literal value, a value stored in
variable, a function call, or a more complex expression built by combining these.

Recursive Functions

Recursive functions are functions that call themselves. This example of calculating
the factorial using a recursive call illustrates how recursion is implemented in
PixMix:

int factorial (int x)

{
if (x < 1)
return 1
else

return (x * factorial (x - 1))

Standard Libraries

PixMix includes several libraries that include a variety of utility functions.

Image

The Image object holds an array of pixels. It supports the +, - and % operands.

Adding two images will result in an image which pixels are the averages of the
pixels of both images. That is, each hex value in the RGB of the pixel will be added
and divided by 2.

Image newlmage =img1 +img2

Subtracting two images will result in the difference between each pixel in the two
images.

Dividing two images with one another will split the two images in half vertically
and create and image that contains the lefthand image on the left and the
righthand image on the right.

Image smileySad = smiley % sad

Pixel

A Pixel stores an RGB value in hex. Pixels can be incremented per Red, Green, Blue
value as follows.

Pixel p = ["E2”,”72”,”5B”]

inti=o0

whilei< 0{
p.blue++
i++

Color

The standard library contains a set of predefined colors which are just pixels with
prestored RGB values.

The colors in the standard library are:

red
green
blue
yellow
brown
orange
white
black
gray
purple
maroon
terracotta
lime
indigo

A color can be assigned to a pixel:

Pixel p = lime

String

The string object uses a character array under the hood and allows the user to
concatenate two strings by using the += operator.

String a = “ball”

+="oon”
//results in “balloon”

The String object also supports the + operand.

Program Structure and Scope

Program Structure

An entire program written in PixMix may be within a single source Ffile, or may be
broken up into several other files and included when necessary.

Scope

In PixMix, declarations made at the top-level of a file (i.e., not within a function)
are visible to the entire file, including from within functions, but are not visible
outside of the file. Any variable delcared outside of brackets is available
everywhere in that file. Declarations made within functions are visible only within
those functions.A declaration is not visible to declarations that came before it.

Control Flow

Control is managed by indentation.

if expression:
statement

Sample Programs

Hello World

// prints greeting according to time of day
String out = “Good”;

// Assuming a standard library Time exists
if Time.now < Time.get(1200)

{3

out += “ morning!”

elif Time.now < Time.get(“5 PM”)
out += “afternoon!”

else

out += “evening!”
Console.log(out) // Print the contents of “out” to stdout

Blacken any pixels that are “too” red, blur the image, then
save as a new file

// Load an image from disk
Image img = Image.load(“sample.bmp”)

// Loop over every Pixel in the Image
for p in img
// If red channel is more than 100, remove red
if p.red > 100
p.red =0

img.gaussianBlur(3); // Blur the image
img.saveAs(“sample-redMute-Blur.bmp”); // Save to a new file

Fibonacci

fun fib(int 1) {
if 1 <=1
return i
return fib(i-1) + fib(i-2)

int 1
Console.read(i) // Prompt user for input
Console.log(fib(i)) // Print result to stdout

Compositing Images

Corner

Base

D30

Image base = Image.load(“base.bmp”)
Image corner = Image.load(“corner.bmp™)
Image frame = Image.load(“frame.bmp”)

base.width / frame.width
base.height / frame.height

int frameRepX

int frameRepY

for 1 in frameRepX {

// Use the Image object’s place function to add the image called

“frame”
// onto the image called “base”
// destination.place(source, x, y)
base.place(frame, 1, 0)
base.place(frame, i, base.height)

// Rotate the image called “frame” by 90 degrees in preparation for
placing it along the sides of the image called “base”

frame.rotate(90);

for 1 in frameRepY {
base.place(frame, 1, 0)
base.place(frame, 1, base.width)

base.place(corner, 0, 0)

corner.rotate(90)

base.place(corner, base.width, 0)
corner.rotate(90)

base.place(corner, base.width, base.height)
corner.rotate(90)

base.place(corner, 0, base.height)

base.saveAs(“SAEFramed.bmp”)

Result, SAEFramed.bmp

Grammar

program:
declaration_list

declaration_list:
declaration_list declaration
declaration

declaration:
variable_declaration
function_declaration

variable_declaration:
type identifier = expression
type identifier

function_declaration:
fun identifier (parameter_list) { statement_list }

parameter_list:
/* nothing */
parameter_list type identifier

statement_list:
/* nothing */
statement_list statement

statement:
assign_statement
break_statement
compound_statement
expression_statement
iteration_statement
return_statement
selection_statement

assign_statement:
identifier = expression

break_statement:
break

compound_statement:
statement_list

expression_statement:
expression

iteration_statement:
while expression statement
while (expression) statement
for constraint_list statement
for (constraint_list) statement

return_statement:
return optional_expression

selection_statement:
if expression optional_selection_statement_list statement
if expression
if expression optional_selection_statement_list else statement

optional_selection_statement_list:
optional_selection_statement_list else if expression statement
else if expression statement

optional_expression:
/* nothing */
expression

constraint_list:
constraint
constraint_list, constraint

constraint:
type identifier in identifier

expression:
mutable = expression
mutable += expression
mutable —= expression
mutable *= expression
mutable /= expression
mutable ++
mutable —-
simpleExpression

mutable:
identifier

simple_expression:
logical_or_expression
expression logical_or_expression

logical_or_expression:
logical_and_expression
logical_or_expression or logical_and_expression

logical_and_expression:
equality_expression
logical_and_expression and equality_expression

equality_expression:
relational_expression
equality_expression is relational_expression
equality _expression is not relational_expression

relational_expression:
additive_expression
relational_expression < additive_expression
relational_expression > additive_expression
relational_expression <= additive_expression
relational_expression <= additive_expression

additive_expressions:
multiplicative_expression
additive_expression + multiplicative_expression
additive_expression - multiplicative_expression

multiplicative_expression:
image_expression
multiplicative_expression * image_expression
multiplicative_expression /image_expression
multiplicative_expression % image_expression
multiplicative_expression & image_expression

image_expression:
unary_expression

unary_expression:
primary_list
unary_operator primary_list

unary_operator:
(type)

>>=

primary_list:
atoms
index
call

index:
identifier[expression]

call:
identifier (actual_list)

actual_list:
expression
actual_list

atoms:
literals
identifier
(expression)

literals:
character_literal
integer_literal
float_literal
true
false

Appendix

Syntax Quick-Reference

General

No semicolons

No “main” function

Use curly brackets around multiline statements
No curly brackets around single line statements
EXCEPTION: Objects always use curly brackets

Functions
Use parentheses around parameters

Conditionals
No parentheses around the expression (unless needed for precedence)

Comments
Cstyle: //single line /* block */

Array
Array myArray = [1,2,3]
Data type, name, equals, square brackets around comma separated list

Object
Object myObject = {iint x}
Data type, name, equals, curly brackets around statements.

PixMix Team
Name
Alexandra Taylor
Christina Charles
Edvard Eriksson

Nathan Burgess

Uni
at3022

cdc2192

ehe2107

nab2180

Role

Tester
Language Guru
Manager

System Architect

